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Multiple reflection expansion and heat kernel coefficients
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We propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an
example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct, a
relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the
heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those
cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the
multiple reflection expansion is shown to be nonconvergent.
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I. INTRODUCTION

Heat kernel coefficients play an important role in ma
areas of theoretical physics. They govern the short-dista
behavior of the propagator and the small-time asymptotic
the Schro¨dinger equation. In quantum-field theory, heat k
nel coefficients define the one-loop counterterms and qu
tum anomalies, as well as the large mass expansion of
effective action@1#. It is clear, therefore, that it is importan
to have an effective method of calculation of these coe
cients.

To the best of our knowledge, heat kernel methods w
first applied to quantum physics by Fock in 1937@2#; then,
they were reintroduced by Schwinger in the 1950s~see Ref.
@3#!. Because of DeWitt@4#, these methods became standa
in quantum-field theory. The DeWitt iteration procedu
proved to work quite well on manifolds without boundari
and ~after certain improvements! allowed for the calculation
of many terms in the asymptotic expansion of the heat ke
@5–8#. On manifolds with boundaries, the methods based
functorial properties of the heat kernel@9–11# appeared to be
more appropriate. These methods allowed for the calcula
of some higher terms of the heat kernel expansion, e.g.
local boundary conditions@12# and for a transmittal problem
@13#. Even though the functorial methods are the most g
eral and the most powerful ones, they still have their limi
tions. They work particularly well for most general operato
in a certain category. However, the number of independ
invariants, which can enter a heat kernel coefficient, gro
very fast with the order of the asymptotic expansion, so t
combinatorics becomes unmanageable. Alternatively,
general Seeley calculus, which is applicable for gene
boundaries, may be used. But this method becomes unwi
beyond low orders.

The methods mentioned above are analytical, i.e., t
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produce local formulas for the heat kernel coefficients
terms of the relevant geometric invariants. An alternative
such methods are special case calculations~see, e.g., Refs
@14–18# and references therein!. In this case, the complexity
of the calculations is almost independent from the order
the asymptotic expansion, but the method can only be
plied to those problems where a sufficiently high symme
allows for the separation of variables. Some recent exam
of how the special case calculations may be combined w
the analytical methods, can be found in Refs.@19,20,12,13#.

Another alternative is provided by iterative, respective
recursive methods. Well known is the DeWitt iteratio
method. Less known are reformulations in terms of integ
equations. For example, in Ref.@21#, the Lipmann-
Schwinger equation for the scattering problem was used
determine the asymptotic expansion of the Jost function
tering the regularized ground-state energy. While the kno
iterative methods work well for sufficiently smooth bac
ground fields, an effective method working for singul
background fields or for boundary conditions is missing.

The aim of the present paper is to suggest the mult
reflection expansion as such a method. In fact, it is based
an integral equation whose kernel is located on the bound
The iteration of this equation gives rise to the multiple r
flection expansion. The important point is that only a fin
number of reflections contribute to a given heat kernel co
ficient.

The use of the multiple reflection expansion, in conne
tion with vacuum energy, is not new. In Ref.@22# it was
employed to investigate the asymptotic density of eigenv
ues which, in the modern language, is equivalent to the
culation of heat kernel coefficients. In Ref.@23#, the possi-
bility of using the multiple reflection expansion wa
mentioned, but found to be too complicated for a gene
boundary. As far as we know, the method has never b
used as a tool for the calculation of the heat kernel coe
cients. However, it should be noticed that the correspond
integral equations~with kernel on the boundary surface, se
Sec. II! have been used for proving existence and uniquen
theorems of Dirichlet and Neumann problems; see, for
ample, Ref.@24#. In this paper, we demonstrate its effectiv
©2001 The American Physical Society17-1
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BORDAG, VASSILEVICH, FALOMIR, AND SANTANGELO PHYSICAL REVIEW D64 045017
ness with a recalculation of the heat kernel coefficients o
sphere. As a nice byproduct, we obtain a representatio
the coefficients as finite sums, where the difference betw
Dirichlet and Neumann boundary conditions resides in c
tain signs only.

In general, the multiple reflection expansion can
viewed as some kind of perturbative expansion. For insta
for imaginary frequencies, it provides a well convergent
ries for the propagator. It should be mentioned that, in cer
cases~for instance, with Dirichlet boundary conditions!, this
is so despite the absence of a small expansion paramete
the question is whether this convergent behavior is a gen
feature. The answer is no, and we provide a counterexam
by considering the most general matching conditions on
surface of a sphere. They are described by a four-param
family and correspond, for instance, to the presence o
delta function or its derivative on the surface. It turns out t
there is no expansion in powers of the parameter in fron
the derivative of the delta function but, instead, a nice
pansion in the inverse of this parameter, which cannot
obtained at all by a multiple reflection expansion. We wou
like to note that a Green’s function with ad8-function poten-
tial has been considered before, for example, by path-inte
methods in Ref.@25#. There, it was noticed that a perturb
tive expansion similar to that for ad-function potential yields
some unsolvable relations, a fact that is not surprising
view of the nonanalyticity found by us.

The paper is organized as follows. In Sec. II we colle
the necessary formulas on spectral functions and their r
tions to the heat kernel coefficients. We write down the m
tiple reflection expansion in terms of integral equations
the propagator as well as for the heat kernel. In Sec. III
use the multiple reflection expansion in order to reobtain
heat kernel coefficient for the classical boundary conditio
on the sphere. In Sec. IV, we consider the most gen
matching conditions on a sphere, and calculate the co
sponding heat kernel coefficients. Section V contains a
cussion of our results and the conclusions. Some useful
mulas are banned into Appendix A, while Appendix
contains the study of matching conditions in highe
dimensional spaces.

II. SPECTRAL FUNCTIONS

In this section, we define the spectral functions to be u
in the rest of the present paper, and give a short introduc
to perturbative methods, supplemented with some exam
of their application.

Let us consider the Laplace operator on a domainV

PRD. Let Fn(xW ) be its eigenfunctions, fulfilling Dirichlet or
Neumann~or, more generally, Robin! boundary conditions
on S5]V, ln being the corresponding eigenvalues

2DFn~xW !5lnFn~xW !. ~1!

~In Sec. IV we will consider the more complicated case
matching conditions on a surface inRD.! We consider three
04501
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local spectral functions. The first one is the resolvent ker
~propagator! Dv(xW ,yW ) ~at imaginary frequency!, obeying the
equation

~v22D!Dv~xW ,yW !5d~xW2yW !. ~2!

It can be represented as

Dv~xW ,yW !5(
n

Fn~xW !Fn~yW !

v21ln

. ~3!

The second spectral function is the zeta function, given b

z~xW ,yW ;s!5(
n

ln
2sFn~xW !Fn~yW ! ~4!

and, finally, the third is the heat kernel

K~xW ,yW ut !5(
n

Fn~xW !Fn~yW !e2tln. ~5!

These functions are related by means of

G~s!z~xW ,yW ;s!5E
0

`

dtts21K~xW ,yW ut !

5
2

G~12s!
E

0

`

dv v122sDv~xW ,yW !. ~6!

In addition, we consider the corresponding global quan
ties, which appear as integrals overV of the local ones in the
coincidence limit. Because of the distributional character
the heat kernel coefficientsan(xW ,xW ), it is useful to introduce
a test functionf (xW ) into this integration. So let

z@ f #~s!5E
V

dx f~x!z~xW ,xW ;s!, respectively,

K@ f #~ t !5E
V

dx f~x!K~xW ,xW ut ! ~7!

be the global zeta function~respectively, heat kernel!. The
fiber ~matrix! trace has to be understood in the integrands
many cases~as, e.g., for manifolds with boundaries and loc
boundary conditions, as shown in Ref.@26#! the latter has an
asymptotic expansion ast↓0:

K@ f #~ t !;
1

~4pt !D/2 (
n50,1/2,1, . . .

an@ f #tn. ~8!

We should warn the reader that the existence of expan
~8! cannot be taken for granted. For example, in the cas
some pseudodifferential operators or nonlocal boundary c
ditions, lnt terms appear@27,28#.

If expansion~8! exists, one can takef 51 to define the
global heat kernel coefficients:

an5an@1#. ~9!
7-2
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If, apart from an appropriate behavior at larget, the heat
kernel has a power-law asymptotics at smallt, the zeta func-
tion z@ f #(s) is a meromorphic function ofs with simple
poles. From Eqs.~7! and~8!, the coefficientsan can be rep-
resented by the corresponding residua:

an@ f #5
Res

s5D/22n~4p!D/2G~s!z@ f #~s! ~n50,1
2 ,1, . . .!.

~10!

Furthermore, we remind the reader that, in general, the c
ficients consist of a bulk~interior! and a surface~boundary!
contribution

an@ f #5E
V

dx f~x!bn~xW !1E
]V

dm~aW ! f ~aW !cn~aW !, ~11!

where we have usedaW P]V as a notation for a point on th
boundary, opposite to the genuine notationxWPV for a point
in the bulk.

Now, we integrate Eq.~6! over the domainV and insert
the result into Eq.~10!. We thus arrive at

an@ f #5

Res

s5
D

2
2n

2~4p!D/2

G~12s!
E

0

`

dvv122sE
V

dxW f ~xW !Dv~xW ,xW !

~12!

as the basic equation for calculating the coefficients ou
the propagator.

Having briefly reviewed some basic definitions and we
known facts, we now proceed to a brief presentation of p
turbative methods.

The perturbative expansion for the resolvent is co
structed in the following way: LetD0(xW ,yW ) be a zeroth-order
resolvent. Usually,D0 is taken to be the free propagator in
flat space without boundaries. Consider the Dyson equa

D~xW ,yW !5D0~xW ,yW !1E
S
dzWD0~xW ,zW !LD~zW,yW !, ~13!

where the integration goes over a submanifoldS,V, andL
is some operator associated with the perturbation~see ex-
amples below!. Equation~13! has the formal solution

D~xW ,yW !5D0~xW ,yW !1 (
n51

` E
S
dzW1 . . . E

S
dzWnD0~xW ,zW1!

3LD0~zW1 ,zW2! . . . LD0~zWn ,yW !. ~14!

In Ref. @29# it was shown that the heat kernel has a simi
representation,
04501
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K~xW ,yW ;t !

5K0~xW ,yW ;t !1 (
n51

`

~21!n

3E
0

t

dsnE
0

sn
dsn21 . . . E

0

s2
ds1E

]M
dzn . . . E

]M
dz1

3K0~xW ,zWn ;t2sn!

3LK0~zWn ,zWn21 ;sn2sn21! . . . LK0~zW1 ,yW ;s1!, ~15!

whereK0 is a suitable chosen zeroth-order heat kernel.
In order to clarify these definitions, we consider som

examples in the following discussion. LetD05(2D)21 be
the propagator for a second-order differential operatorD. Let
S5V and letL be multiplied by a potentialV(xW ). This is the
standard situation of the DeWitt expansion with a smo
background potential written in the form of an iterated in
gral equation. Then Eqs.~13!–~15! follow from the formal
expansion ofD5(2D1V)21 and K5exp@2t(2D1V)#,
respectively, so thatD(xW ,yW ) andK(xW ,yW ut) are the propagato
and the heat kernel of the operator (2D1V). If the potential
V is smooth and falls off sufficiently fast at infinity, all inte
grals in Eq.~15! exist. From dimensional considerations, it
clear that the highest power ofV, which may contribute to
the heat kernel coefficientan , is Vn. Therefore, only the first
n terms of expansion~15! must be taken into account.

In our next example, let the operatorL again be the mul-
tiplication by a potentialV, but now, letS be a subsurface o
co-dimension 1 inV, dimV2dimS51.1 In Ref. @29#, it
was shown that all terms in expansion~15! exist and give
power-law asymptotics of the heat kernel. Later, this exp
sion was used in actual calculations of the heat kernel c
ficients @30#.

The Dyson equation is also useful for rather general p
turbations of boundary conditions as, e.g., for the case wh
more derivative terms are added to the usual Neumann
~see@31#!. In this case, however, dimensional arguments
not work, and an infinite number of terms contribute to a
given heat kernel coefficientan .

These examples demonstrate that the ‘‘common sen
arguments work rather well. If there is a parametere in the
theory such that there is a smooth limite→0 of the heat
kernel coefficients~such asV→0 above!, then the formal
expansions~14! and ~15! in that parameter usually give
good approximation for the spectral functions. If such a p
rameter is of positive mass dimension, only a finite num
of terms contribute to eachan .

This is, however, not the end of the story. In Sec. III w
will see that one can construct a perturbative expansion,
so-called multiple reflection expansion, even when no
rameter or limiting procedure exists. Moreover, also in t
case, only a finite number of terms contribute to each h

1This problem is a particular case of a more general transm
problem~see Sec. IV!.
7-3
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BORDAG, VASSILEVICH, FALOMIR, AND SANTANGELO PHYSICAL REVIEW D64 045017
kernel coefficient—a result that is hard to predict on the
sis of common sense arguments.

III. MULTIPLE REFLECTION EXPANSION APPLIED TO
THE HEAT KERNEL COEFFICIENTS FOR THE

SPHERE

This section contains a short overview of one particu
perturbative method, which is particularly well suited for t
treatment of boundary problems, i.e., the multiple reflect
expansion for Dirichlet and Robin boundary condition
Balian and Bloch@22# applied this expansion, in the bound
ary value problem context, to calculate the density of eig
values, which is related to the heat kernel by a simple in
gral transformation. In their work@32#, they pointed out that
the divergent part of the Casimir energy is given by the f
first reflection contributions. This fact, however, has not be
fully appreciated. Therefore, we find it useful to repeat so
basic facts, translating them to a more modern language,
supplying the reader with a simple example. In doing so,
omit many details that can be found in the original literatu
@22,33#.

The multiple reflection expansion is based on simple f
mulas known from electrostatics: Keeping in mind the app
cation to Dirichlet boundary conditions, letm(aW ) be the den-
sity of a double layer~dipole layer! on a surfaceS. The
corresponding potential is

F~xW !5E
S
d2a1 Dv~xW2aW 1!]QaW 1

m~aW 1!, ~16!

where]QaW 1
is the normal derivative, restricted to the surfaceS

and acting to the left. Explicitly written, it readsDv(xW

2aW )]QaW5nW (y)¹W yDv(xW2yW ) uyW5aW
, wherenW is the normal vector.

The measure onS is d2a15du1 du2Ag, where (u1 ,u2) are
the coordinates of a pointaW (u1 ,u2) on S and gi j

5]aW /]ui]aW /]uj is the metric. In Eq.~16!, the propagator
Dv(xW2yW ) is the free one, i.e., without boundary condition
In three dimensions it is simply the Yukawa potential

Dv~xW2yW !5
e2vr

4pr
~r 5uxW2yW u!. ~17!

The potentialF(xW ) is discontinuous forxW approaching the
surfaceS (xW→aW ) and the equation

lim
xW→aW

F~xW !5E
S
d2a1Dv~aW 2aW 1!]QaW 1

m~aW 1!1
1

2
m~a! ~18!

holds. The additional contribution~last term! appears due to
the fact that limit and integration do not commute.

In a similar fashion, keeping in mind the application
Neumann boundary conditions, the potentialx(xW ) of a
charged surface with charge densityr(aW ),

x~xW !5E
S

d2a1 Dv~xW2aW 1!r~aW 1! ~19!
04501
-

r

n
.

-
-

n
e
nd
e

-
-

.

has a discontinuous derivative:

lim
xW→aW

nW ¹W xx~xW !5E
S

d2a1 ]W aWDv~aW 2aW 1!r~aW 1!2
1

2
r~a!.

~20!

In general, the multiple reflection expansion for the resolv
reads

Dv~xW ,yW !5Dv~xW2yW !

1kE
S
d2a1 Dv~xW2aW 1! ]↔aW 1

Dv~aW 12yW !

1k2E
S
d2a1E

S
d2a2 Dv~xW2aW 1!

]↔aW 1
Dv~aW 12aW 2! ]↔aW 2

Dv~aW 22yW !1••• ~21!

with the notation]↔5]Q1]W . For k51, this propagator obeys
Dirichlet and, for k521, Neumann boundary conditions
The validity of this expression can be verified by noting th
it fulfills the differential equation forxW¹S. Moreover,
boundary conditions can be checked using Eqs.~18! and
~20!, whereby the additional contributions give rise to ca
cellations between successive orders of reflections. Exp
sion ~21! is called multiple reflection expansion because
can be interpreted as a motion described by the free pro
gator fromxW to aW 1, being reflected~however under any angle
due to the integration overaW 1), moving further toaW 2, and so
forth. More details can be found in Ref.@33# and related
papers.2

A simple example for the multiple reflection expansio
appears if the surfaceS is a sphere. In this case, the expa
sion becomes an algebraic one. It can be obtained from
~21! by turning to spherical coordinates. It is, however, eas
to use the known expression for the exact propagator w
given boundary conditions

Dv~xW ,xW8!5(
l ,m

Yl ,m~u,w!Yl ,m* ~u8,w8!Dl~r ,r 8!, ~22!

with

Dl~r ,r 8!5
1

Arr 8
@ I n~vr ,!Kn~vr .!2I n~vr !I n~vr 8!KD,R#

~23!

and n[ l 1 1
2 , r ,5min(r ,r 8), r .5max(r ,r 8). Here, I n(x)

and Kn(x) are the modified Bessel functions, and we ha
introduced the notation

2It must be stressed, that despite its simple form, the derivatio
Eq. ~21! contains several subtle points, which are explained in
Appendix of Ref.@33#.
7-4
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KD5
Kn~vR!

I n~vR!
~24!

for Dirichlet boundary conditions and

KR5
~]/]R!@RuKn~vR!#

~]/]R!@RuI n~vR!#
~25!

for Robin boundary conditions, where the solutions of E
~1! have to fulfill (]/]r )@r u11/2fn(r )# ur 5R

50. For u5

2(1/2), these reduce to Neumann boundary conditions
the two-dimensional sphere.

The multiple reflection expansion appears in the follo
ing way @33#. Represent

KD5
Kn~vR!Kn8~vR!

I n~vR!Kn8~vR!
, ~26!

and use the WronskianI n8(x)Kn(x)2I n(x)Kn8(x)51/x to re-
write the denominator in Eq.~26! as

I n~vR!Kn8~vR!5
21

2vR S 12vR
]

]vR
@ I n~vR!Kn~vR!# D .

~27!

Next, expand this denominator so that one obtains forKD the
representation

KD522vRKn~vR!Kn8~vR!

3 (
k50

` S vR
]

]vR
@ I n~vR!Kn~vR!# D k

. ~28!

In a similar way, one obtains

KR522vRKn~vR!FKn8~vR!1
u

vR
Kn~vR!G

3 (
k50

`

~21!kFvRS ]@ I n~vR!Kn~vR!#

]vR

1
2u

vR
I n~vR!Kn~vR! D Gk

. ~29!
.

n

-

This formal expansion has been shown@33# to be equivalent
to the multiple reflection expansion~21!, where the number
of reflections isk11.

In view of Eq. ~12!, we perform the integration over th
surface of the sphere and define

Dv~r !5E
]V

dm~aW !Dv~xW ,xW !5(
l 50

`

~2l 11!Dl~r ,r !

~30!

so that the coefficientsan , Eq. ~9!, turn out to be given by

an5
Res

s53/22n
16p3/2

G~12s!
E

0

R

drr 2(
l 50

`

~2l

11!E
0

`

dvv122sDl~r ,r !. ~31!

The procedure to calculate the coefficients from this rep
sentation is as follows. First, we remark that the poles is
result from largev and l, in the Bessel functions. The pole
corresponding to boundary contributions@cn in Eq. ~11!# ap-
pear, in addition, from the upper limit of the integration ov
r. So, we use the uniform asymptotic expansion of the Be
functions ~it is given in the Appendix!, together with the
multiple reflection expansion~28! or ~29!, and insert them
into Eq. ~31!.

Let us start with the first contribution on the right-han
side of Eq.~23!. It corresponds to the free space propaga
and, thus, it does not know about the boundary. Con
quently, it gives the volume contribution, which isa0
5(4p/3)R3.

In order to calculate the higher coefficients, we consid
the second term on the right-hand side of Eq.~23!. Accord-
ing to the sum on the right-hand side of Eqs.~28! and ~29!,
respectively, we represent the coefficients as a sum ove
flections

an5 (
k50

2n

an
(k) . ~32!

Using the uniform asymptotic expansion of the Bessel fu
tions, these coefficients can be calculated~for details, see
Appendix A!. As a result, for Dirichlet boundary conditions
the firstan

(k)’s are
k5 1 2 3 4 5 6 an

n5 1
2 22p3/2 22p3/2

n51 2p 2
3 p 8

3 p
n5 3

2 0 0 2 1
6 p3/2 2 1

6 p3/2

n52 0 2 4
35 p 2 1

21 p 2 1
9 p 2 16

315p
n5 5

2 0 0 0 1
80 p3/2 2 1

48 p3/2 1
12 p3/2 2 1

120p3/2

n53 0 2 40
3003p 2 2

143p 12
715p 2 1

130p 1
90 p 2 64

9009p

045017-5
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The coefficientsan are proportional toR322n. In this table
we have takenR51. When replaced in Eq.~32!, they sum
up to the known values~shown in the last column! as can be
checked, for example, by comparing them with the result
Appendix B of Ref.@16#. It is interesting to note that the
corresponding heat kernel coefficients for Robin bound
conditions withu50, can be obtained through the replac
mentan

(k)→(21)kan
(k) .

As a last example in this section, we give some reflect
contributions to the heat kernel coefficienta2 for Robin
boundary conditions. They read (R51)

a2
(0)50,

a2
(1)5

4p

105
~23112u228u2!,

a2
(2)5

p

105
~5242u1140u22280u3!,

a2
(3)5

p

315
~352270u1756u22840u3!.

The sum~32! gives the known resulta252p/45R(1218u
160u22120u3). In particular, Neumann boundary cond
tions which appear for a conducting sphere follow by cho
ing u52 1

2 .

IV. SINGULAR POTENTIALS ON A SPHERICAL SHELL

In this section we will study the heat kernel expansion
the free Laplacian inRD, acting on the space of function
obeying on a D-one-dimensional sphere,SD21, certain
matching conditions that relate the values of the functio
and their first derivatives on different sides of the sphere
one assumes that the matching conditions are ultraloca
angular coordinates~they do not contain tangential deriva
tives!, the most general choice is the following fou
parameter family@34#:

f15vaf21vbf28 ,

f18 5vcf21vdf28 , ~33!

where

f65 lim
r→R60

f~r !, f68 5 lim
r→R60

] rf~r !. ~34!

Here, v is a complex phase factor, which we include f
completeness only. We consider real fields and putv51.
The other parameters obey the restrictionad2bc51.

There are two important special cases of the conditi
~33!. Take

a5d51, b50. ~35!

This requires the functions to be continuous across the
face and their derivatives to have a jump. This is equival
to having a delta function potentialV(x)5cd(r 2R) on
04501
n

y
-

n

-

r

s
If
in

s

r-
t

SD21, which can be viewed as a singular background pot
tial concentrated on the surface. The formal limitc→`,
turns this matching condition into Dirichlet boundary cond
tions (f650).

The other special case is

a5d51, c50, ~36!

requiring the derivatives to be continuous, and the functio
themselves to have a jump. This is usually attributed to
presence of a background potential in the form of the deri
tive of the delta function. The formal limitb→`, turns this
condition into Robin boundary conditions„(a/b)f61f68
50….

In general, the parametersa,b,c,d, andv may depend on
the angular coordinates onSD21. In this paper we restrict
ourselves to the case where there is not such a depend
Then, variables can be easily separated by making the an

f (n)~x!5r (22D)/2fn,l~r !Y( l )~V!, ~37!

whereY( l )(V) are the spherical harmonics depending on
angular coordinatesV. Once such ansatz is adopted, the
dial functionsfn,l must satisfy the equation

F d2

dr2
1

1

r

d

dr
2

n2

r 2
1ln,l

2 Gfn,l50 ~38!

with n5 l 1(D22)/2, and thematching conditions~33! at
r 5R, with shifted values of the constants:

a→ā5a1
22D

2R
b, c→ c̄5c1

22D

2R
d. ~39!

The degeneracy of each eigenvalueln,l
2 is

dl~D !5
~2l 1D22!~ l 1D23!!

l ! ~D22!!
. ~40!

In what follows, we will determine the corresponding ze
function and, from it, the corresponding heat kernel coe
cients. Because we have a continuous spectrum, we m
separate the translational invariant part~it does not depend
on the background!. We use the procedure described in R
@21# using the setup of a scattering off the background
tential. We have to define the so-called regular solutio
fp,l , which have the same behavior atr→0 as the free
solution

fp,l~r !;Jn~pr !. ~41!

The behavior of this regular solution forr→`, defines the
Jost functionf l(p):

fp,l~r !5 f l~p!H (2)~pr !1 f l* ~p!H (1)~pr !. ~42!

In the present case, the eigenfunctions of the Laplace
erator can be found exactly and they give, for the problem
hand, the Jost function
7-6
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f ~p!5
ppR

4i
FaJn~pR!Hn

(1)~pR!81bpJn~pR!8Hn
(1)~pR!8

2
c̄

p
Jn~pR!Hn

(1)~pR!2dJn~pR!8Hn
(1)~pR!G . ~43!

Now, in order to use a formula like Eq.~4!, we need to
have discrete eigenvalues. So we suppose for a momen
our system is placed inside a sphere of larger radiusR* .
Imposing Dirichlet boundary conditions atr 5R* , we obtain
the following equation for the eigenvaluesp5ln,l :

f l~p!H (2)~pR* !1 f l* ~p!H (1)~pR* !50. ~44!

Then, thez function can be represented as a contour integ

z~s!5(
l 50

`

dl~D !E
g

dp

2p i
~p21m2!2s

]

]p
ln@ f l~p!H (2)~pR* !

1 f l* ~p!H (1)~pR* !#. ~45!

The contourg is chosen counterclockwise, enclosing all s
lutions of Eq. ~44! on the positive real semiaxis and th
positive imaginary semiaxis. For convenience, we have
troduced an auxiliary mass, which we will later put to ze
There is a cut in the complex plane, which goes fromim to
i`. Since the number of negative modes of the Laplacia
finite, we can always choosem to be sufficiently large so tha
all poles of the integrand~45! are belowim. Next, we may
deform the integration contour as described in Re
@16,21,18# to go along the two sides of the cut. We perfor
the limit R* →`, and drop some contributions, which a
exponentially small in this limit and a term that does n
depend on the matching conditions~i.e., the ‘‘empty space’’
contribution!. The procedure sketched above is a quite g
eral one, and not specific to this example, since it uses o
some general properties of the scattering problem, suc
Hermiticity and ellipticity of the Laplacian.

Next, we take the limitm→0, which is smooth at least fo
the heat kernel asymptotics, and obtain

z~s!5
sin~ps!

p (
l 50

`

dl~D !E
0

`

dkk22s]k@ ln f l~ ik !#.

~46!

In the Jost function, we can drop any constant factor sinc
does not contribute to Eq.~46! and redefine

f l~ ik !511gk~ IK !81bk2I 8K81aIK ~47!

with new parametersg5(d2ā)R/(d1ā), b522bR/(d
1ā), and a52c̄R/(d1ā), as well as the short-hand nota
tions I 5I n(kR) andK5Kn(kR).

In order to get the poles of the zeta function~46!, thus
determining the heat kernel coefficients by means of
~10!, we insert into this Jost function the uniform asympto
expansion, Eq.~A2!, of the modified Bessel functions an
obtain
04501
hat

l:

-

-
.

is

.

t

-
ly
as

it

.

ln f l~ ik !5 lnS 12b
n

2t
i n
d~ t !kn

d~ t !1a
t

2n
i n~ t !kn~ t !

1
g

2
@ i n

d~ t !kn~ t !2 i n~ t !kn
d~ t !# D . ~48!

Now, because all functions,i n(t),i n
d(t),kn(t)kn

d(t)51
1O(1/n) are of order one forn→`, the leading contribu-
tion in the argument of the logarithm is the one proportion
to b. As this term grows withn, two cases must be treate
separately, i.e.,b50 andbÞ0.

For b50 we obtain, by means of Eqs.~A3!, an expansion
similar to Eq.~A4!, where theYkpi are polynomials in the
coefficientsa andg. The remaining calculations run in th
same manner as in the preceding section and we obtain
D53 dimensions,

a1524~a2g!p,

a3/25~a2g!2p3/2,

a252
2

15
~5a32120g25a2g13ag223g3!p,

a5/25
1

8
~a4220ag22a3g136g212a2g2

22ag31g4!p3/2. ~49!

The corresponding results for higher dimensions are give
Appendix B.

Next, we turn to the casebÞ0, which corresponds to the
presence of ad8 potential. Here, we rewrite the logarithm o
the Jost function~47! in the form

ln f l~ ik !5 ln b1 ln
n

2t
1 lnS 11~ i n

dkn
d21!2

2t

bn
2

a

b

t2

n2
i nkn

2
g

b

t

n
~ i n

dkn2 i nkn
d!D . ~50!

The first term on the right-hand side, lnb, drops out due to
the derivative in Eq.~46!. The contributions surviving in the
limit b→` in Eq. ~50!, are just the same as those one o
tains for Neumann boundary conditions. Inserting now
asymptotic expressions~A3! and proceeding as above, on
arrives at the following coefficients inD53 dimensions:

a1516
1

b
p, ~51!

a3/25
1

3 S 1124
a

b
116

1

b2D p3/2,

a25
8

15S 3

b
160

a

b2
120

g

b2
180

1

b3D p,
7-7
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a5/25
1

30S 2140
a

b
115

g

b
1

80

b2
1120

a2

b2
1120

ag

b2

140
g2

b2
1960

a

b3
1480

g

b3
1

960

b4 D p3/2.

Again, the corresponding results for higher dimensions
given in Appendix B. As already pointed out in the Introdu
tion, the coefficients present, in this case, a dependenc
inverse powers ofb.

V. CONCLUSIONS

In the foregoing sections we used the multiple reflect
expansion as a method for the calculation of heat kernel
efficient. As a simple example, we considered boundary c
ditions on a sphere and obtained the heat kernel coeffici
as a finite sum over reflections, Eq.~32!. An interesting point
is a connection between Dirichlet and Neumann bound
conditions following from this representation; the contrib
tions from the reflections are the same in both cases ex
for the sign for an odd number of reflections. This can
ready be clearly seen from Eq.~21! and, hence, holds in
general. It occurs that this seemingly simple observation
not been spelled out before.

The multiple reflection expansion, as well as the equi
lent integral equations, Eq.~14! for the propagator and Eq
~15! for the heat kernel, provide a perturbative expansi
For the propagator, this expansion is convergent for ima
nary frequency~as used in this paper!, as was already ob
served in Ref.@22#. For real frequencies it may diverge. Th
same holds, presumably, for the heat kernel: The corresp
ing perturbative expansion can be expected to converge.
interesting to note that the convergence of these expans
does not follow from a small expansion parameter. For
stance, with Dirichlet boundary conditions , there is no su
parameter, whereas for matching conditions correspondin
a delta function potential on the surface, there is one, cf. R
@29# and Sec. IV. The corresponding quantities in the exp
sion may be numbers that turn out to be sufficiently small
the example with Dirichlet boundary conditions, in Eq.~28!,

vR
]

]vR
@ I n~vR!Kn~vR!#,1 ~52!

holds, ensuring the convergence of the geometric se
there.

In general, the convergence issue is not trivial. As an
ample, we considered in Sec. IV the most general ba
ground potential concentrated on a spherical surface.
given by the matching conditions in Eq.~33!, which include
a delta function potential and its derivative as special ca
@Eqs.~35! and~36!#. Using the techniques introduced in Re
@16#, we calculated, for the first time, the corresponding h
kernel coefficients. The lesson with respect to the multi
reflection expansion is that, forbÞ0 $ in Eq. ~47! @or,
equivalently, forbÞ0 in Eq. ~33!#%, i.e., in the presence o
the derivative of the delta function, the coefficients are
04501
re

on
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analytic in b. In fact, they are polynomials in 1/b. Hence,
the multiple reflection expansion cannot converge forbÞ0.

To summarize, we have stressed the convenience of u
the multiple reflection expansion for the calculation of he
kernel coefficients, while showing, at the same time, so
limitations of the method. In general, this method provid
after the general Seeley’s calculus, the only systematic w
to calculate heat kernel coefficients for manifolds with
boundary, and we expect that it will be useful in future a
plications.
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APPENDIX A

In order to calculate the coefficientsan
(k) for n> 1

2 in Eq.
~32!, it is useful to carry out the integration overr in Eq.
~31!, using the known formula*dxxIn(x)25x2/2@ I n(x)2(1
1n2/x2)2I n8(x)2#. Inserting the second term on the righ
hand side of Eq.~23!, results in the representation

an5Res
16p3/2R2s

G~12s! (
l 50

`

n322sE
0

`

dzz122s

3F I 2S 11
1

z2D 2I 82GKD,R , ~A1!

s5
D

2
2n

where I[I n(nz), K[Kn(nz), and we introduced a new
variablez5vR/n.

Next, we substitute the uniform asymptotic expansions
the modified Bessel functions forn→`, z fixed:

I n~nz!5
1

A2pn

enh

~11z2!1/4
i n~ t !,

Kn~nz!5A p

2n

e2nh

~11z2!1/4
kn~ t !,

I n8~nz!5
enh

A2pn

~11z2!1/4

z
i n
d~ t !,

Kn8~nz!52A p

2n

~11z2!1/4

z
e2nhkn

d~ t !,

~A2!

with

i n~ t !5(
r>0

ur~ t !

n r
, kn~ t !5(

r>0

~21!rur~ t !

n r
, ~A3!
7-8
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i n
d~ t !5(

r>0

v r~ t !

n r
, kn

d~ t !5(
r>0

~21!rv r~ t !

n r
.

Here, the notationt51/A11z2 is used. The Debye polyno
mialsur(t) andv r(t) can be found in Ref.@35#, they contain
powers oft from r to 3r . We do not need the functionh,
since it cancels out in our case.

We can thus write

F I 2S 11
1

z2D 2I 82GKD,R

5
mk22k

2nz2 (
k50

2n

(
p5k11

2n11

(
i 50

p

Ykpi

tp12i 21

np
1•••,

~A4!

where the coefficientsYkpi can be calculated easily using
simple computer program. In fact, Eq.~A4! is the definition
of the Ykpi . For Dirichlet (m511, u50) and Neumann
(m521, u50) boundary conditions they are pure numbe
for Robin boundary conditions (m521, uÞ0) they are
polynomials inu. In Eq. ~A4! the dots denote higher-orde
terms that do not contribute to the considered heat ke
coefficients.

For the integration overz, we use the formula

E
0

`

dzz2122st211 i5

G~2s!GS s1
i 21

2 D
2GS i 21

2 D . ~A5!

One can easily check that the terms witht0 from the
asymptotic expansions~A3! are canceled after substitutio
inside the brackets inKD,R @see Eqs.~28! and ~29!#. This
means that any new reflection contributes at least one po
of t to the integrand in Eq.~A1!. Therefore, according to Eq
~A5!, only several first terms of the multiple reflection e
pansion contribute to any given heat kernel coefficient. T
explains the finite range of the summations in Eq.~A4!.

The sum overl produces Hurwitz zeta functions. Whe
taking this into account, we obtain for the contribution ofk
reflections toan @see Eq.~32!#:

an
(k)5Res

16p3/2

G~12s! (
p5k11

2n11

(
i 50

p

Ykpi

R2smk11

2k11

3zS 2s1p22,
1

2DG~2s!GS s1 i 1
p21

2 D
2GS i 1

p21

2 D ,

s5
3

2
2n.
04501
;

el

er

is

The calculation of the residua can be carried out, again,
ing standard computer algebra programs, which lead to
coefficientsan

(k) in Eq. ~32!.

APPENDIX B

Here we present the results for the heat kernel coefficie
corresponding to the matching conditions in Sec. IV, in t
cases of some higher-dimensional spaces. Forb50, we ob-
tain, instead of Eq.~49!, in D54 dimensions,

a1522~a2g!p2,

a3/25
1

2
~a2g!2p

5
2,

a252
1

6
~2a32105g22g3!p2,

a5/25
1

64
~23a214a42172ag24a3g1298g2

13a2g2210ag317g4!p5/2;

in D55 dimensions,

a15
28

3
~a2g!p2,

a3/25
2

3
~a2g!2p5/2,

a252
4

45
~5a32465g15a2g2ag229g3!p2,

a5/25
1

12
~22a21a4276ag1128g224ag313g4!p5/2;

in D56 dimensions,

a152~a2g!p3,

a3/25
1

4
~a2g!2p7/2,

a252
1

12
~6a12a32297g14a2g26g3!p3,

a5/25
1

128
~a214a42508ag14a3g1802g22a2g2

226ag3119g4!p7/2;

and inD57 dimensions,

a152
16

15
~a2g!p3,
7-9
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a3/25
4

15
~a2g!2p7/2,

a252
8

225
~5a321050g115a2g13ag2223g3!p3,

a5/25
1

30
~26a21a42172ag12a3g1280g2210ag3

17g4!p7/2.

For bÞ0 we obtain, instead of Eq.~51!, in D54 dimen-
sions,

a15
8

b
p2,

a3/25
1

16S 9164
a

b
232

g

b
1

128

b2 D p5/2,

a25
16

3 S 3
a

b2
1

4

b3D p2,

a5/25
1

2048S 2592512
a

b
2224

g

b
2512

1

b2
14096

a2

b2

12048
ag

b2
1512

g2

b2
132 768

a

b3
18192

g

b3

132 768
1

b4D p5/2;

in D55 dimensions,

a15
32

3

p2

b
,

a3/25
2

3 S 312
a

b
22

g

b
1

4

b2D p5/2,

a25
16

45S 2
1

b
160

a

b2
220

g

b2
1

80

b3D p2,
ic

s

04501
a5/25
4

3 S 2
17

240
2

a

b
2

2

b2
12

a2

b2
116

a

b3
1

16

b4D p5/2;

in D56 dimensions,

a15
4

b
p3,

a3/25
1

32S 191

3
164

a

b
296

g

b
1

128

b2 D p7/2,

a25
2

3 S 3

b
112

a

b2
28

g

b2
1

16

b3D p3,

a5/25
1

12 288S 1031512
a

b
2480

g

b
1

512

b2
112 288

a2

b2

26144
ag

b2
2512

g2

b2
198 304

a

b3
224 576

g

b3

1
98304

b4 D p7/2;

and inD57 dimensions,

a15
64

15

p3

b
,

a3/254S 1018
a

b
216

g

b
1

16

b2D p7/2,

a25
32

225S 3160
a

b2
260

g

b2
1

80

b3D p3,

a5/25
4

15S 2
15

8
26

a

b
16

g

b
2

12

b2
14

a2

b2

24
ag

2 132
a

3216
g

31
32

4D p7/2.
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