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Abstract

A higher order field has different forms of excitation. Some of them

have negative energies. The signs of the quantization rules depend on

the signs of the energies. An abnormal sign implies a negative sign of

the residue at the on-shell pole of the propagator, leading to a clash

with unitarity.
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To change these signs we can change the identification of the cre-

ation and annihilation operators. But then the energy has no lower

bound. The way out is found by adopting a symmetric vacuum state.

The corresponding propagator is a half retarded and half advanced

Green function. It has a zero residue at the on-shell pole. There is no

associated free particle. The abnormal modes act only as mediators

of interactions.

PACS: 10. 14. 14.80-j 14.80.Pb

1 Introduction

The consideration of higher order equations for possible descriptions of nat-

ural phenomena, has been present ever since the advent of differential equa-

tions in physics (See for example ref.[1]). The quantum treatment has dif-

ficulties of its own, not present in simple Klein-Gordon equations. It seems

convenient to be able to overcome the technical obstacles for a better un-

derstanding of the physical implications of a given theory. In this sense it

is of great help the use of lagrangian procedures for the construction of the

canonical tensors. There are several expositions and one of the first was given
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in Courant-Hilbert’s book [2]. A didactic approach can be found in ref.[3]

(For a more mathematical point of view, see ref.[4]).

A Lorentz invariant equation,

n∑
s=0

cs2
sψ = 0 ; (cn = 1) (1)

can be written as:

n∏
r=1

(2− λr)ψ = 0 (2)

where λr(r = 1, ..., n) are the roots of

n∑
s=0

csx
s = 0

(for negative or complex roots see respectively refs.[5] and [6]).

If all the roots are real and positive we will say that we have a “Iterated

Kleinian Equation”for which we can write:

n∏
r=1

(
2−m2

r

)
ψ = 0 (3)

(We will assume that 0 < m1 < m2 < · · · < mn).

Equation (3) implies that ψ has n different excitations or modes [7]. It

can be decomposed into n “constituent fields” φr [8]. Each one obeying a

normal Klein-Gordon equation:

ψ =
n∑
r=1

φr ;
(
2−m2

r

)
φr = 0
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φr =
1

(2π)3/2

∫ dk√
2ωr

(
are
−ikx + a+

r e
ikx
)

(4)

(k0 = ωr = (~k2 +m2
r)

1/2)

The corresponding higher order lagrangian can be written:

L0 =
1

2
ψ

n∏
r=1

(
2−m2

r

)
ψ (5)

From (5) we can construct the energy-momentum tensor and in particular,

the energy content of the field.

Using eq.(4) we find [2, 3]:

P0 =
∫ n∑

r=1

1

2
ωrcr

(
ara

+
r + a+

r ar
)

(6)

where

cr =
∏
s 6=r

(
m2
s −m2

r

)
= (−1)r−1|cr|

A simple redefinition:

ar → |cr|−
1
2ar

leads to:

P0 =
∫ n∑

r=1

(−1)r−1ωr
2

(
ara

+
r + a+

r ar
)

(7)

Equation (7) (or (6)) shows that the total energy of the field ψ is a superposi-

tion of the energies of the different excitations. However for r=even number
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the contribution of the mode is negative. This change of sign from a term to

the next one, is a characteristic feature of eq.(3) [9].

The fact that P0 is not positive definite gives rise to serious difficulties of

interpretation.

Heisenberg’s quantization condition (P0 is the generator of time displace-

ments):

[P0, ψ] = i∂0ψ

implies [
ar(k), a+

r (k
′
)
]

= (−1)r−1δ
(
~k − ~k ′

)
(8)

From (7) and (9) we deduce the well-known relations:

[P0, ar] = −ωrar ;
[
P0, a

+
r

]
= ωra

+
r (9)

Equation (9) says that a+
r (resp. ar) is a creation (resp. annihilation) oper-

ator for the energy. However, eq.(8) shows that while for r=odd number the

commutation relations are the usual one, for r=even number the roles of ar

and a+
r are interchanged.

If we try to keep only positive energy states, we should impose for the

vacuum:

ar|0 >= 0 ; (r = 1, ..., n) (10)
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Then we would find:

< 0|a+
r a
′

s|0 >= 0 ; < 0|a′ra+
s |0 >= (−1)r−1δrsδ

(
~k − ~k ′

)
(11)

The consequences for the propagators are important. All vacuum expectation

values of products of fields operators (VEV for short) carry the signs of

eqs.(11). Consequently, the propagator ∆r for the fields φr is:

∆r = (−1)r−1Fr (12)

where Fr is the usual Feynman propagator for the mass mr.

Equation (12) is untenable. It implies that the residues at the on-shell

poles are negative for r=even, and this circunstance is fatal for unitarity [10].

It is not difficult to change the signs of (12). We can say that actually

eq.(8) shows that for r=even we should consider ar to be a creation operator.

Then we should define the vacuum by imposing:

ar|0 >= 0 (r = odd) ; a+
r |0 >= 0 (r = even) (13)

Now we would obtain for r=even:

< 0|a′ra+
r |0 >= 0 ; < 0|a+

r a
′

r|0 >= δ
(
~k − ~k ′

)
(14)

And:

∆r = Fr for r = 1, ..., n (15)

6



So we would have no problem with the signs of the residues. However, eq.(9)

says that the states created by ar (r=even) would have negative energies.

It seems that there is no escape from these contradictions. But there is a

way out if we take into account the existence of an alternative vacuum state,

associated to fields that can not appear as free waves. The corresponding

propagator has a null residue at the on-shell pole. As we will show in the

next paragraph.

2 The symmetric vacuum

It is clear that neither (12) nor (13) will permit the elaboration of an accept-

able theory. The problem lies in the r=even degrees of freedom.

We will call ϕ(x) any one of the fields φr for r=even:

ϕ(x) =
1

(2π)3/2

∫ dk√
2ω

(
b(k)e−ikx + b+(k)eikx

)
(16)

The commutation relations are (cf. eq.(8)):

[
b(k), b+(k

′
)
]

= −δ
(
~k − ~k ′

)
(17)

But now, instead of imposing (10) or (13) we will choose a “symmetric vac-

uum”, whose implications and properties are discussed at length in reference
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[11].

We define the vacuum as the “true” zero energy state. I.e.:

(
bb+ + b+b

)
|0 >= 0 (18)

Equations (17) and (18) imply (compare with (11) and (14)):

< 0|b(k)b+(k
′
)|0 >= −1

2
δ
(
~k − ~k ′

)

< 0|b+(k)b(k
′
)|0 >=

1

2
δ
(
~k − ~k ′

)
(19)

For the VEV we have:

< 0|ϕ(x)ϕ(0)|0 >=
1

(2π)3

∫ dk

2ω

1

2

(
e−iωt − eiωt

)
ei
~k·~r =

=
−i

(2π)3

∫
dk
sinωt

2ω
ei
~k·~r (= − < 0|ϕ(0)ϕ(x)|0 >)

And, for the chronological product:

< 0|Tϕ(x)ϕ(0)|0 >= W̃ (x) =
−isgnt
(2π)3

∫
dk
sinωt

2ω
ei
~k·~r (20)

We will now prove that (20) is the half advanced and half retarded Green

function for the Klein-Gordon equation. In fact, a retarded Green function

(G̃rt(x)) is a Fourier transform of (p2 + m2)−1 where the poles at p0 = ±ω

are left below the p0 path of integration. For t < 0 the path can be closed on
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the upper half-plane and Cauchy’s theorem assures a null result. For t > 0

the path can be closed on the lower half-plane. The sum of residues gives:

G̃rt(x) = −π Θ(t)

(2π)3

∫ dk

ω
ei
~k·~r
(
e−iωt − eiωt

)
=

= − Θ(t)

(2π)3
4πi

∫
dk ei

~k·~r sinωt

2ω
(21)

(Θ(t) is Heaviside step function).

Similarly, for the advanced function we have:

G̃ad(x) =
Θ(−t)
(2π)3

4πi
∫
dk ei

~k·~r sinωt

2ω
(22)

Then:

1

2
G̃rt(x) +

1

2
G̃ad(x) = −sgnt

2π
i
∫
dk ei

~k·~r sinωt

2ω
(23)

A comparison with eq.(20) shows that the propagator corresponding to the

symmetric vacuum can be written as:

W̃ (x) =
1

4π2

(
1

2
G̃rt(x) +

1

2
G̃ad(x)

)
(24)

A half advanced and half retarded Green function was used by J.A.Wheeler

and R.P.Feynman [12] to describe the electromagnetic interaction in a charged

medium which was supposed to be a perfect absorber.
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For this reason we will call (24) a “Wheeler function”(or propagator).(See

also ref.[13]). Later, the same authors showed that, in spite of the advanced

part it contains, the Green function (24) does not contradict causality [14].

On the real axis of the energy, W (p) coincides with Cauchy’s principal

value, which has an on shell zero. Implying that there is no free propagation.

This is the reason behind the choice of a perfect absorber in ref.[12].(No free

wave can escape the system).

The Wheeler propagator has several remarkable properties (see ref.[11]).

The fact that it does not contain a free component means that the corre-

sponding field can only act virtually, as a mediator of interactions. No aso-

ciated free particle can be found. In particular, no free negative energy state

can be occupied. In other words, one starts with positive energy particles

and ends up with positive energy particles.

Since neither b nor b+ annihilate the vacuum, the space of states is a

two-way ladder

b|0 >= α1|1 > ; b|1 >= α2|2 >

b+|0 >= α−1| − 1 > ; b+| − 1 >= α−2| − 2 >
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In particular for example (cf. eq.(19)):

α∗−1 < −1| − 1 > α−1 = |α1|2 < −1| − 1 >=< 0|b′b+|0 >= −1

2
δ
(
~k − ~k ′

)

And the norm of the state | − 1 > is negative. (For a discussion of spaces

with indefinite metric see. ref[15]).

The scalar product can be defined by means of the holomorphic represen-

tation [16]. The functional space is formed by analytic functions f(z) with

the product:

(f, g) =
∫
dz dz∗ e−zz

∗
f(z)(g(z))∗ (25)

Or, in polar coordinates:

(f, g) =

∞∫
0

dρ ρ e−ρ
2

2π∫
0

dφ f g∗ (26)

The raising and lowering operators are represented by:

b = z ; b∗ =
d

dz
; [b, b∗] = −1 (27)

The symmetric vacuum obeys:

(
d

dz
z + z

d

dz

)
f0 =

(
1 + 2z

d

dz

)
f0 = 0

Whose normalized solution is:

f0 =
(
2π

3
2

)− 1
2 z−

1
2
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The energy eigenfunctions are:

fn = 2π
∣∣∣∣Γ(n+

1

2

)∣∣∣∣−
1
2

z−
1
2 zn ; (n = ...,−2,−1, 0, 1, ...) (28)

3 Unitarity

It is evident that unitarity holds at tree level, due to the fact that when

a branch is on the mass-shell the δ-function of the Feynman propagator is

equivalent to the free particle appearing in external legs. On the other hand,

for a Wheeler function, when a branch is on-shell we have a zero of the

propagator, in correspondence with the absence of a free particle.

To study the effects of loops we are going to examine an example in which

we show explicitely that the unitarity relations hold true (See also ref.[11]).

We will consider the lagrangian:

L =
4∑
i=1

Li + L′ (29)

Li =
1

2
ψi
(
2−m2

i

) (
2−M2

i

)
ψi ; mi < Mi (30)

L′ = λψ1ψ2ψ3ψ4 (31)

The equations of motion are:

(
2−m2

i

) (
2−M2

i

)
ψi = −λ

∏
j 6=i

ψj (i = 1, ..., n) (32)
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According to the discussions in previous sections, we write:

ψi = φi + ϕi (33)

φi =
1

(2π)3/2

∫ dk√
2ωi

(
aie
−ikx + a+

i e
ikx
)

; k
(i)
0 = ωi (34)

ϕi =
1

(2π)3/2

∫ dk√
2Ωi

(
bie
−ikx + b+i e

ikx
)

; k
(i)
0 = Ωi (35)

P0 =
∫
dk

4∑
i=1

{
ωi
2

(
aia

+
i + a+

i ai
)
− Ωi

2

(
bib

+
i + b+i bi

)}
(36)

(For the sake of simplicity we have taken M2
i −m2

i = 1).

The commutation rules are:

[
a
′

i, a
+
j

]
= δijδ

(
~k − ~k ′

)
(37)

[
b
′

i, b
+
j

]
= −δijδ

(
~k − ~k ′

)
(38)

The fields φi are normal. The operators ai annihilate the vacuum state. For

the ϕi modes we take (cf. eq.(18)):

(
bib

+
i + b+i bi

)
|0 >= 0 (39)

From the commutation rules and the vacuum relations, we deduce:

< 0|a′ia∗i |0 >= −δ
(
~k − ~k ′

)
; < 0|a∗i ai|0 >= 0 (40)

< 0|b′ib∗i |0 >= −1

2
δ
(
~k − ~k ′

)
; < 0|b∗i bi|0 >=

1

2
δ
(
~k − ~k ′

)
(41)
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Equations (40) imply the usual Feynman propagator for the normal modes.

On the other hand the VEVs (41) imply that the propagators for ϕi are

Wheeler functions.

To test unitarity we recall that:

SS+ = 1 ; S = 1− iT

−i
(
T − T+

)
= TT+ (42)

The perturbative development,

T =
∞∑
s=1

λsTs

gives:

−i < α|Tn − T+
n |β >=

n−1∑
s=1

∫
dσγ < α|Tn−s|γ >< γ|T+

s |β > (43)

where we have introduced the decomposition of the unit operator:

I =
∫
dσγ|γ >< γ| (44)

In particular, for n=2:

−i < α|T2 − T+
2 |β >=

n−1∑
s=1

∫
dσγ < α|T1|γ >< γ|T+

1 |β > (45)
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The external legs of Feynman diagrams can only be occupied by normal

φ-particles. We will take:

|α >= a+
1 (p1)a

+
2 (p2)|0 > ; |β >= a+

1 (p
′

1)a
+
2 (p

′

2)|0 > (46)

For the interaction we have:

−iT1 = ψ1ψ2ψ3ψ4 =
4∏
1

(φi + ϕi) = φ1φ2φ3φ4 + φ1φ2φ3ϕ4 + · · ·+

+ϕ1ϕ2ϕ3φ4 + ϕ1ϕ2ϕ3ϕ4

Due to (46), only terms containing ϕ1 and ϕ2 will contribute. So, we can

take:

−iT1 = φ1φ2φ3φ4 + φ1φ2φ3ϕ4 + φ1φ2ϕ3φ4 + φ1φ2ϕ3ϕ4 (47)

The first term gives rise to a theory with Feynman functions and normal

particles which is known to be unitary. The left-hand side (l.h.s.) of (45)

contains the convolution:

Real
{(
p2 +m2

3 − i0
)−1
∗
(
p2 +m2

4 − i0
)−1

}
=

(
p2 +m2

3

)−1

W
∗
(
p2 +m2

4

)=1

W
− π2δ

(
p2 +m2

3

)
∗ δ

(
p2 +m2

4

)
(48)

But in the physical region the two terms in the r.h.s. coincide [11]. We have

then:

(48) = 2
(
p2 +m2

3

)−1

W
∗
(
p2 +m2

4

)−1

W
(49)
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(Where the subindex W is meant to imply that Cauchy’s principal value is

to be taken at the pole).

Eq.(49) shows that the l.h.s. of (48) is twice the value corresponding to

the case in which one or both propagators are Wheeler functions. Let us

consider now the r.h.s. of (45):

For a normal φ field, the decomposition (44) takes the form:

I = |0 >< 0|+
∫
dqa+(q)|0 >< 0|a(q) + · · · (50)

Instead, for a ϕ field (with indefinite metric), we have:

I = |0 >< 0| −
∫
dq
√

2b+(q)|0 >< 0|b(q)
√

2+

+
∫
dq
√

2b(q)|0 >< 0|b+(q)
√

2 + · · · (51)

The sigms and the normalization factors are dictated by the VEVs (41)

(take for example Ib+|0 > and use (19)).

The evaluation of < α|T1|γ > for the first term of (47) (r.h.s.) contains

the matrix factor:

< 0|φa+|0 >=
1

(2π)3/2

∫ dk
′

√
2ω′

e−ik
′
x < 0|a′a+|0 >=

1

(2π)3/2

∫ dk
′

√
2ω′

e−ik
′
xδ
(
~k − ~k′

)
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< 0|φa+|0 >=
1

(2π)3/2

e−ikx√
2ω

(52)

For the second term of (47) we get:

< 0|ϕb+|0 >=
1

(2π)3/2

∫ dk
′

√
2Ω′

e−ik
′
x < 0|b′

√
2b+|0 >=

1

(2π)3/2

∫ dk
′

√
2Ω′

e−ik
′
x
√

2
1

2
δ
(
~k − ~k′

)

< 0|ϕb+|0 >=
1

(2π)3/2

e−ikx√
2Ω

1√
2

(53)

When we multiply together < α|T1|γ > and < γ|T+
1 |β > we find that (53)

and its conjugate give a factor 1/2 as compared with (52) and its conjugate.

Coinciding (resp.) with the l.h.s. for normal fields and for Wheeler excita-

tions. Thus showing that unitarity holds true for the example discussed.

Similarly, in other cases, any proof of unitarity for normal fields, based

on the decomposition (50) and the VEVs (40), can be converted into a proof

of unitarity for Wheeler fields, by using (51) and (41).(See also ref.[11]).

4 Discussion

The consideration of iterated Kleinian equations, leads to fields whose en-

ergy is not positive definite. Correspondingly one has operators that create

negative energy states, and the energy of the free field has no lower bound.
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When we try to avoid those states by choosing an appropriately modified

vacuum, we find that the propagator has a negative residue at the pole. Thus

leading to a clash with unitarity. It is possible to change the unwanted sign

by means of a redefinition of the vacuum. But then the negative energy

states of the free field necessarily reappear

The way out of these difficulties is found by adoptind the symmetric

vacuum, which leads to half advanced and half retarded propagator. This

Wheeler function is equivalent, on the real axis of the energy, to Cauchy’s

principal value Green function. In other words, the residue at the on-shell

pole is exactly zero. Consequently, there in no clash with unitarity and the

physical space is the Fock space of normal free excitations bilt up with the

creation operators for positive energy. The other modes are only presents

as virtual states, i.e.: as mediators of interactions. They do not occupy the

external legs of Feynman diagrams. Furthermore, in ref.[14] it is shown that

the half advanced and half retarded Green function satisfies the requirements

of a causal theory.

An example of a case in which higher order equations appear in a natu-

ral way is obtained when supersymmetry is imposed in higher dimensional

spaces (Ref.[17]. Here, a connexion is established between the dimension-
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ality of space and the order of the equations of motion. In particular, a

six-dimensional Wess-Zumino model has been quantized in ref.[18].

When the possible existence of tachyons is discussed, the symmetric vac-

uum appears as the most reasonable starting point for the construction of

the corresponding Fock-space of states (ref.[19] and ref.[20]. See also ref.[5]).

In ref.[21] a family of unitary higher order equations is examined, in which

an interaction with the electromagnetic field is introduced “via” the gauge

covariant derivative. These interacting higher order equations can also be

decomposed into second order Klein-Gordon modes.

Possible applications to string theory and to the Higgs particles, are dis-

cussed in ref.[22] and ref.[23] (resp.).

The question of unitarity when loops are present, and other interesting

properties of the Wheeler propagator, has been analized in ref.[24], which

has just been sent for publication.

The fact that unitarity holds true for the iterated Kleinian equations,

when the Wheeler propagator is appropriately used, complements the works

of references [5, 6], where it is shown that the modes corresponding to nega-

tive or complex roots of eq.(2), propagate according Wheeler functions.

We may then conclude that any Lorentz invariant higher order equation,
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no matter how simple it may look, can not be consistently quantized unless

use is made of the half advanced and half retarded Green function for some

of its modes of propagation.
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