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Casimir energy for a scalar field with a frequency dependent boundary condition
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We consider the vacuum energy for a scalar field subject to a frequency dependent boundary condition. The
effect of a frequency cutoff is described in terms of an incompletez function. The use of the Debye asymptotic
expansion for Bessel functions allows us to determine the dominant~volume, area,. . . ) terms in the Casimir

energy. The possible interest of this kind of model for dielectric media~and its application to sonolumines-
cence! is also discussed.
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I. INTRODUCTION

The Casimir effect@1,2# arises as a distortion of th
vacuum energy of quantized fields due to the presenc
boundaries~or nontrivial topologies! in the quantization do-
main. This effect, which has a quantum nature associa
with the zero-point oscillations in the vacuum state, is s
nificant in diverse areas of physics, from statistical physic
elementary particle physics and cosmology.

In particular, in the last few years there has been gr
interest in the Casimir energy of electromagnetic fields in
presence of dielectric media, due to Schwinger’s sugges
@3# that it could play a role in the explanation of the pheno
enon of sonoluminescence@4#.

The results obtained on this subject by different grou
through several calculation techniques~such as Green’s
functions methods, van der Waals forces,z-function meth-
ods, and asymptotic developments for the density of state
see Refs.@5–15#, among others! are rather controversial, an
some basic issues remain to be clarified. In this respect,
our aim to contribute to the understanding of the problem
studying a simplified model which incorporates a frequen
cutoff in the boundary conditions at the separation betw
the media in order to emulate the behavior of real dielectr

It should be mentioned that authors introducing a cutof
the wave number to describe the behavior of real dielect
agree with Schwinger’s explanation of the phenomenon~see,
for example, @11–14#!. On the other hand, in Ref.@15#,
where the permittivity of a nonmagnetic medium is mode
by means of a ~angular momentum dependent! one-
absorption-frequency Sellmeir relation, and az-function
technique is employed to sum up the contributions of
proper oscillation modes of the electromagnetic field, it
concluded that the vacuum energy of a bubble embedde
this material has the wrong behavior with the radius~in ad-
dition to its absolute value being far too small! to be relevant
to sonoluminescence.

Candelas@16# has been the first to remark on the impo
tance of dispersion in connection with the Casimir effe
Later, Brevik and collaborators@17–20# have considered
several models with spherical and cylindrical geometri
0556-2821/2000/63~2!/025015~6!/$15.00 63 0250
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showing that dispersive effects may reverse the direction
the Casimir force acting on the boundary between media
Refs.@17,18# the case of a spherically symmetric media s
isfying the relatione(v)m(v)51 is studied~of special in-
terest in QCD!, with both a sharp frequency cutoff onm(v)
and a behavior analogous to the one-absorption-freque
Sellmeir’s formula for dielectrics. In Ref.@19#, for nonmag-
netic dispersive media with spherical geometry, and ba
upon the Minkowski energy-momentum tensor, the Casi
surface force is worked out when the permittivitye(v) pre-
sents a step along the imaginary frequency axis. In the li
of perfect conductivity, a nondispersive term is recover
which is in agreement with Boyer result@21,22#, while an
attractive dispersive contribution is also found.

In what follows we consider a simple model of a sca
field subject to frequency dependent local boundary con
tions on the surface of a sphere. Thus our main goal is
establish a method for calculating the change of the Cas
energy of the field when the radius of the sphere is varied
a situation where the boundary conditions impose a phys
frequency cutoffV.

To this end we consider the very simple case of a sc
field whose modes corresponding to eigenfrequenciesv
<V are confined to the interior of a sphere of radiusR,
satisfying local homogeneous boundary conditions.

On the other hand, we will assume that the boundary
completely transparent for those modes withv.V. There-
fore, their contribution to the difference in Casimir energi
for two different values ofR will cancel out, no matter the
regularization employed for its definition. Consequently,
will subtract these contributions, which amounts to a red
nition of the reference energy level in anR-independent way.

For the evaluation of the vacuum energy of the low fr
quency modes we will employ asymptotic expansions in
incomplete-z summation technique, to be discussed in t
following. This approach will allow for the identification o
the volume, surface,. . . , dominant terms in the Casimir en
ergy.

As a final exercise we will show that, with reasonab
values for the frequency cutoff and the bubble radius,
©2000 The American Physical Society15-1
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amount of Casimir energy available in this model is com
rable with the energy emitted during each cycle of a typi
sonoluminescence experiment@4#. In view of the controversy
existing on the subject, it would be of great interest to ap
this method to a similar model for the case of the elect
magnetic field in the presence of dielectric media, a calcu
tion which will be presented in a forthcoming paper@23#.

II. THE MODEL AND ITS INCOMPLETE z FUNCTION

Let us consider a free scalar field inR3 satisfying
local boundary conditions which depend on the frequencv
of the field modes at the surface of a sphere of radiusR.

We will make the assumption that the boundary is co
pletely transparent for the modes of frequencies greater
a cutoff V, while for v<V the modes satisfy Dirichle
boundary conditions

S D1
v2

c2 D cv~rW !50, for r ,R,

~1!

cv~rW !ur 5R50,

being confined to the interior of the sphere.
Writing cv(rW)5 f l(r )Yl

m(u,w), we get for the radial
function

S d2

dr2
1

2

r

d

dr
2

l ~ l 11!

r 2
1

v2

c2 D f l~r !50, for r ,R, ~2!

where the eigenfrequencies are determined by imposing
condition

f l~r !ur 5R50. ~3!

The solutions that are regular at the origin are given
f l(r )5Ap/2zJn(z), with n5 l 11/2 andz5vn,nr /c, where
the eigenfrequencies are

vn,n5
c

R
j n,n , ~4!

j n,n being thenth zero of the Bessel functionJn(z).
We will be interested in the difference between t

vacuum energies of two situations differing in the value ofR.
Then, we can disregard the contributions of those mo
with frequenciesv.V because, being independent of t
position of the boundary, their contributions cancel o
~whatever the regularization employed in defining t
vacuum energy would be!. This simply amounts to an
R-independent subtraction, which is nothing but a redefi
tion of the zero energy level.

Therefore, we should evaluate the~finite! sum

E~R!5 (
n51/2

n0

2n (
n51

Nn 1

2
\vn,n , ~5!
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whereNn is the number of positive zeros ofJn(z) less than
or equal tox5VR/c, the factor 2n52l 11 is the eigenvalue
degeneracy, andn0 is the maximum value ofn for which
Nn>1.

We are interested in an analytic, rather than nume
evaluation of Eq.~5!. Although this is a finite sum, we will
employ a summation method based on the evaluation o
incompletez function, an approach which could be applie
in more complex situations. We can employ the followin
representation:

(
n51

Nn

j n,n5 (
n51

Nn

j n,n
2sU

s521

, ~6!

where the sum in the right-hand side obviously exists for a
sPC.1

SinceJn(z), for n.21, has only real zeros, and its non
vanishing zeros are all simple@24#, we can employ the
Cauchy theorem to represent the sum in the right-hand
of Eq. ~6! as an integral on the complex plane,

(
n51

Nn

j n,n
2s5

1

2pı RC
z2s

Jn8~z!

Jn~z!
dz, ~7!

where the curveC encircles theNn first positive zeros of
Jn(z) counterclockwise.

For large enoughR(s), the contourC can be deformed
into two straight vertical lines, one crossing the horizon
axis atR(z)5x and the other atR(z)501. Indeed, express
ing the integrand in terms of the modified Bessel functi
@25#

I n~w!5e2ı ~p/2! nJn~ei ~p/2!w! ~8!

~valid for 2p,arg(w)<p/2), and taking into account its
asymptotic behavior for large arguments@25#, it is easily
seen that, for 0,xÞ j n,n ,;n, the integral

zn~s,x![
21

2pıEx2ı`

x1ı`

z2s
Jn8~z!

Jn~z!
dz ~9!

converges absolutely and uniformly in the open half-lines
.1, from which it can be meromorphically extended to t
whole complexs plane.

Therefore, fors.1,

(
n51

Nn

j n,n
2s5zn~s,01!2zn~s,x!. ~10!

And, since the left-hand side of Eq.~10! is holomorphic ins,
the singularities ofzn(s,x) must be independent ofx.

On the other hand, fory.0 @25#,

1Notice that the sum in the right-hand side of Eq.~6! evaluated at
s50 givesNn , the number of eigenfrequencies contributing to t
Casimir energy of the field~after the subtraction made to define i!
for a given value of the angular momentuml 5n21/2.
5-2
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I n~2y2 ix !5e2ıpnI n~y1 ix !, ~11!

I n~y1 ix !5„I n~y2 ix !…* .

So, for reals.1 we can write

zn~s,x!5RH 2x12s

p
e2 i ~p.2!(s11)

3E
0

`

~y2ı !2s
I n8„x~y2ı !…

I n„x~y2ı !…
dyJ . ~12!

In order to construct the analytic extension ofzn(s,x) to
s.21, we subtract and add to the integrand in Eq.~12! the
first few terms obtained from the uniform asymptotic~De-
bye! expansion@25# of the Bessel functions,

I n8~nt !

I n~nt !
5

1

n
Dn~ t !1O~n23!, ~13!

where

Dn~ t !5nD (1)~ t !1D (0)~ t !1n21D (21)~ t !

5
nA11t2

t
2

t

2~11t2!
1

4t2t3

8n~11t2!5/2
~14!

is valid for largen with fixed t. We will see that this approxi-
mation allows for the identification of the volume, surfac
. . . , contributions to the vacuum energy.

Changing the integration variable in Eq.~12! to t[z(y
2ı), with z5x/n.0, we get

zn~s,x!5RH 2n2s

p
e2 i ~p/2!(s11)E

2 iz

`2 iz

t2s
d„ln I n~nt !…

dt
dtJ .

~15!

So, we must consider the integral

E
2 iz

`2 iz

t2s
d„ln I n~nt !…

dt
dt5E

2 iz

`2 iz

t2sDn~ t !dt

1E
2 iz

`2 iz

t2sH d„ln I n~nt !…

dt

2Dn~ t !J dt. ~16!

The second integral in the right-hand side of this equat
converges fors.22, since the integrand can be estimat
by means of the next„O(n23)… term in the Debye expansio
@Eq. ~13!#, which behaves asO(t23) for large utu. It can be
numerically evaluated ats521. This will not be done in
this paper.

In the following, we will consider only the first integral in
the right-hand side of Eq.~16!, retaining the first few terms
of its expansion in powers ofn21, consistent with the ap
proximation made in Eq.~13!. Notice that the integrand is a
algebraic function, having singularities att50,6ı, and be-
02501
,

n

having asO(t0) for large utu. This integral converges abso
lutely and uniformly fors.1, where it defines an analyti
function to be meromophically extended to the region
interest of the parameters. As we will see, this extension
reveals the singularities ofz(s,x) as simple poles, whose
residues are independent ofx @a necessary condition to give
finite result in Eq.~10! for any s].

In fact, by virtue of the analyticity of the integrand, w
can change the path of integration to write

E
2 iz

`2 iz

t2sDn~ t !dt

5E
2 iz

1

t2sS nA11t2

t
2

t

2~11t2!
1

4t2t3

8n~11t2!5/2D dt

1E
1

`

t2sH nA11t2

t
2

t

2~11t2!
1

4t2t3

8n~11t2!5/2

2FnS 11
1

2t2D 2
1

2t
2

1

8nt2G J dt

1E
1

`

t2sFnS 11
1

2t2D 2
1

2t
2

1

8nt2Gdt. ~17!

The first integral in the right-hand side of Eq.~17!, con-
taining the whole dependence onx5nz, is holomorphic ins
and can be directly evaluated at the required value of
parameter. On the half-line (1,`) we have subtracted an
added the first terms in the series expansion ofDn(t) for
large t, thus making the second integral to converge fors.
22. The third one must be evaluated fors.1 and then
analytically continued to the relevant values ofs. This can be
done exactly, its contribution tozn(s,x) in Eq. ~15! being the
real part of

e2 ~ i /2! p(11s)

n11s8p
S 8n2

12s
1

4n

s
1

124n2

11s D . ~18!

This expression has simple poles ats50,61, which are the
only singularities ofzn(s,x) for R(s).22. Notice that the
residues ofzn(s,x) are independent ofx,

Reszn~s,x!us515
1

p
,

Reszn~s,x!us5050, ~19!

Reszn~s,x!us5215
124n2

8p
,

and in agreement with the results in@26# @wherezn(s,01) is
studied#.

For example, forzn(s,x) around s521 and for n,x
~which will be needed in Sec. IV to evaluate the vacuu
energy!, one straightforwardly obtains the Laurent expans
5-3



of

tio

o

e

d

e

he
m-

ne
e

re

fer-
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zn~s,x.n!5
124n2

8p~11s!
1F ~4n221!

8p F logS n

2D
1 log~z1Az221!G2

n2

4p
2

n2

2p
zAz221

2
3z28z3

24p~z221!3/2
2

1

3p
1O~n21!G1O~s11!,

~20!

with fixed z5x/n*1.
On the other hand, forx→01 a similar calculation leads

to

zn~s,x501!5
124n2

8p~11s!
1F ~4n221!

8p
logS n

2D2
n2

4p
2

n

4

2
1

3p
1O~n21!G1O~s11!. ~21!

In the following section we will evaluate, as a function
n, the number of modes contributing in Eq.~10!, and in Sec.
IV, their contributions to the vacuum energy.

III. THE NUMBER OF CONTRIBUTING MODES

In this section we address ourselves to the determina
of n0 in Eq. ~5!, the maximum value ofn for which Nn

>1. Although in the simple case under study the zeros
Jn(w) are well known@25#, we prefer to establish a criterium
which can be applied in more general situations.

First, notice that

Nn~x![ (
n51

Nn

j n,n
2sus505@zn~s,01!2zn~s,x!#us50 ~22!

is a discontinuous function ofx, having a step of height on
at each positive zeroj n,n of the Bessel functionJn(w).

Then,n0 can be determined from the condition

Nn0
~x!5Nn0

~ j n0,110!51, ~23!

with Nn0
( j n0,120)50.

Taking into account Eq.~19! and the fact that the secon
and third integrals in the right-hand side of Eq.~17! are real,
it is straightforward to obtain from Eqs.~15!–~17! that

zn~s50,x!52
n

2
2

1

4
1RH 2

ın

p
„A11e2ıpz2

2 log~11A11e2ıpz2!…1
ı

4p
log~11e2ıpz2!

1
ı~213z2!

24np~11e2ıpz2!3/2J 1O~n22!, ~24!

where we have takenz5x/n'1. In particular, forx→01,

zn~s50,x501!52
n

2
2

1

4
1O~n22!, ~25!
02501
n

f

is a coincidence with@26#.
Now, taking the difference between Eqs.~25! and~24! we

get a smooth approximation,Ñn(x)1O(n21), to the step
function Nn(x) in Eq. ~22!. It is easily seen that, forn.x,
Ñn(x)50 while, for n,x, we have

Ñn~x!5
n

p
„Az2212arctan~Az221!…2

1

4

2
213z2

24np~z221!3/2
, ~26!

with z5x/n.
Let us now determine the valuen0 for which

Ñn0
~x!51/2. ~27!

To this end, we propose an expansion of the form
Az0

2215«1n0
21/31«3n0

23/31O~n0
25/3!, ~28!

which makes sense forn0@1 andz05x/n0'1. Replacing in
Eq. ~26! and imposing Eq.~27!, the coefficients«k can be
determined order by order inn0

21/3 to get
x5n011.857n0

1/311.034n0
21/31O~n0

21! ~29!

or, inverting this development,
n05x21.857x1/310.1155x21/31O~x21!. ~30!

~Notice thatn0,x.!
Equation ~29! is in excellent agreement with th

expression of the first nonvanishing zero ofJn0
(w), for a

large order n0 @25#: j n0,15n011.8557n0
1/311.03315n0

21/3

1O(n0
21).

IV. THE DOMINANT CONTRIBUTIONS TO THE
VACUUM ENERGY

In this section we evaluate the first contributions to t
vacuum energy obtained from the Debye expansion e
ployed in Sec. II. As we will see, this allows us to determi
the volume, surface, . . . , terms in the Casimir energy of th
scalar field.

According to the results in the previous section, we a
interested in the Laurent expansion ofzn(s,x.n) and
zn(s,x501) arounds521, given in Eqs.~20! and~21!. As
already remarked, the singular parts cancel out in the dif
ence on the right-hand side of Eq.~10! @see Eq.~19!#. For the
difference of the finite parts we get

zF~x,n![@zn~s,01!2zn~s,x!#s521

5
n2

2p
„zA211z22 log~z1A211z2!…2

n

4

1
3z28z3

24p~211z2!3/2
1

1

8p
log~z1A211z2!

1O~n21!. ~31!

This is a good approximation as long asn@1 andz5x/n
*1.
5-4
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Our aim is now to evaluate the sum in Eq.~5!,

E~R5xc/V!5
\V

x (
n51/2

n0

n@zn~21,x!2zn~21,01!#

5\V (
n51/2

n0

F~x,n!, ~32!

with n0 given in Eq.~30!.
The function F(x,n) is non-negative and has a pro

nounced maximum atn'x/2 ~i.e., z'2). Thus, the use o
the approximation in Eq.~31! is consistent ifx@1.

From Eq.~31!, it is not difficult to see that the successiv
terms in the Euler-Maclaurin summation formula@25#,

(
n51/2

nk

F~x,n!5E
1/2

n0
F~x,n!dn1

1

2
$F~x,n0!1F~x,1/2!%

1
1

12
]n@F~x,n!#un51/2

n5n0 1 . . . , ~33!

are of increasing order inx21. So, retaining the first few
terms consistent with the approximation made, we get for
vacuum energy

E~R!

\V
5x3S 2„A211z0

2~2512z0
2!…

24pz0
3

1
2z0

423 log~z01A211z0
2!

24pz0
4 D 2x2S 2A211z0

2

4pz0
2

1
p13 log~z01A211z0

2!

12pz0
3 D 2xS 2~227117z0

2!

48pz0A211z0
2

1
6p210z0

2169 log~z01A211z0
2!

48pz0
2 D 1O~x0!,

~34!

wherez05x/n0 , x5RV/c, andn0 is given in Eq.~30!. In
this equation one can recognize volume, surface, and cu
ture contributions toE(R). Notice that we could have re
tained any number of terms of the asymptotic expansion
Eq. ~13! and performed the same steps as in the pre
calculation to get the Casimir energy to any order inx21.

Finally, replacing in Eq.~34! z0→x/n0 andn0 by its ex-
pression, we get

E~R!5\VF x3

12p
2

x2

12
20.1343x4/31O~x!G , ~35!

where one can see that the volume and surface terms
dominant forx@1. Also notice that noninteger powers of th
radiusR appear as a consequence of the relation between0
andx, Eq. ~30!.
02501
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V. CONCLUSIONS

In Eqs. ~34!–~35! we have derived the dominant contr
butions to the vacuum energy of a scalar field in a mo
with a frequency dependent boundary condition, consist
in the confinement of the modes with low frequency~up to a
physical cutoffV) to the interior of a sphere of radiusR.

These modes are subject to Dirichlet boundary conditi
at the surface of the sphere, while those with frequenc
higher thanV are free, being that the boundary is complete
transparent to them. This characteristic of the model allo
for the subtraction of the contribution of the high frequen
modes to the vacuum energy, which amounts~independently
of the regularization employed to define it! to an
R-independent redefinition of the zero energy level, hav
no consequences on the evaluation of energy difference

In so doing, we have represented the sum over the eig
frequencies up to the cutoffV in terms of anincompletez
function associated with the Laplacian operator in the sph
with Dirichlet boundary conditions@see Eq.~10!#. The func-
tion z(s,x), as in Eq.~12!, is well defined only forR(s)
.1. So, it was analytically continued froms.1 to the rel-
evant values of this parameter (s50, needed to evaluate th
maximum angular momentuml 05n021/2, giving rise to
eigenfrequencies less than or equal toV, ands521, nec-
essary to evaluate the contribution to the Casimir energy
the modes with angular momentuml 5n21/2) by approxi-
mating the behavior of the integrand in Eq.~12!, employing
the Debye asymptotic expansion of the modified Bes
functions appearing in its expression.

This procedure has lead to a meromorphic function h
ing simple poles with~exactly evaluated! cutoff independent
residues@see Eq.~19!#, a necessary condition to have a fini
result for the sum in Eq.~10!.

The finite part ofz(s,x) has been evaluated up to terms
a given order inn21. Although we have retained only th
first terms in this asymptotic expansion, one can follow t
same steps to determine the finite part ofz(s,x) at s521 or
0 up to any required precision inn21.

Finally, the application of the Euler-Maclaurin summatio
formula has lead to an expression for the Casimir energy
the model in which one can recognize volume, surface,
curvature contributions@see Eq.~34!#.

For a cutoff corresponding tox5RV/c@1, the dominant
terms in the vacuum energy, Eq.~35!, are proportional to the
volume (V54pR3/3) and area (S54pR2) of the sphere,

E~R!

\V
5V

V3

16p2c3
1jS

V2

12p2c2
1•••, ~36!

with j52p/4.
It is worthwhile to remark that, for a similar model wher

the low frequency modes of the scalar field are subjec
Neumann~rather than Dirichlet! boundary conditions, we ge
the same expression for the dominant terms withj51p/4.

These two dominant terms are in complete agreem
with those obtained from the expansion of the density
5-5
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states in powers of the inverse wavelength2 @27,11#. The re-
lation betweenn0 and x, Eq. ~30! ~or, equivalently, the ex-
pression of the first zero of the Bessel functionJn0

(w) in

terms of the ordern0 @25#! also introduces noninteger powe
of the radiusR @see Eq.~35!#.

As a final exercise, we can use Eq.~35! in a very sche-
matic model pretending to mimic the phenomenon of sono
minescence. We will adopt the values of the radius and e
ted energy corresponding to a typical sonoluminesc
bubble@4#, and estimate the cutoffV needed to produce thi
amount of energy. To this end, we will simply take the d
ference of the low frequency contribution to the Casimir e

2Indeed, for scalar fields subject to local homogeneous boun
conditions the density of states is modified by finite volume effe
@27#. The first correction in the asymptotic expansion for lar
wavelengthk is given by

(
n

;VE d3k

~2p!3
1SEj

d3k

~2p!3k
1 . . . , ~37!

where the coefficientj takes the valuej52p/4, j51p/4, and
j51p/4 for Dirichlet, Neumann, and Robin boundary condition
respectively. Then, introducing the dispersion relationv(k)5ck
and a cutoff in the wavelength given byK5V/c, it is easy to get
Eq. ~36! for the vacuum energy. Forjunction boundary conditions,
as those appearing in problems with dielectrics, the coefficientj has
more involved expressions, which can be difficult to evaluate@11#.
,

n

.

ko

M

ys

02501
-
it-
nt

-

ergy of the scalar field for two different values of the bubb
radius.

If the bubble collapses from an initial radiusR54
31025 m to a final radius of one tenth this value, and t
emitted energy isE51.2310212 J, by imposing the equality

R

\c
„E~R!2E~R/10!…51.5163109, ~38!

and taking into account Eq.~35!, it follows that x5490,
justifying the use of the approximation obtained.

This implies thatV53.67531015 1/sec, which corre-
sponds to a cutoff in wavelengths in the ultraviolet ofL
55.12931027 m55129 Å, not far from the region where
the refraction index of water essentially becomes one@28#.
This strongly suggests that we consider a similar model
the case of the electromagnetic field in the presence of
electric media, a calculation which will be presented el
where@23#.
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