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a b s t r a c t

Several quantifiers of information, also known as entropies, have been introduced in
different contexts and from differentmotivations. For almost each one of these entropies, a
measure of the loss (or gain) of information has been introduced. In this workwe introduce
generalized weighted divergences associated with an arbitrary entropy. The resulting
measures are closely related to Bregman divergences.We study themain formal properties
of the resulting divergences, we extend them to weighted probability distributions and we
apply some of them to the analysis of simulated and real time series.

© 2018 Published by Elsevier B.V.

1. Introduction

Searching for distances and similarity (or dissimilarity) measures between probability distributions, also called diver-
gences, is a topic of great interest in pure and applied mathematical statistics. It is well known that not all distances or
divergences are adequate for the treatment of every problem. Therefore, having a variety of divergences could be useful both
for theoretical studies as well as in the context of applications. One widely used similarity measure is the Kullback–Leibler
divergence (KLD) which has the expression

K (P,Q) =

∑
i

pi log2

(
pi
qi

)
(1)

where P = {pi}Ni=1 and Q = {qi}Ni=1 represent probability distributions for a N-states discrete random variable X .
This divergence is naturally related to the Shannon entropy, HS(P) = −

∑
i pi log2 pi [1]. The KLD has several interesting

interpretations in the realm of Information Theory (IT). For example, if one is concerned about the length of a code to
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represent the random variable X , and one uses the distribution Q to make the code instead of the true distribution P , the
average description length for the code is given by the amount HS(P) + K (P,Q) instead of HS(P) [2].

The KLD is definite positive, non symmetric and not bounded. It belongs to a broad class of dissimilaritymeasures, known
as Csiszár divergences [3]. These measures have the form:

Df (P,Q) =

∑
i

pif
(
qi
pi

)
(2)

with f a convex function. Additionally, we concentrate on the case where f is of class C2 and such that f (1) = 0 and
f ′′(1) = 1.1 For the KLD, the corresponding function is f (x) = − log2 x. Csiszár divergences have been applied to the study
of several physical phenomena, particularly in the context of non-equilibrium thermo-statistics [4].

Every Csiszár divergence with f of class C2 has a second order Taylor expansion of the form

Df (P,P + δP) =
1
2

∑
i

δp2i
pi

+ o

(∑
i

δp2i

)
(3)

where P and P + δP are two ‘‘close’’ distributions and o is a negligible reminder.
Since the emergence of IT several entropies have been studied. Two notorious cases are the Rényi entropy [5] and the

Havrda–Charvát entropy (HC) [6]. The first one is given by

HR
α(P) =

1
1 − α

log2

(∑
i

pαi

)
(4)

with α a real parameter. The Havrda–Charvát entropy, also known in physics as the Tsallis entropy has the expression

HHC
q (P) =

k
q − 1

(
1 −

∑
i

pqi

)
(5)

with q a real parameter and k a proportionality factor. In both cases they encompass the Shannon entropy as a special case,
in the limit when α → 1 and q → 1 respectively. Others authors have introduced families of entropies that have the Rényi
entropy and the Havrda–Charvát one as particular cases. A pioneering work in that direction was published by Daroczy [7]
and later extended by Burbea and Rao [8] or Salicrú et al. [9] for instance.

Usually some basic properties are required for an entropy—that we will denote generically as HG:

[E1] to be continuous with respect to (w.r.t). the pi’s;
[E2] to be non-negative;
[E3] to be equal to zero in the deterministic case, i.e., when one of the pi = 1 and the others are equal to zero;
[E4] to reach the maximum value for the uniform distribution, i.e., when pi =

1
N ∀ i, and

[E5] to be a concave function w.r.t. P in the sense of satisfying

HG

(∑
k

λkPk

)
≥

∑
k

λkHG (Pk) , ∀ λk > 0 such that
∑
k

λk = 1 and ∀Pk

This last condition is satisfied for the Shannon entropy, for the HC entropies when q > 0, and, in the Rényi case when
0 < α < 1.

Let us observe that every entropy satisfying condition [E5] allows to define a (Jensen-like)-divergence measure through
the expression:

DHG

J

(
P,Q;

1
2
,
1
2

)
≡ HG

(
1
2
P +

1
2
Q
)

−
1
2
HG (P)−

1
2
HG (Q) (6)

This is a definite positive quantity, equal to zero if and only if P = Q, bounded, and symmetric. Even more, it can be easily
extended to an arbitrary number of distributions {Pk}

K
k=1 which could have assigned different weights {πk ≥ 0}Kk=1 such that∑

k πk = 1:

DHG

J (P1, . . . ,PK ; π1, . . . , πK ) ≡ HG

(
K∑

k=1

πkPk

)
−

K∑
k=1

πkHG (Pk) (7)

These divergenceswere introduced by Burbea and Rao in [8]. For the case of Shannon entropy the correspondingmeasure (7)
it is known as the Jensen–Shannon divergence (JSD). Among the properties of the JSD, stands out that it can be interpreted
in the context of Bayesian inference [10].

1 This is not a restriction, except that f ′′ must be non-zero in 1. Indeed, if f is convex, f (x)−x
f ′′(1) remain convex (f ′′(1) > 0 from the convexity of f ), so that

the divergence is defined up to a shift and scaling factor.
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For the particular case of two probability distributions the JSD has ametric character. In fact, it has been possible to prove
that the power

[
DS
J

(
P,Q ;

1
2 ,

1
2

)]r
with r ∈

(
0, 1

2

]
satisfies the triangle inequality [11]. Therefore, it provides of a mono

parametric family ofmetrics for the probability distributions space. The JSD has shown to be useful in several context both in
classical and quantum physics [12–14], in the realm of statistical biology [15,16], and in network theory [17] just to mention
a few.

Rényi, by imposing certain properties, introduced the corresponding divergence to his entropy [5], achieving to the
quantity

ΛR
α (P,Q) =

1
α − 1

log2

(∑
i

pαi q
1−α
i

)
(8)

for α > 1. He interpreted this quantity as ‘‘the information of order α obtained if the distribution P is replaced by the
distribution Q’’. For the Havrda–Charvát entropy, the corresponding divergence is given by [18]

ΛHC
q (P,Q) =

1
1 − q

∑
i

pqi
(
p1−q
i − q1−q

i

)
(9)

what is a q-average of the change in the information associated to the distributionsP andQ. This last divergence is of Csiszár’s
type, with f (x) ≡

1−x1−q

1−q
Lin [10] amongmanyothers, expressed the JSDas a symmetrized version of theKLD. Indeed, the divergenceDS

J

(
P,Q ;

1
2 ,

1
2

)
can be rewritten under the form

DS
J

(
P,Q ;

1
2
,
1
2

)
=

1
2
K
(
P,

P + Q
2

)
+

1
2
K
(
Q,

P + Q
2

)
(10)

At this point an ambiguity becomes evident. If we use for example the HC entropy in expression (6), the resulting quantity
differs from those obtained by using the divergence equation (9) instead of the KLD in (10). In Ref. [19] we studied that
differences. The same situation occurs for the Rényi entropy.

The searching for alternative roads to avoid such ambiguities is the main motivation for the present work. Our proposal
will providemeasures of distinguishability between probability distributionswithin the framework of generalized entropies.
Other generalizations have been proposed and used practically in different contexts (see for example [16,19–24]).

2. Recovering the Bregman divergences

2.1. General proposal

In terms of the Shannon entropy the KLD can be written as

K (P,Q) =

∑
i

pi

(
∂HS (Q)
∂qi

−
∂HS (P)
∂pi

)
(11)

In vectorial notation it can equivalently be written as:

K (P,Q) = P
(
∇HS (Q)− ∇HS (P)

)t
withP =

[
p1 . . . pN

]
the vector of the probabilities, ∇ the gradient operator, and ·

t denoting the transpose operator. In
someway, we can think about the KLD as an average of the difference of the entropy gradients, evaluated in each probability
distribution. This inspires us a line to define a divergence associated to an arbitrary entropyHG replacing the Shannon entropy
HS in expression (11) by the generalized entropy HG. Proceeding in this way, we obtain a quantity KG (P,Q) exhibiting a
linear term in δpi in the Taylor expansion of KG (P,P + δP), which is incompatible with a Csiszár like divergence (obviously,
KG (P,P) = 0 so that the zero-order term is zero). It is easy to conclude that the only entropy, when replaced in (11), that
leads to a quantity with quadratic terms as its first non-zero coefficient of the Taylor expansion, is the Shannon entropy. This
point can be overcame through a symmetrization, resulting what we will call generalized divergence:

∆HG
(P,Q) =

1
2

∑
i

(pi − qi)
(
∂HG (Q)
∂qi

−
∂HG (P)
∂pi

)
(12)

or in vectorial form:

∆HG
=

1
2
(P − Q)

(
∇HS (Q)− ∇HS (P)

)t
For two ‘‘close’’ distributions, the Taylor expansion of this divergence is given by

∆HG
(P,P + δP) = −

1
2

∑
i,j

∂2HG

∂pi∂pj
δpiδpj + o

⎛⎝∑
i,j

δpiδpj

⎞⎠ (13)
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In information geometry the coefficients (positive due to the concavity of HG)

gij(P) = −
1
2
∂2HG

∂pi∂pj
(P)

are thought as a Riemannian metric for the manifold (simplex) of the discrete probability distributions [8]. Incidentally, we
mention that from themetric gij(P), the corresponding geodesics could be determined, and from them the geodesic distances
could be evaluated [25]. In the case of the Shannon entropy the corresponding Riemannian metric is the Fisher metric and
the resulting geodesic distance between two probability distributions P and Q, is given by:

W (P,Q) = 2 arccos

(∑
i

√
piqi

)
This distance it is known in physics as the Wootters’s distance [26].

Notably expression (12) is closely related to the Bregman divergences [27]. Indeed a Bregman divergence has the
expression:

dψ (P,Q) = ψ (P)− ψ (Q)−

∑
i

(pi − qi)
∂ψ (Q)
∂qi

(14)

or in vectorial form:

dψ (P,Q) = ψ(P) − ψ(Q) − (P − Q)∇tψ (Q)

where ψ is a real valued convex function defined on a convex set S ⊆ RN such that ψ is differentiable on the interior of S.
When we insert in (14) the function ψ (P) = −HS (P), the Bregman divergence reduces to the KLD. If we substitute

ψ (P) = −HG (P) in the expression (14) and symmetrize it, quantity (12) is recovered:

∆HG
(P,Q) =

1
2

(
dψ (P,Q)+ dψ (Q,P)

)
, (15)

For the particular case of the Shannon entropy, ψ (P) = −HS (P), this last definition leads to the Jeffrey divergence.
For the case of the Rényi entropy, the symmetrized version (12) leads to

∆R (P,Q) =
α

2(1 − α)

(∑
i

(
pi
qi

− 1
)

e(α)i (Q)+

∑
i

(
qi
pi

− 1
)

e(α)i (P)

)
(16)

for 0 < α < 1 and where Aα(P) ≡
∑

i p
α
i and the‘‘escort’’ probability associates with P are given by e(α)i (P) ≡

pαi
Aα (P) .

In a similar way we achieve to the following expression for the HC entropy

∆HC (P,Q) =
kq

1 − q
(Γ (P,Q)+ Γ (Q,P)) (17)

for q > 1 and where Γ (P,Q) = Aq (P)
(
−
∑

i
qi
pi
e(q)i (P)+ 1

)
.

It turns out that the Bregman divergence satisfies the following well known properties:

[B1] Non-negativity

dψ (P,Q) ≥ 0

with equality if and only if P = Q. This is a direct consequence of the convexity of ψ .
[B2] Extensivity

dλψ (P,Q) = λdψ (P,Q); (λ ≥ 0) (18)

[B3] Convexity ψ (P,Q) is convex in the first argument, but not necessarily in the second one. This is also a direct
consequence of the convexity of ψ .

However dψ (P,Q) it is not symmetric and it does not satisfy the triangle inequality.
The symmetrized version (15) inherits properties [B1] and [B2] and is obviously symmetrical.
Let us now study the divergences ∆HG

for a special class of entropies known as (h, φ)-entropies. From these entropies,
we will obtain a more general class of divergences that those studied by Burbea and Rao in [8].

2.2. Generalized divergences from (h, φ)-entropies

An (h, φ)-entropy is defined by [8,9]

H(h,φ) (P) = h

(
N∑
i=1

φ (pi)

)
(19)
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where the functions h : R ↦→ R and φ : [0, 1] ↦→ R are such that one, and only one, of these two conditions is fulfilled:

(i) h is increasing and φ is concave
(ii) h is decreasing and φ is convex

with φ(0) = 0 and h(φ(1)) = 0.
This family of entropies has as particular cases the Rényi and HC entropies. (h, φ)-entropies have been used in estimation

problems [28] and have been recently extended to realm of quantum physics [29].
It should be noted that for a (h, φ)-entropy it is possible to introduce a divergence in the form

D(h,φ) (P,Q) = −h

(∑
i

qiφ
(
pi
qi

))
(20)

This family of divergence is nothing more than an extension of the Csiszàr class [3,30]. In particular, it allows to include the
Rényi divergence. Indeed, if we evaluate this expression for the corresponding functions h and φ of the cases of Rényi and
HC entropies, one obtains the divergences (8) and (9) respectively.

Let us now take a look at the resulting Bregman divergenceswhen the functionψ is taken to be equal to−H(h,φ). Not every
(h, φ)-entropy is adequate to build a Bergman entropy. Indeed, it must be concave, which is not always the case for the Rényi
entropy for instance. Assuming that both h and φ are of class C2, H(h,φ) is also of class C2. The convexity requirement implies
that the Hessian matrix HH(h,φ) of H(h,φ) has elements[

HH(h,φ)
]
i,j = −h′′(y)φ′(pi)φ′(pj) − h′(y)φ′′(pi)δi,j with y =

∑
i

φ(pi) (21)

must be definite positive.
Searching for necessary and sufficient conditions on (h, φ) to satisfy the definite positivity of HH(h,φ) is not an obvious

task. However, one can easily check that if h is concave, then this condition holds. For instance, for the Rényi entropy, this
sufficient condition results to be valid for 0 < α < 1. However, although h in no more concave for α > 1, it has been
proved that there exists an α∗(N), depending on N such that the Rényi entropy remains concave when α < α∗(N) [31, p. 57]
(α∗(2) = 2), showing that the condition is only sufficient.

One can easily check that the HC entropy is concave whatever q > 0.

3. Weighted generalized divergences

In several contexts it could be useful to assign different relevance to different probability distributions. This is the case for
example, as evoked previously, in Bayesian inference. In this section we propose a way to define a generalized divergence
between weighted probability distributions. To this aim, we come back to our proposal of divergence equation (12) that
turned to be a symmetrization of the Bregman divergence written in terms of general entropies ψ(P) = −HG(P) as given
by expression (15). The connection between the Jensen–Shannon divergence and the Kullback–Leibler divergence, that is a
Bregman divergence associated to the Shannon entropy, suggests an alternativeway to generalize the divergence∆HG

(P,Q)
when we need to assign different weights to the distributions P and Q.

Let πP and πQ be two non negative numbers such that πP + πQ = 1. These numbers can be interpreted as the weights
for the distributions P and Q respectively. We introduce the weighted average distribution as

M = πPP + πQQ

Then we can define a weighted generalized divergence as:

∆HG (
P,Q;πP , πQ

)
≡ πPdψ (P,M)+ πQ dψ (Q,M) with ψ = −HG (22)

After some simple algebra one can check that this measure coincides with those given in expression (7). Definition Eq. (22)
provides an unequivocal way of assigning weights in a divergence for any arbitrary (concave) entropy. Let us stress that the
natural divergence associate to the entropy to use for this is not that of the Csiszàr class, but that of the Bregman class.

4. Applications

In this section we use the weighted generalized divergences previously introduced to study the stationarity of a time
series. We apply an already developed method consisting in a sliding pointer that moves along the register of the time
series [32]. For each position of the pointer we evaluate the frequencies of occurrence of the symbols belongings to the
alphabet used to map the sequence before and after the pointer, empirical probabilities of occurrence of the symbols. The
relative lengths of each subsequence (to the left and to the right of the pointer) is used as the weight of the corresponding
frequencies (or estimated probability distributions). Then, we evaluate the divergence (7), (22) at the obtained empirical
distributions. The maximum of this quantity, as function of the cursor position, is interpreted as the detection of a position
where the distribution of symbols changes. For details see Refs. [13,32].
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Fig. 1. Averaged weighted generalized divergence corresponding to the Rényi entropy evaluated over the binary sequence above described, as a function
of the cursor x. Each curve corresponds to a different value of α in the range 0.2 ≤ α ≤ 0.8.

We apply this scheme to a simulated sequence and to a real world sequence. The first one is a binary sequence, whichwas
built form the merging of two binary subsequences generated with different probability distributions for the occurrences
of symbols ‘‘0’’ and ‘‘1’’. The second example corresponds to the analysis of an electrocardiogram (ECG) signal, formed by
two sub-signals, one belonging to an ECG from a patient suffering an atrial fibrillation (AF) and the other corresponding to
a normal sinus rhythmic (NSR). In our examples we use the proposed generalized divergences corresponding to the Rényi
and the Tsallis entropies.

4.1. Simulated sequences

We use Monte Carlo simulations to study the behavior of the weighted generalized divergence both in the case of Rényi
and HC entropies as a detector of non-stationnarities. In this example, we generatedNe independent sequences composed of
two sub-sequences of respective lengths LS1 and LS2 = L− LS1 . The sub-sequence of length LSk (k = 1, 2) is generated from
a probability distribution (vector) PS1 =

[
sk 1 − sk

]
with independent samples. For each realization, we moved a cursor,

let us denote x its position, 1 < x < L, and estimate a distribution Pr(x) by the frequencies of 0s and 1’s in the subsequences
of the first x symbols (‘‘left part’’), and a distribution Pl(x) by the frequencies of 0s and 1’s in the remaining subsequences
(‘‘right part’’). To take into account the number of samples, i.e., the respective weights of the two subsequences, we define
the weights πr =

x
L = 1 − πl. We thus calculated ∆HG

(Pr(x),Pl(x);πr, πl) in both the Rényi case and HC case, for each

realization and each x, and compute the averaged divergences ∆
HG

(x) =

⟨
∆HG

(Pr(x),Pl(x);πr, πl)

⟩
over the ensemble of

the Ne realizations. For the illustration, we have chosen Ne = 1000 realization q, sequences of length L = 40 000, with the
stationary subsequences of respective lengths LS1 = LS2 = 20 000. The distributions of the two subsequences are chosen to
be given by s1 =

2
3 and s2 =

1
3 .

Fig. 1 depicts ∆
R
(x) =

⟨
∆R (Pr(x),Pl(x);πr, πl)

⟩
as a function of x using the Rényi entropy, for different values of the

parameter α = 0.2, 0.4, 0.6 and 0.8. The average reaches the maximum value at the merging point of the two subsequences
x = LS1 . Note that the maximum value of the divergence increases w.r.t. α. It should be observed that we evaluate the
average in order to get a smooth curve. Individually, for each realization, the divergence∆R has obviously a noisy behavior.

Similarly, Fig. 2 depicts∆
HC

(x) =
⟨
∆HC (Pr(x),Pl(x);πr, πl)

⟩
as a function of x using the HC entropy. The q parameter runs

between the values 0.3, 0.5, 0.7 and 1.3 and the data for the Monte Carlo simulations are the same as that used for Fig. 1.
Again the average of the divergence reaches its maximum value at the merging point of the two subsequences x = LS1 . Note
that, here again, the value of the maximum increases as the values of parameter q increases.

More interesting, Fig. 3 represents the histograms of the position of the cursor when the maximum is reached over the
realizations, for various values of q in the Tsallis context (the same behavior occurs for the Rényi case). The curves exhibit
a remarkable robustness of the statistics for a wide range of q, the unbiasedness of the maximal position (means precisely
equals to 2001) as an estimator of the change of stationarity, and a low variance (standard deviation of 10). This example is
a short illustration of how the generalized divergences (re)defined in this paper can be applied in such a context; it merits a
deeper study, for instance in terms of analytical study of the bias, variance, confidence interval, curvature of the maximum
(for which q has an effective role), etc. Such a study goes beyond the aim of this short paper.
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Fig. 2. Averaged weighted generalized divergence corresponding to the HC entropy evaluated over the binary sequence above described, as a function of
the cursor x.

Fig. 3. Histograms of the position of the cursor when the divergence∆R(Pr(x),Pl(x);πr, πl) is reached, over the 1000 realizations of the above described
process, for various values of the entropic index q.

4.2. Atrial fibrillation detection in ECG

Atrial Fibrillation (AF) is very common sustained cardiac arrhythmia, occurring in an important part of the general
population [33]. It is associated with significant mortality and morbidity through association of risk of death, stroke,
hospitalization, heart failure and coronary artery disease. Despite the enormity of this problem, AF detection remains
problematic, because it may be episodic. For these reasons, it is important to developmethods that can detect the difference
between AF and Normal Sinus Rhythmics (NSR) using electrocardiogram (ECG) traces.
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Fig. 4. Weighted Rényi divergence analysis over a normalized ECG signal. The ECG signal is a combination of two sub sequences S = S1S2 with length
LS1 = LS2 = 20 000 respectively. The first part of the signal belong to atrial fibrillation trace and the second one is Normal Sinus Rhythmic. The signal was
discretized using permutation vector approach with parameter d = 4 and τ = 1. The divergence was taken using different values of α indicated in the
plots.

We test our analysis method in the problematic of detecting the differences between an AF record from a NSR one. To
this aim, we put in a single record two ECG signals, one with AF followed by another one with NSR. These records were
taken for the Physionet data bank [34]. The signal were normalized and cut with the same length (LAF = LNSR = 20 000
data point) and joined to form the ‘‘complete’’ signal. The signals were previously mapped in a finite-state sequence using
the permutation vector mapping method (see [35] for details). This mapping requires two parameters, usually named d
(dimension of the embedding) and τ (delay). In our example we use the values d = 4 and τ = 1. After this processing we
applied the segmentation method described here above by using the Rényi entropy with different values for α.

Fig. 4 shows the behavior of the divergence ∆R as a function of the cursor moving along the merged recording. This
quantity reaches its maximum value at the exact point where the dynamics of the ECG signal changes. This happens because
the empirical probability distribution of the permutation vectors are different when the signal is in AF than NSR. This
difference is clearly detected by the divergence for all values of α, but the clearest detections happens for low α.

5. Discussion

The present work can be divided in three parts. In the first one we recover the Bregman divergences from a formal re
writing of the analogous of the KLD in the context of a general (convex) entropy. This allows to introduce generalized
divergences from generalized entropies out of the line of the class of Csiszàr that have the drawback to achieve a unequivocal
definition of such a divergence from an entropy. In second part we investigate the conditions to be satisfied for a (h, φ)-
entropy in order to define a symmetrized Bregman divergence. Finally we applied the generalized divergences we proposed
to the study of simulated and real world time series. Our results showed that these measures could be adequate to
discriminate different statistical properties of a generical time series. The existence of free parameters in the definition
of some entropies, allows, in principle, to choose the most adequate values according to the problem under study.

The extension of our analysis to the realm of quantum theory is in progress.
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