PHYSICAL REVIEW D, VOLUME 63, 025015

Casimir energy for a scalar field with a frequency dependent boundary condition
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We consider the vacuum energy for a scalar field subject to a frequency dependent boundary condition. The
effect of a frequency cutoff is described in terms of an incompjetenction. The use of the Debye asymptotic
expansion for Bessel functions allows us to determine the dom{mahime, area, . .) terms in the Casimir

energy. The possible interest of this kind of model for dielectric méall its application to sonolumines-
cence is also discussed.
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[. INTRODUCTION showing that dispersive effects may reverse the direction of
the Casimir force acting on the boundary between media. In
The Casimir effect[1,2] arises as a distortion of the Refs.[17,18 the case of a spherically symmetric media sat-
vacuum energy of quantized fields due to the presence aéfying the relatione(w)u(w)=1 is studied(of special in-
bogndarlgs{or nontnvn_al topologiesin the quantization do_- terest in QCID), with both a sharp frequency cutoff on(w)
main. This effect, which has a quantum nature associategind a behavior analogous to the one-absorption-frequency
with the zero-point oscillations in the vacuum state, is sig-selimeir's formula for dielectrics. In Ref19], for nonmag-
nificant in diverse areas of physics, from statistical physics tetjc dispersive media with spherical geometry, and based
elementary particle physics and cosmology. upon the Minkowski energy-momentum tensor, the Casimir
. In pa_rt|cular, in the last few years there has _been_gre%urface force is worked out when the permittiviyw) pre-
interest in the _Ca5|m_|r energy of electromagnetlc fields in thGSents a step along the imaginary frequency axis. In the limit
presence of dielectric med_la, due to Schyvmgers suggeonBf perfect conductivity, a nondispersive term is recovered,
[3] that it could play a role in the explanation of the phenom-WhiCh is in agreement with Boyer resqi21,27, while an
enon of sonoluminescen¢é]. tractive di i tribution is also f ' d’
The results obtained on this subject by different groupsa ractive dispersive contribution 1S aiso found.
In what follows we consider a simple model of a scalar

through several calculation techniquésuch as Green's - .
functions methods, van der Waals forcésfunction meth- field subject to frequency dependent local boundary condi-

ods, and asymptotic developments for the density of states-lONS On the surface of a sphere. Thus our main goal is to
see Refs[5—15), among othepsare rather controversial, and establish a method for calculating the change of the Casimir

some basic issues remain to be clarified. In this respect, it i§nergy of the field when the radius of the sphere is varied, in
our aim to contribute to the understanding of the problem by2 situation where the boundary conditions impose a physical
studying a simplified model which incorporates a frequencyfrequency cutoff().
cutoff in the boundary conditions at the separation between To this end we consider the very simple case of a scalar
the media in order to emulate the behavior of real dielectricsfield whose modes corresponding to eigenfrequencies

It should be mentioned that authors introducing a cutoff in<{) are confined to the interior of a sphere of radRs
the wave number to describe the behavior of real dielectricsatisfying local homogeneous boundary conditions.
agree with Schwinger’s explanation of the phenome(see, On the other hand, we will assume that the boundary is
for example,[11-14). On the other hand, in Ref15], completely transparent for those modes with-(). There-
where the permittivity of a nonmagnetic medium is modeledfore, their contribution to the difference in Casimir energies
by means of a(angular momentum dependgnbne- for two different values oR will cancel out, no matter the
absorption-frequency Sellmeir relation, and Zafunction  regularization employed for its definition. Consequently, we
technique is employed to sum up the contributions of thewill subtract these contributions, which amounts to a redefi-
proper oscillation modes of the electromagnetic field, it isnition of the reference energy level in &independent way.
concluded that the vacuum energy of a bubble embedded in For the evaluation of the vacuum energy of the low fre-
this material has the wrong behavior with the radiimsad-  quency modes we will employ asymptotic expansions in an
dition to its absolute value being far too smad be relevant incompleteé summation technique, to be discussed in the
to sonoluminescence. following. This approach will allow for the identification of

Candelag16] has been the first to remark on the impor- the volume, surface,. ., dominant terms in the Casimir en-
tance of dispersion in connection with the Casimir effect.ergy.
Later, Brevik and collaborator§17—20 have considered As a final exercise we will show that, with reasonable
several models with spherical and cylindrical geometriesyalues for the frequency cutoff and the bubble radius, the
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amount of Casimir energy available in this model is compawhereN,, is the number of positive zeros df(z) less than
rable with the energy emitted during each cycle of a typicalor equal tox=QR/c, the factor 2= 2| + 1 is the eigenvalue
sonoluminescence experim¢#ai. In view of the controversy degeneracy, and, is the maximum value of for which
existing on the subject, it would be of great interest to applyN,>1.

this method to a similar model for the case of the electro- We are interested in an analytic, rather than numeric,
magnetic field in the presence of dielectric media, a calculaevaluation of Eq/(5). Although this is a finite sum, we will

tion which will be presented in a forthcoming pagés]. employ a summation method based on the evaluation of an
incomplete? function, an approach which could be applied
Il. THE MODEL AND ITS INCOMPLETE ¢ FUNCTION in more CompleX situations. We can employ the fOIIOWing

representation:
Let us consider a free scalar field iR® satisfying

local boundary conditions which depend on the frequency Ny ) Ny e
of the field modes at the surface of a sphere of ra&ius > on=2 i : (6
. . . n=1 n=1
We will make the assumption that the boundary is com- s=-1

pletely transparent for the modes of frequencies greater th
a cutoff O, while for o<Q the modes satisfy Dirichlet
boundary conditions

here the sum in the right-hand side obviously exists for any
eC.t
SinceJ,(z2), for v>—1, has only real zeros, and its non-
vanishing zeros are all simplg24], we can employ the

2
@ >\ Cauchy theorem to represent the sum in the right-hand side
— = <
At c? Yu()=0, forr<R, of Eq. (6) as an integral on the complex plane,
(1) N ’
+ 4 1 J'(2)
© r = :0, i TS—— -s_V
Yo(N]i=r 2 =5 2 JV(z)dZ’ @

being confined to the interior of the sphere.

Writing l/fw(F)=f|(f)Y|m(9,€D), we get for the radial where the curveC encircles theN, first positive zeros of

J,(z) counterclockwise.

function For large enoughr(s), the contourC can be deformed
5 5 into two straight vertical lines, one crossing the horizontal
d_+z d 1(0+1 L9 (=0, for r<R @ axis atfi(z) =x and the other &(z)=0". Indeed, express-
dr2 rdr r2 c2 ' ' ' ing the integrand in terms of the modified Bessel function
[25]
\(/:vg:c;ﬁié?]e eigenfrequencies are determined by imposing the | (w)=e~! (72)v] (eilal2y) ®)

¢ B (valid for —w<arg(w)=</2), and taking into account its
1(N)]r=r=0 3 asymptotic behavior for large argumer5], it is easily

) . _ seen that, for &x+#j, ,,Vn, the integral
The solutions that are regular at the origin are given by '

fi(r)=+m/2zJ,(z), with v=1+1/2 andz=w, ,r/c, where —1 (x+i= J'(2)
. . — —s 14
the eigenfrequencies are £, (s,x)= ez \NE) dz 9
c

(4 ~ converges absolutely and uniformly in the open half-line
>1, from which it can be meromorphically extended to the
whole complexs plane.

i»n being thenth zero of the Bessel functioh,(z). Therefore, fors>1,

We will be interested in the difference between the

vacuum energies of two situations differing in the valuéof Ny s .

Then, we can disregard the contributions of those modes ngl Jon=8,(8,07) = ,(s8,X). (10

with frequenciesw> () because, being independent of the

position of the boundary, their contributions cancel outang since the left-hand side of E€LO) is holomorphic ins,
(whatever the regularization employed in defining they,e singularities of,(s,x) must be independent of
vacuum energy would Be This simply amounts to an On the other hand, foy>0 [25],
R-independent subtraction, which is nothing but a redefini-
tion of the zero energy level.

Therefore, we should evaluate tffaite) sum

wv,nzﬁj v,n

INotice that the sum in the right-hand side of &6). evaluated at
v N, 1 s=0 givesN, , the number of eigenfrequencies contributing to the
E(R)= 2 2,,2 Eﬁwv,na (5) CaS|m|.r energy of the fiel@after the subtraction made to defing it
v=1/2 n=1 for a given value of the angular momentum v—1/2.
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[ (—y—ix)=e '™l (y+ix), (11
L(y+ix)=(,(y—ix))*.
So, for reals>1 we can write
{,,(S,X)=9%[_ lise—i(ﬂ—.z)(s-%—l)
= _ Lxty—1)
on(y_') IV(X(y—I))dy]' 12

In order to construct the analytic extension{ofs,x) to
s=—1, we subtract and add to the integrand in E) the
first few terms obtained from the uniform asymptoti2e-
bye) expansion 25] of the Bessel functions,

L(vt) 1 L,
where
D,()=vDD(t)+DO(t)+ v D V(1)
_+3
:V\/1+tz_ t . 4t—t 14
t 2(1+t%) 8p(1+t?)%?

is valid for largev with fixed t. We will see that this approxi-
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having asO(t°) for large|t|. This integral converges abso-
lutely and uniformly fors>1, where it defines an analytic
function to be meromophically extended to the region of
interest of the parametex As we will see, this extension
reveals the singularities of(s,x) as simple poles, whose
residues are independentdfa necessary condition to give a
finite result in Eq.(10) for anys].

In fact, by virtue of the analyticity of the integrand, we
can change the path of integration to write

w—iz
f - tTSD,(tdt

i V4

fl t‘5< v1+t2 t
1Z

413 )

- t 2(1+t)  8y(1+12)52

+j°°t—s vy1+t? t 4t—t3

1 t 2(1+t%) 8w(1+t?)>?

1+ ! to ! dt
1y, T
2t2) 2t gyt?

+Ft*s 1+t ! 17)

1 v 2t2 2t gypt?

The first integral in the right-hand side of E@.7), con-

mation allows for the identification of the volume, surface,taining the whole dependence g# vz, is holomorphic ins

..., contributions to the vacuum energy.
Changing the integration variable in EQL2) to t=z(y
—1), with z=x/v>0, we get

—p~S

s“y(s,X):%[

o (w/z)(s+1)J'°°_iZtsd(|n I,(vt))
—iz dt

(19

So, we must consider the integral

fwiztsd(ln 1,(v1))

©—iz
— -s
. Tt dt—f t~SD (t)dt

—iz

©—iz
H[
—iz

—D,,(t)]dt.

_[d0n1, (1)
dt

(16)

and can be directly evaluated at the required value of this
parameter. On the half-line () we have subtracted and
added the first terms in the series expansiorDg(t) for
larget, thus making the second integral to convergedor
—2. The third one must be evaluated fer-1 and then
analytically continued to the relevant valuessof his can be
done exactly, its contribution t9,(s,x) in Eqg. (15) being the
real part of

1-4172
1+s

4y

e~ (i12) ’7T(1+S){ 8V2
+
l1-s " s

(18

Vl+ 387T
This expression has simple polessat0,£1, which are the

only singularities of¢,(s,x) for 23(s)>—2. Notice that the
residues off,(s,x) are independent of,

1
Resé/V(S!X)|S:1:;I

The second integral in the right-hand side of this equation
converges fois>—2, since the integrand can be estimated
by means of the nexto(» %)) term in the Debye expansion
[Eq. (13)], which behaves a®(t~3) for large|t|. It can be
numerically evaluated a=—21. This will not be done in
this paper.

In the following, we will consider only the first integral in and in agreement with the results[i26] [whereZ,(s,0%) is
the right-hand side of Eq16), retaining the first few terms studied.
of its expansion in powers of !, consistent with the ap- For example, for{,(s,x) arounds=—1 and for v<<x
proximation made in Eq13). Notice that the integrand is an (which will be needed in Sec. IV to evaluate the vacuum
algebraic function, having singularities &£ 0,>1, and be- energy, one straightforwardly obtains the Laurent expansion

Res{,(s,X)|s=0=0, (19

1—412
87 '’

Res{,(8,X)[s= 1=
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. 1-412 (41v°—1) od 2
ElSXx=V)= gy gr |92
V2 V2
+log(z+ 22— 1)|——— =—2zJz°—1
A7 2
282 L o |0ty
- — v S ,
24m(22—1)%2 37
(20)
with fixed z=x/v=1.
On the other hand, fox—0* a similar calculation leads
to
_o+)= 1—417? ., (4v2—1)| v v
Glsx=0) =g 07 s | 8x 92 7x 2
! +O0(v H|+0(s+1 21
— 32 tO Y | +0(s+1). (21

In the following section we will evaluate, as a function of
v, the number of modes contributing in EG0), and in Sec.
IV, their contributions to the vacuum energy.

Ill. THE NUMBER OF CONTRIBUTING MODES

PHYSICAL REVIEW D63 025015

is a coincidence witl26].
Now, taking the difference between E¢85) and(24) we

get a smooth approximatiom,(x)+O(» ), to the step
function N,(x) in Eq. (22). It is easily seen that, for>x,

N,(x)=0 while, for v<x, we have

R, (0= 2 (=1~ arctan Z= 1))~ 5

2+372

e a——y 26)
24vm(2—1)%? (
with z=x/v.
Let us now determine the valug for which
N, () =1/2. (27)
To this end, we propose an expansion of the form
VB 1=e1vg P eang P+ 0™, (28)

which makes sense fop>1 andzy=x/vy~1. Replacing in
Eq. (26) and imposing Eq(27), the coefficientss, can be
determined order by order in, “® to get

x= o+ 1.85%5%+ 1.0345 3+ O(vy 1) (29
or, inverting this development,
vo=x—1.85%3+0.1155% 3+ O(x1). (30)

In this section we address ourselves to the determination

of vy in Eqg. (5), the maximum value of for which N,

=1. Although in the simple case under study the zeros of

J,(w) are well known 25], we prefer to establish a criterium
which can be applied in more general situations.

First, notice that
N

Nxnggj;mFo=uxaow—gxamuFo (22)

is a discontinuous function of, having a step of height one
at each positive zerp, , of the Bessel functiod ,(w).
Then, vy can be determined from the condition

N, () =N, (j,, 1+ 0)=1, 23

with N, (j,,1—0)=0.

Taking into account Eq(19) and the fact that the second
and third integrals in the right-hand side of Efj7) are real,
it is straightforward to obtain from Eq$15)—(17) that

1
£,(s=0x)=— > — —+m[ _%(m

2 4

|
—log(1+1+e™'"z%))+ Elog(lvte"”zz)

1(2+37%)
24vm(1+e'7z%)%?

] +0O(v™?), (24)

where we have taken=x/v~1. In particular, forx—0",

v 1
[, (s=0x=0")=— +0O(v?),

271 @

(Notice thatyy<x.)
Equation (29) is in excellent agreement with the
expression of the first nonvanishing zero hfo(w), for a
large order vy [25]: j, 1=vo+1.855%°+1.03315, 1

+0O(vg Y.

IV. THE DOMINANT CONTRIBUTIONS TO THE
VACUUM ENERGY

In this section we evaluate the first contributions to the
vacuum energy obtained from the Debye expansion em-
ployed in Sec. II. As we will see, this allows us to determine

the volume, surface . ., terms in the Casimir energy of the
scalar field.

According to the results in the previous section, we are

interested in the Laurent expansion ¢f(s,x>v) and
£,(s,x=0%) arounds= —1, given in Eqs(20) and(21). As

already remarked, the singular parts cancel out in the differ-

ence on the right-hand side of E40) [see Eq(19)]. For the
difference of the finite parts we get

ZF(XvV)E[é’V(S!O+)_ gv(svx)]s:—l
2
(zJ-1+22—log(z+ -1+ 2?))— ;

14
3z—-82°

+ _—
24m(—1+2%)3?

2

1

J’_
8

log(z++—1+ zz)

+0O(v™Y). (31)

This is a good approximation as long as>1 andz=x/v
=1.
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Our aim is now to evaluate the sum in E§), V. CONCLUSIONS

v In Egs. (34)—(35) we have derived the dominant contri-
_ _ _ (10" butions to the vacuum energy of a scalar field in a model
E(R=xc/() X V:Ej_/z (= 1X) =4~ 1.07)] with a frequency dependent boundary condition, consisting
in the confinement of the modes with low frequeriap to a
physical cutoff()) to the interior of a sphere of radil®
_hQV:Em F(x,), (32 These modes are subject to Dirichlet boundary conditions
at the surface of the sphere, while those with frequencies
higher than() are free, being that the boundary is completely
transparent to them. This characteristic of the model allows
for the subtraction of the contribution of the high frequency
modes to the vacuum energy, which amouiigependently
of the regularization employed to define) itto an
R-independent redefinition of the zero energy level, having
no consequences on the evaluation of energy differences.
In so doing, we have represented the sum over the eigen-
frequencies up to the cutofd in terms of anincomplete
function associated with the Laplacian operator in the sphere
with Dirichlet boundary conditiongsee Eq(10)]. The func-
tion {(s,x), as in EqQ.(12), is well defined only fori(s)
>1. So, it was analytically continued fros™ 1 to the rel-
evant values of this parametes< 0, needed to evaluate the

are of increasing order i~ 1. So, retaining the first few Maximum angular momenturty=1o—1/2, giving rise to
terms consistent with the approximation made, we get for th€igenfrequencies less than or equaltp ands=—1, nec-

Yo

with v given in Eq.(30).

The function F(x,v) is non-negative and has a pro-
nounced maximum at~x/2 (i.e., z=2). Thus, the use of
the approximation in Eq31) is consistent ifx>1.

From Eq.(31), it is not difficult to see that the successive
terms in the Euler-Maclaurin summation formii2b],

Vk VQ
> F(x,y)zf F(x,v)dv+ 1{F(x,yo)+F(x,1/2)}
M) 12 2

1 V=,
+ 1—2aV[F(x,v)]|V:1?2+ el (33

vacuum energy essary to evaluate the contribution to the Casimir energy of
the modes with angular momentuns v— 1/2) by approxi-
N e 2 mating the behavior of the integrand in E42), employing
E(R) =3 (V= 1+2p(=5+22)) the Debye asymptotic expansion of the modified Bessel
(29} 24773 functions appearing in its expression.
This procedure has lead to a meromorphic function hav-
22— 3 log(zo+ V- 1+2) o[ —V—1+ z ing simple poles with{exactly evaluatedcutoff independent
+ 247 —X 472 residuegsee Eq(19)], a necessary condition to have a finite
0 0

result for the sum in Eq(10).
7+ 3 log(zo+ \/ﬂ) —(—27+ 172(2)) 'I_'he finite pa_rt o_fg;(s,x) has been evaluated_up to terms of
+ 3 —X 5 a given order inv~ . Although we have retained only the
127z, 48mzoN—1+2Z;  first terms in this asymptotic expansion, one can follow the
same steps to determine the finite part ($,x) ats=—1 or
+O(x0) 0 up to any required precision in 1.
' Finally, the application of the Euler-Maclaurin summation
formula has lead to an expression for the Casimir energy of
(34 the model in which one can recognize volume, surface, and
curvature contributiongsee Eq.(34)].
wherezy=X/vo, X=R(Q/c, and, is given in EQ.(30). In For a cutoff corresponding to=RQ/c>1, the dominant
this equation one can recognize volume, surface, and curvaerms in the vacuum energy, E®5), are proportional to the
ture contributions taE(R). Notice that we could have re- volume (V=47R%3) and area$=4mR?) of the sphere,
tained any number of terms of the asymptotic expansion in
Eq. (13) and performed the same steps as in the present

+67T— 1022+ 69 log zo+ \/— 1+ 22)
48773

calculation to get the Casimir energy to any ordexirt. E(R) 03 02 -
Finally, replacing in Eq(34) zo—Xx/vy and vq by its ex- a 3 TES—5+ 36
pression, we get h 16m7“c 127°c
3 2 _
E(R)=40|————=-0.134%*3+0O(x)|, (35  with {é=—m/4.
127 12 It is worthwhile to remark that, for a similar model where

the low frequency modes of the scalar field are subject to
where one can see that the volume and surface terms aMeumann(rather than Dirichletboundary conditions, we get
dominant forx>1. Also notice that noninteger powers of the the same expression for the dominant terms with+ /4.
radiusR appear as a consequence of the relation betwgen These two dominant terms are in complete agreement
andx, Eq. (30). with those obtained from the expansion of the density of
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states in powers of the inverse wavelerfd®i7,11]. The re-
lation betweenvy andx, Eq. (30) (or, equivalently, the ex-
pression of the first zero of the Bessel functiﬂ);})(w) in

terms of the order, [25]) also introduces noninteger powers

PHYSICAL REVIEW D63 025015

ergy of the scalar field for two different values of the bubble
radius.

If the bubble collapses from an initial radiuR=4
X 107° m to a final radius of one tenth this value, and the
emitted energy i€=1.2x10"12 J, by imposing the equality

of the radiusR [see Eq(35)].

As a final exercise, we can use H85) in a very sche-
matic model pretending to mimic the phenomenon of sonolu-
minescence. We will adopt the values of the radius and emit-
ted energy corresponding to a typical sonoluminescent Lo .
bubble[4]?)::md estin?ate thgzJ cutofd nggded to produce this gnd' tgkmg Into account Ec(35}, it .fOIIOWS f[hat x=490,
amount of energy. To this end, we will simply take the dif- justifying the use of the approximation obtained,

Lo - This implies thatQ)=3.675<10'° 1/sec, which corre-
ference of the low frequency contribution to the Casimir en- . ; .
sponds to a cutoff in wavelengths in the ultraviolet of

=5.129<10 ’ m=5129 A, not far from the region where
the refraction index of water essentially becomes 2.
2Indeed, for scalar fields subject to local homogeneous boundaryhis strongly suggests that we consider a similar model for
conditions the density of states is modified by finite volume effectsthe case of the electromagnetic field in the presence of di-
[27]. The first correction in the asymptotic expansion for large glectric media, a calculation which will be presented else-

R
(E(R)— E(R/10))=1.516x 10°,

7c (39

wavelengthk is given by
d3k f d*k
+S| ¢ +...,

2 wvj @m)? (2m% @7

where the coefficient takes the valu€=—n/4, é=+ «/4, and
&=+ m/4 for Dirichlet, Neumann, and Robin boundary conditions,
respectively. Then, introducing the dispersion relatio(k) =ck
and a cutoff in the wavelength given b§=Q/c, it is easy to get
Eq. (36) for the vacuum energy. Fgunction boundary conditions,
as those appearing in problems with dielectrics, the coeffi¢idts
more involved expressions, which can be difficult to evaljiafg.

where[23].
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