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Multiple reflection expansion and heat kernel coefficients
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We propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an
example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct, a
relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the
heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those
cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the
multiple reflection expansion is shown to be nonconvergent.
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[. INTRODUCTION produce local formulas for the heat kernel coefficients in
terms of the relevant geometric invariants. An alternative to
Heat kernel coefficients play an important role in manysuch methods are special case calculati@es, e.g., Refs.
areas of theoretical physics. They govern the short-distandd4—18 and references thergirin this case, the complexity
behavior of the propagator and the small-time asymptotics obf the calculations is almost independent from the order of
the Schrdinger equation. In quantum-field theory, heat ker-the asymptotic expansion, but the method can only be ap-
nel coefficients define the one-loop counterterms and quarplied to those problems where a sufficiently high symmetry
tum anomalies, as well as the large mass expansion of thalows for the separation of variables. Some recent examples
effective action[1]. It is clear, therefore, that it is important of how the special case calculations may be combined with
to have an effective method of calculation of these coeffithe analytical methods, can be found in R¢f9,20,12,13
cients. Another alternative is provided by iterative, respectively,
To the best of our knowledge, heat kernel methods WeréeCUrSiVe methods. Well known is the DeWitt iteration
first applied to quantum physics by Fock in 19%7; then, methqd. Less known are refc_)rmulations in termg of integral
they were reintroduced by Schwinger in the 195§se Ref. €quations. For example, in Refl21], the Lipmann-
[3]). Because of DeWit4], these methods became standardSchwinger equation for the scattering problem was used to
in quantum-field theory. The DeWitt iteration procedure determine the asymptotic expansion of the Jost function en-
proved to work quite well on manifolds without boundaries tering the regularized ground-state energy. While the known
and (after certain improvementsllowed for the calculation iterative methods work well for sufficiently smooth back-
of many terms in the asymptotic expansion of the heat kerneground fields, an effective method working for singular
[5—8]. On manifolds with boundaries, the methods based oackground fields or for boundary conditions is missing.
functorial properties of the heat kerrjé11] appeared to be ~ The aim of the present paper is to suggest the multiple
more appropriate. These methods allowed for the calculatiofeflection expansion as such a method. In fact, it is based on
of some higher terms of the heat kernel expansion, e.g., foin integral equation whose kernel is located on the boundary.
local boundary conditiongl2] and for a transmittal problem The iteration of this equation gives rise to the multiple re-
[13]. Even though the functorial methods are the most genflection expansion. The important point is that only a finite
eral and the most powerful ones, they still have their limita-Number of reflections contribute to a given heat kernel coef-
tions. They work particularly well for most general operatorsficient.
in a certain category. However, the number of independent The use of the multiple reflection expansion, in connec-
invariants, which can enter a heat kernel coefficient, growdion with vacuum energy, is not new. In R¢R2] it was
very fast with the order of the asymptotic expansion, so thagmployed to investigate the asymptotic density of eigenval-
combinatorics becomes unmanageable. Alternatively, th&€s which, in the modern language, is equivalent to the cal-
general Seeley calculus, which is applicable for generafulation of heat kernel coefficients. In R¢23], the possi-
boundaries, may be used. But this method becomes unwieldjlity of using the multiple reflection expansion was
beyond low orders. mentioned, but found to be too complicated for a general
The methods mentioned above are analytical, i.e., thepoundary. As far as we know, the method has never been
used as a tool for the calculation of the heat kernel coeffi-
cients. However, it should be noticed that the corresponding
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ness with a recalculation of the heat kernel coefficients on #cal spectral functions. The first one is the resolvent kernel
sphere. As a nice byproduct, we obtain a representation qpropagatorD,(x,y) (at imaginary frequendy obeying the
the coefficients as finite sums, where the difference betweegquation
Dirichlet and Neumann boundary conditions resides in cer-
tain signs only. (02— A)D,(X,y)= 8(X—VY). 2)
In general, the multiple reflection expansion can be
viewed as some kind of perturbative expansion. For instancét can be represented as
for imaginary frequencies, it provides a well convergent se- R R
ries for the propagator. It should be mentioned that, in certain .- D,(X)D,(Y)
casegdfor instance, with Dirichlet boundary conditionghis D,(X, ):; T ()
is so despite the absence of a small expansion parameter. So, @ n
the question is whether this convergent behavior is a genergihe second spectral function is the zeta function, given by
feature. The answer is no, and we provide a counterexample
by considering the most general matching conditions on the - - e = -
surface of a sphere. They are described by a four-parameter §(X,y;S)=§n: Ny " Pa(X)Pi(y) (4)
family and correspond, for instance, to the presence of a
delta function or its derivative on the surface. It turns out thatgng, finally, the third is the heat kernel
there is no expansion in powers of the parameter in front of
the derivative of the delta function but, instead, a nice ex- . - - e
pansion in the inverse of this parameter, which cannot be K(x,y|t)=2 Dp(x)Pp(y)e n. ®)
obtained at all by a multiple reflection expansion. We would
like to note that a Green’s function with&-function poten-  These functions are related by means of
tial has been considered before, for example, by path-integral
methods in Ref[25]. There, it was noticed that a perturba- SR R
tive expansion similar to that for &function potential yields I'(s)f(xy;s)= fo dtt K (x,y[t)
some unsolvable relations, a fact that is not surprising in
view of the nonanalyticity found by us. 2 o logm 2=
The paper is organized as follows. In Sec. Il we collect = mfo dw o™ =D, (xy).  (6)
the necessary formulas on spectral functions and their rela-
tions to the heat kernel coefficients. We write down the mul- In addition’ we Consider the Corresponding g|0ba| quanti_

tiple reflection expansion in terms of integral equations fortjes, which appear as integrals o¥rof the local ones in the
the propagator as well as for the heat kernel. In Sec. Ill Wepincidence limit. Because of the distributional character of

use the multiple reflection expansion in order to reobtain thefhe heat kernel coefficienu;](i >?) it is useful to introduce
heat kernel coefficient for the classical boundary conditions o

on the sphere. In Sec. IV, we consider the most generdt test functionf(x) into this integration. So let
matching conditions on a sphere, and calculate the corre-

sponding heat kernel coefficients. Section V contains a dis- g[f](s)=f dxf(x){(x,X;s), respectively,
cussion of our results and the conclusions. Some useful for- Q

mulas are banned into Appendix A, while Appendix B
contains the study of matching conditions in higher- _ - -

dimensional spaces. KL= Qde(X)K(X’X|t) @)

be the global zeta functiofrespectively, heat kernelThe

[l. SPECTRAL FUNCTIONS fiber (matrix) trace has to be understood in the integrands. In

In this section, we define the spectral functions to be usegwany dcaseéasd_ﬁ.g., for mﬁn'fOId.S vgth 6botuhndi31rt|tes r;nd local
in the rest of the present paper, and give a short introductio oundary conditions, as shown in RE26]) the latter has an

to perturbative methods, supplemented with some exampld&SYMPotic expansion as0:
of their application.

Let us conflder.the. Laplace.operatolr.on a”domﬁm K[f](t)~ s a [f]t". ®)
e RP. Let ®,(x) be its eigenfunctions, fulfilling Dirichlet or (4mt)~'“n=01221,...
Neumann(or, more generally, Robjnboundary conditions ) .
on S=aQ, \, being the corresponding eigenvalues We should warn the reader that the existence of expansion

(8) cannot be taken for granted. For example, in the case of
some pseudodifferential operators or nonlocal boundary con-
—AD(X) =\, P(X). (1)  ditions, Int terms appeai27,28.
If expansion(8) exists, one can také=1 to define the

global heat kernel coefficients:
(In Sec. IV we will consider the more complicated case of

matching conditions on a surface iP.) We consider three a,=a,[1]. 9
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If, apart from an appropriate behavior at largethe heat
kernel has a power-law asymptotics at smathe zeta func-
tion [f](s) is a meromorphic function o with simple
poles. From Eqs(7) and(8), the coefficients, can be rep-
resented by the corresponding residua:

Res

alf1=_ o (4™ (S)ZLF1(S)

(n=03,1,...).
(10

Furthermore, we remind the reader that, in general, the coe
ficients consist of a bulkinterior) and a surfac€boundary
contribution

a [f]= fﬂdxf(x)bn<i>+ Lﬂdméw@cn(éx (11)

where we have usegle 9Q as a notation for a point on the

boundary, opposite to the genuine notatioa() for a point
in the bulk.

Now, we integrate Eq(6) over the domairf) and insert
the result into Eq(10). We thus arrive at

2(4m)P" (=

an[f]zs:D T(1=s) Odw

wl—ZSJ dxf(X)D,,(X,X)
E—n QO

12

as the basic equation for calculating the coefficients out o
the propagator.

Having briefly reviewed some basic definitions and well-
known facts, we now proceed to a brief presentation of per
turbative methods.

The perturbative expansion for the resolvent is con

structed in the following way: Leb®(x,y) be a zeroth-order
resolvent. UsuallyD®
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n=1

t Sh S
dequ’ dsq,l...f dslf dzn...J dz;
0 0 0 aM aM

xKo(i,fn it—sp)

XLKo(Zy,Zn-1;S0—Sn-1) - - -LKo(Z1,¥;81),  (15)

f-
whereKj is a suitable chosen zeroth-order heat kernel.

In order to clarify these definitions, we consider some
examples in the following discussion. LB=(—D) ! be
the propagator for a second-order differential operatoket

3= and letL be multiplied by a potential/(i). This is the
standard situation of the DeWitt expansion with a smooth
background potential written in the form of an iterated inte-
gral equation. Then Eq$13)—(15) follow from the formal
expansion ofD=(—D+V) ! and K=exg—t(—D+V)],
respectively, so thaD(X,y) andK(X,y|t) are the propagator
and the heat kernel of the operater D+ V). If the potential

V is smooth and falls off sufficiently fast at infinity, all inte-
grals in EqQ.(15) exist. From dimensional considerations, it is
clear that the highest power & which may contribute to
the heat kernel coefficiemt, , is V". Therefore, only the first

n terms of expansiol(15) must be taken into account.

In our next example, let the operatioragain be the mul-
tiplication by a potentiaV, but now, let®, be a subsurface of
co-dimension 1 inQ, dmQ—dim3=1.1 In Ref. [29], it
yas shown that all terms in expansi¢tb) exist and give
power-law asymptotics of the heat kernel. Later, this expan-
sion was used in actual calculations of the heat kernel coef-
ficients[30].

The Dyson equation is also useful for rather general per-
turbations of boundary conditions as, e.g., for the case where

more derivative terms are added to the usual Neumann one
(see[31)). In this case, however, dimensional arguments do

is taken to be the free propagator in @ ot \work, and an infinite number of terms contribute to any

flat space without boundaries. Consider the Dyson equatior&liven heat kernel coefficier, .

D(X,y)=DOX,y)+ Ldioo(i,i)l_o(i;), (13

where the integration goes over a submanifdld ), andL
is some operator associated with the perturbatgee ex-
amples below Equation(13) has the formal solution

D(x,y)=D°(x,y)+ >, fdil...f dz,D°(X,2y)
n=1J% 3
XLD%z;,2,)...LD%zZ,,y). (14)

In Ref.[29] it was shown that the heat kernel has a similar
representation,

These examples demonstrate that the “common sense”
arguments work rather well. If there is a parameten the
theory such that there is a smooth lingét-0 of the heat
kernel coefficientssuch asV—0 above, then the formal
expansions14) and (15) in that parameter usually give a
good approximation for the spectral functions. If such a pa-
rameter is of positive mass dimension, only a finite number
of terms contribute to each, .

This is, however, not the end of the story. In Sec. Il we
will see that one can construct a perturbative expansion, the
so-called multiple reflection expansion, even when no pa-
rameter or limiting procedure exists. Moreover, also in this
case, only a finite number of terms contribute to each heat

1This problem is a particular case of a more general transmittal
problem(see Sec. V.
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kernel coefficient—a result that is hard to predict on the bahas a discontinuous derivative:
sis of common sense arguments.

. > 2> wl 2 . >z o\ -
IIl. MULTIPLE REFLECTION EXPANSION APPLIED TO lim NV (x)= L,d 3 9aAu(@8=3y)p(ay) = 7 p(a).
THE HEAT KERNEL COEFFICIENTS FOR THE x—a (20
SPHERE

This section contains a short overview of one particularjn general, the multiple reflection expansion for the resolvent

perturbative method, which is particularly well suited for the €2dS
treatment of boundary problems, i.e., the multiple reflection

expansion for Dirichlet and Robin boundary conditions. D, (X,y)=A,(X=Y)

Balian and BlocH 22] applied this expansion, in the bound-

ary value problem context, to calculate the density of eigen- + Kf d?a; A, (x— 51)751%(51_;)
S

values, which is related to the heat kernel by a simple inte-

gral transformation. In their work32], they pointed out that

the divergent part of the Casimir energy is given by the few + KZJ dZalf dzazAw(i— 51)

first reflection contributions. This fact, however, has not been S S

fully appreciated. Therefore, we find it useful to repeat some o -l .

basic facts, translating them to a more modern language, and J 51Aw(a1—a2) J ;zAw(az—y) +... (21
supplying the reader with a simple example. In doing so, we

omit many details that can be found in the original literature | P ,

[22,33. with the notationd =9+ d. For k=1, this propagator obeys

The multiple reflection expansion is based on simple for2irichlet and, forx=—1, Neumann boundary conditions.
mulas known from electrostatics: Keeping in mind the app”_The validity of this expression can be verified by noting that

cation to Dirichlet boundary conditions, |ﬂ1(5) be the den- It fulfills the d_ifferential equation forx¢_S. Moreover,
sity of a double layer(dipole layej on a surfaceS The bPoundary conditions can be checked using Ed$) and
corresponding potential is (20), whereby the additional contributions give rise to can-

cellations between successive orders of reflections. Expan-
- ) I - sion (21) is called multiple reflection expansion because it
O(x)= Ld a1 A, (x—ay)ds p(ay), (160 can be interpreted as a motion described by the free propa-
gator fromx to 51, being reflectedhowever under any angle
wherega;1 is the normal derivative, restricted to the surf&e due to the integration ovél), moving further toéz, and so
and acting to the left. Explicitly written, it readAw(i Loargtrs';ﬂore details can be found in Refi33] and related
—a)da= n(y)VyAuf(x—y)w:é, wheren is the normal vector. = A gimple example for the multiple reflection expansion
The measure o is d?a;=du, du,\/g, where (1;,u,) are  appears if the surfac8is a sphere. In this case, the expan-
the coordinates of a pointa(u;,u,) on S and gi;  sion becomes an algebraic one. It can be obtained from Eq.
=aé/auia§/auj is the metric. In Eq.(16), the propagator (21) by turning to spherical coordinates. It is, however, easier
- - . . " to use the known expression for the exact propagator with
A, (Xx—Yy) is the free one, i.e., without boundary conditions.

In three dimensions it is simply the Yukawa potential given boundary conditions

—or

- > e O AT * ’ ’ ’
AX=y)= 73— (r=[x=y)). (17) Du(xX)= 2 Yim(6,0)¥in(6",€" DI, (22
The potential(l)(i) is discontinuous fox approaching the Wwith
surfaceS (x—a) and the equation

1
. oL R Di(r,r')=—[l (or )K (or=)—1 (ol (or)K
im0~ [ it (i andauan s st g ATk o

X—a (23)
holds. The additional contributioftast term) appears due to  and y=I+3%, r_=min(r,r’), r-=max(,r'). Here, I (x)
the fact that limit and integration do not commute. andK ,(x) are the modified Bessel functions, and we have

In a similar fashion, keeping in mind the application to introduced the notation
Neumann boundary conditions, the potenti:adi) of a
charged surface with charge densmé),

2It must be stressed, that despite its simple form, the derivation of
X(X):f d2a1 A, (x—ay)p(ay) (19 Eq. (21).conta|ns several subtle points, which are explained in the
S Appendix of Ref[33].
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K,(wR) This formal expansion has been shol@3] to be equivalent
D=7 (wR) (24)  to the multiple reflection expansiqi21), where the number
g of reflections isk+ 1.
for Dirichlet boundary conditions and In view of Eq.(12), we perform the integration over the

surface of the sphere and define

(AIR[RK (wR)]
 (AI6R)[RYI (wR)]

R (25)

Dw<r)=f du(a)D,,(x,X)= 2, (21+1)Dy(r,r)

Q) 1=0

for Robin boundary conditions, where the solutions of Eq. (30)
1) h to fulfill (a/ar)[ru*12 =0. For u=

(1) have to fulfill (9/dr)lr ¢“(r)]‘f:R ord so that the coefficienta,,, Eq.(9), turn out to be given by

—(1/2), these reduce to Neumann boundary conditions on
the two-dimensional sphere.

- : - - ] Res 1672 (R
The multiple reflection expansion appears in the follow a. = f drrZE ]
ing way [33]. Represent " s=3/2-nI'(1-9) Jo <0
* 1-2s
K (oR)K (wR) 26) +1)fo dow™=D\(r.r). 3
D=
I (oR)K (wR) The procedure to calculate the coefficients from this repre-

sentation is as follows. First, we remark that the poles in
and use the Wronskiald,(x)K ,(x) — I ,(x)K,(x)=1/x to re-  result from largew andl, in the Bessel functions. The poles

write the denominator in Eq26) as corresponding to boundary contributidrg, in Eq. (11)] ap-
pear, in addition, from the upper limit of the integration over
-1 9 r. So, we use the uniform asymptotic expansion of the Bessel
IV(wR)K’V(wR):m 1—wa—R[|V(wR)KV(wR)] . functions (it is given in the Appendix together with the

@7 multiple reflection expansio28) or (29), and insert them
into Eq. (32).

representation side of Eq.(23). It corresponds to the free space propagator
and, thus, it does not know about the boundary. Conse-
quently, it gives the volume contribution, which g
=(47I3)RS.

i P k In order to calculate the higher coefficients, we consider
x> (wR—[I V(wR)KV(wR)]) . (28)  the second term on the right-hand side of E2f). Accord-

k=0 JwR ing to the sum on the right-hand side of E¢28) and (29),
respectively, we represent the coefficients as a sum over re-
flections

Kp=—2wRK,(0R)K (wR)

In a similar way, one obtains

2n

a,=>, al. (32
k=0

Kr=—20wRK,(wR)

u
K/(wR)+ —K, (wR)
wR

[l (oR)K (wR)]

JowR Using the uniform asymptotic expansion of the Bessel func-
tions, these coefficients can be calculatéal details, see

X >, (—1)k[wR<
k=0

2u “ Appendix A). As a result, for Dirichlet boundary conditions
+— 1 (0RK(wR) || . 29 PPE : ' y ’

oRHORK (o )” 29 ihe firsta’s are

k= 1 2 3 4 5 6 a,

n:% _271_3/2 _271_3/2

n=1 2m tar S

n:g 0 0 _%’ﬂ3/2 _%,”3/2

n=2 0 — % T - i T - %77 - 31—f5 T

n=% 0 0 0 Lg¥2 Lg% 1,32 _ 1,30

4 2 12 1 1 4
n=3 0 —RRT T TET T — 13T % T 55057
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The coefficients,, are proportional t&R>~2". In this table  SP~1, which can be viewed as a singular background poten-
we have takerR=1. When replaced in Eq32), they sum tial concentrated on the surface. The formal limit>oo,
up to the known valuesshown in the last columras can be turns this matching condition into Dirichlet boundary condi-
checked, for example, by comparing them with the results irtions (¢. =0).
Appendix B of Ref.[16]. It is interesting to note that the The other special case is
corresponding heat kernel coefficients for Robin boundary
conditions withu=0, can be obtained through the replace- a=d=1, c=0, (36)
mental® — (—1)ka¥ . N o _ .

As a last example in this section, we give some reflectiod€auiring the derlvatlvgs to be continuous, and 'Fhe functions
contributions to the heat kernel coefficiea for Robin themselves to have a jump. This is usually attributed to the

boundary conditions. They rea®R€ 1) presence of a backgrpund potential in.the form of the d_eriva-
tive of the delta function. The formal limh— oo, turns this
a®=0, condition into Robin boundary condition§a/b) ¢ .. + ¢
=0).
1 A 5 In general, the parameteasb,c,d, andew may depend on
ay'= 7og( 3+ 12u-28u7, the angular coordinates o8~ 1. In this paper we restrict
ourselves to the case where there is not such a dependence.
- Then, variables can be easily separated by making the ansatz
a(22)=1—05(5—42u+ 140u2—-280°%),
Bry(X)=r@PV2¢ 1 (1)Yy(Q), (37)
@_ " _ 2_ 3 whereY y(Q) are the spherical harmonics depending on the
ay’=——(35-270u+ 756u°—840u°). O]
2 315( ) angular coordinate€. Once such ansatz is adopted, the ra-

) dial functions¢,, ; must satisfy the equation
The sum(32) gives the known resuld,=27/45R(1—18u '

+60u?—120u3). In particular, Neumann boundary condi- @2 1d 2
_tions whiclh appear for a conducting sphere follow by choos- ﬁ + Tar r_2 + )\ﬁ’, ¢n, =0 (39
Ingu=—s;.

with v=I1+(D—2)/2, and thematching conditiong33) at
r =R, with shifted values of the constants:

In this section we wiE!I study the heat kernel expansion for - -
the free Laplacian iR”, acting on the space of functions - - — -
obeying on aD-one-dimensional sphereSP™ !, certain a—a=at—5p-b, c—e=ct—7a-d (39
matching conditions that relate the values of the functions
and their first derivatives on different sides of the sphere. If The degeneracy of each eigenvahfg, is
one assumes that the matching conditions are ultralocal in '
angular coordinategthey do not contain tangential deriva- (21+D-2)(I+D-3)!
tives), the most general choice is the following four- d(D)= 1(D—2)!
parameter family34]:

IV. SINGULAR POTENTIALS ON A SPHERICAL SHELL

(40)

In what follows, we will determine the corresponding zeta

¢ =wagd_+owbo’, function and, from it, the corresponding heat kernel coeffi-
, ) cients. Because we have a continuous spectrum, we must
di=wCh_+owdd’, (33)  separate the translational invariant péftdoes not depend
on the background We use the procedure described in Ref.
where [21] using the setup of a scattering off the background po-
_ o tential. We have to define the so-called regular solutions
¢¢—rll210¢(f), ¢¢—rl'g1i05r¢(r)- (34) #p.1, which have the same behavior et-0 as the free
solution
Here, w is a complex phase factor, which we include for
completeness only. We consider real fields and getl. $p,(r)~J,(pr). (41)

The other parameters obey the restrictaoh—bc=1. ) ] ] ]
There are two important special cases of the conditiond he behavior of this regular solution for—<, defines the
(33). Take Jost functionf(p):

a=d=1, b=0. (35) bp (N =F(PMH@(pr)+fF (pHD(pr). (42
This requires the functions to be continuous across the sur- In the present case, the eigenfunctions of the Laplace op-

face and their derivatives to have a jump. This is equivalenerator can be found exactly and they give, for the problem at
to having a delta function potentiaf(x)=cd(r—R) on  hand, the Jost function
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PR W(pR)’ 'HW(pR) 1K) =In 1— B iKY + @i (DK (t
f(p)=—| al(PRHL (PR’ +bpJ,(pR)'HY(PR) nfi(ik)=In{ 1= Ao, (DK, (D + a5 i, (Dk,(1)
c 1 1 +Z[id(t)k () =i, (HKI(D)] (48)
—BJV(pR)H(V’(pR)—dJy(pR)’H‘V)(pR) . (43 2 LA A :

Now, in order to use a formula like E¢4), we need to NOW, because all functions,iV(t),if(t),ky_(t)kﬂ(t)fl
have discrete eigenvalues. So we suppose for a moment thatC(1/v) are of order one fow— e, the leading contribu-
our system is placed inside a sphere of larger radés tion in the argument of the logarithm is the one proportional
Imposing Dirichlet boundary conditions et R*, we obtain 10 A. As this term grows withv, two cases must be treated

the following equation for the eigenvalugs= X\, separately, i.e, =0 and+0. .
’ For 8=0 we obtain, by means of EG#3), an expansion
fi(p)H@(pR*)+ ¥ (p)HB(pR*)=0. (44)  similar to Eq.(A4), where theY,,; are polynomials in the

coefficientsa and y. The remaining calculations run in the

Then, the function can be represented as a contour integralsame manner as in the preceding section and we obtain, in
D=3 dimensions,

(913, 40 | oy ) it pHC R 8= - 4(a—y)m,
+f|*(p)H(1)(pR*)]. (45) a3/2:(a_'}’)2773/2,

The contoury is chosen counterclockwise, enclosing all so-
lutions of Eq.(44) on the positive real semiaxis and the
positive imaginary semiaxis. For convenience, we have in-

a :—3(5 83— 120y—5a°y+3ay’—3v%)
2=~ 15(5@ Oy—5a®y+3ay"—3y)m,

troduced an auxiliary mass, which we will later put to zero. 1

There is a cut in the complex plane, which goes fiamto asp= §(a4—20a'y—2a3'y+ 36y°+2a?v?

ico. Since the number of negative modes of the Laplacian is

finite, we can always chooseto be sufficiently large so that —2ay®+yH 732, (49

all poles of the integran@45) are belowim. Next, we may

deform the integration contour as described in RefsThe corresponding results for higher dimensions are given in
[16,21,18 to go along the two sides of the cut. We perform Appendix B.

the limit R* —o, and drop some contributions, which are  Next, we turn to the cas@+ 0, which corresponds to the
exponentially small in this limit and a term that does notpresence of &’ potential. Here, we rewrite the logarithm of
depend on the matching conditio(i., the “empty space” the Jost functior(47) in the form

contributior). The procedure sketched above is a quite gen-

eral one, and not specific to this example, since it uses only v 2t o t?
some general properties of the scattering problem, such ak f(ik)=In B+Inz+ln 1+ (i%9-1)— v B — 1K,
Hermiticity and ellipticity of the Laplacian. v v
Next, we take the limitn— 0, which is smooth at least for ¢
the heat kernel asymptotics, and obtain — % —(iﬂky—iykﬂ)) _ (50)
14
sin(7s) < o .
(8)=—- IZO d|(D)J'O dkk™a,[In f,(ik)]. The first term on the right-hand side,  drops out due to

46) the derivative in Eq(46). The contributions surviving in the
limit B—c< in Eq. (50), are just the same as those one ob-

In the Jost function, we can drop any constant factor since it2inS for Neumann boundary conditions. Inserting now the
does not contribute to Eq46) and redefine asymptotic expression@3) and proceeding as above, one
arrives at the following coefficients iD =3 dimensions:

fi(ik)=1+ yk(IK)"+ BK?I'K' + alK (47) .
_ _ a; =16, (57
with new parametersy=(d—a)R/(d+a), B=—-2bR/(d B
+a), and a=2cR/(d+a), as well as the short-hand nota-
tionsl=1,kR) andK=K (kR). _
In order to get the poles of the zeta functi¢#6), thus A2~ 3
determining the heat kernel coefficients by means of Eq.
(10), we insert into this Jost function the uniform asymptotic 8
expansion, Eq(A2), of the modified Bessel functions and a,= —
obtain 15

B

! 1
1+24-+ 16—) 72,
EZ

3 1e] 0% 1
—+60— +20— +80— |,
B g BB
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1 o y 80 o2 ay analytic in 8. In fact, they are polynomials in g/ Hence,
asp= 5=| 2+40; +15-+ — +120— +120— the multiple reflection expansion cannot convergefet0.
30 B B 2 2 2 . : .
B B B To summarize, we have stressed the convenience of using
2 the multiple reflection expansion for the calculation of heat
’y a ’y 960 . . . . .
40— +960— + 480~ + 32 kernel coefficients, while showing, at the same time, some
2 3 3 4 ’

limitations of the method. In general, this method provides,
after the general Seeley’s calculus, the only systematic way
Again, the corresponding results for higher dimensions aréo calculate heat kernel coefficients for manifolds with a
given in Appendix B. As already pointed out in the Introduc- boundary, and we expect that it will be useful in future ap-
tion, the coefficients present, in this case, a dependence gnications.
inverse powers 0.
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efficient. As a simple example, we considered boundary con-
ditions on a sphere and obtained the heat kernel coefficients APPENDIX A
as a finite sum over reflections, E82). An interesting point L K 1.
is a connection between Dirichlet and Neumann boundary N Order to calculate the coeﬁlc_lerﬁ for n=3 in Eq.
conditions following from this representation: the contribu- (32, it is useful to carry out the mtegrzatlor; overin Eq-
tions from the reflections are the same in both cases excefptl); using the known formulg dxxl,(x)“=x/2[1,(x)*(1
for the sign for an odd number of reflections. This can al-+ »*/x*)—1,(x)?]. Inserting the second term on the right-
ready be clearly seen from E¢1) and, hence, holds in hand side of Eq(23), results in the representation
general. It occurs that this seemingly simple observation has -
not been spelled out before. I T D 3_25f°°d A-2s
The multiple reflection expansion, as well as the equiva- B v z
lent integral equations, Eq14) for the propagator and Eq.

(15) for the heat kernel, provide a perturbative expansion. ) 1 )

For the propagator, this expansion is convergent for imagi- X1 1+ = | = 1"*|Kp R, (A1)
nary frequency(as used in this papgras was already ob- z

served in Ref[22]. For real frequencies it may diverge. The D

same holds, presumably, for the heat kernel: The correspond- s=5 - n

ing perturbative expansion can be expected to converge. It is
interesting to note that the convergence of these expansions _
does not follow from a small expansion parameter. For inWhere I=1,(v2), K=K,(»z), and we introduced a new
stance, with Dirichlet boundary conditions , there is no such/arnablez=wR/v.- _ , _
parameter, whereas for matching conditions corresponding to N€Xt, we substitute the uniform asymptotic expansions of
a delta function potential on the surface, there is one, cf. Refn® modified Bessel functions for—c, zfixed:

[29] and Sec. IV. The corresponding quantities in the expan-

sion may be numbers that turn out to be sufficiently small. In | (v2)= 1 e"’ )

the example with Dirichlet boundary conditions, in Eg8), v 2av (1+2Hv "7
ORI (0R)K (wR)]<1 (52 K vy |

(9(1)R V(VZ)_ 2V(1+22)1/4 V( )1

holds, ensuring the convergence of the geometric series
there. , e (1+z9)"

In general, the convergence issue is not trivial. As an ex- L(vz)= V2w z o0,
ample, we considered in Sec. IV the most general back-
ground potential concentrated on a spherical surface. It is 7 (14 22)14
given by the matching conditions in E3), which include K/(v2)=—\5—m—
a delta function potential and its derivative as special cases 2v z
[Egs.(35) and(36)]. Using the techniques introduced in Ref. (A2)
[16], we calculated, for the first time, the corresponding hea%vith
kernel coefficients. The lesson with respect to the multiple
reflection expansion is that, foB+0 {in Eq. (47) [or, u(t) (=1)"u ()
equivalently, forb#0 in Eq.(33)]}, i.e., in the presence of i(H=> ——, k(=D ——~  (A3)
the derivative of the delta function, the coefficients are not =0 r=0 V'

e Wlkg(t) ’
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The calculation of the residua can be carried out, again, us-

t D)o, (t
E ol ), kd(t)= 2 = ) il ) ing standard computer algebra programs, which lead to the
r=0 r=0 coefficientsal) in Eq. (32).
Here, the notation=1/y1+2? is used. The Debye polyno- APPENDIX B
mialsu,(t) andv,(t) can be found in Ref.35], they contain
powers oft from r to 3r. We do not need the function, Here we present the results for the heat kernel coefficients
since it cancels out in our case. Corresponding to the matching conditions in Sec. 1V, in the
We can thus write cases of some higher-dimensional spaces.g=e0, we ob-
tain, instead of Eq(49), in D=4 dimensions,
1 — 2
’ a;=—2(a—
12l 1+ 5| =1"2[Kp g 1 (a=y)m
z
1 5
kp—k 20 2041 p tpt2i-1 ag,= E(a—'y)zﬂ'?,
= E Ykpl +--
2p72 k=0 p=Kk+1 i=0 p

1
(A4) a2=—6(2a3—105y—2y3)772,

where the coefficient¥,; can be calculated easily using a
simple computer program. In fact, EGA4) is the definition
of the Y,,;. For Dirichlet (u=+1, u=0) and Neumann
(w=—1, u=0) boundary conditions they are pure numbers;
for Robin boundary conditionsy{=—1, u#0) they are
polynomials inu. In Eq. (A4) the dots denote higher-order ;
terms that do not contribute to the considered heat kernel
coefficients. Byl

For the integration ovez, we use the formula a;= ?(a— y) 2,

n D=5 dimensions,

B i—1
(_S)F(S+T)

=

One can easily check that the terms with from the
asymptotic expansion6A3) are canceled after substitution

azp= §(a— )22,

f dzz —1— ZSt 1+i_ (AS)

= (32140t 1720y da’y+ 298
A= 64( @ a Y a~y 8}/

+ 3012)/2— lan3+ 7y4) 175/2;

4
a,=— 4—5(5683— 465y + 5a27— ayz— 973) 2,

1
— 2 2 3 /2.
inside the brackets ifKp r [see Eqs(28) and (29)]. This a5/2_1_2(_20‘ +a’=T6ay+128y°—4ay’+3y") m%

means that any new reflection contributes at least one power
of t to the integrand in EqA1). Therefore, according to Eq. in D=6 dimensions,
(A5), only several first terms of the multiple reflection ex-
pansion contribute to any given heat kernel coefficient. This a;=—(a—vy) )
explains the finite range of the summations in E4).

The sum overl produces Hurwitz zeta functions. When 1
taking this into account, we obtain for the contributionkof 3= Z(a— y)2m’’?,
reflections toa, [see Eq(32)]:

1
32 2n+l p 2s, k+1 =—— +2a%— +4a%y— 6937
20— Res 167 2 v -R w a, 12(6a 20°=297y+4a"y—6vy°) 7>,
" T(1-5) p 1 iSh kP okt
1
F—srstit p—l) ag,= 128(a +4a*—508xy+ 4ay+802y2— a?y?
1 2
X /| 2s+ p—2,§) 0—1 , —26ay3+19y4)777’2;
2r I+T
and inD=7 dimensions,
3 16 3
s=§—n. a1=—E(a—y)Tr
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4
Azp= 15(“ y)?m'’?,

8
——(5a°—1050y+ 15a%y+ 3a y*— 23y%) 73,

=" 525

_t —6a’+ a*—172ay+2a®y+ 280y°— 10ay®
asp= 30( a‘t+a y+2a”y+ 280y oy
+7y4)777/2.

For B#0 we obtain, instead of E¢51), in D=4 dimen-
sions,

8
a;=— 72,
B
1 v 128
azp= 16 9+64E 3ZE+B— ,

16 a 4 )
aZZ? 3E+E T,
2

_ a Y 1 a
a5/2—2048( 59-512; ~ 2245 =512 +4096 ;

ay ¥ a y
+ 2048; + 512[? +32 768[3—3 + 8192[?

1
+32768— | 72
B4

in D=5 dimensions,

32 7
alzgg,
o 4
ago=3 3+2§_2%+E w2,
16/ 1 60_ 20_ 80 2
A== ,
245\ g g T gl

PHYSICAL REVIEW D64 045017

a5/2:§ +2—+16—+ — |

4/ 17 a 2 o _a 16| .,
240 B g2 g B g

in D=6 dimensions,

1 512
Agp= 12 288( 103+ 5125 4805 + B_ +12 288_

ay ¥ a y
- 6144[¥ - 512[? +98 304B_3 —24 576[?

98304 .,
B ’

and inD=7 dimensions,

_647°
al—l—sﬁ,
o 16
agp=4 1O+8E—16%+E w2
3+60— 60—+80 3
a2 = ’
225 ,3 ﬂ ﬂ
4 15 @ o7 12+4a2
18| T8 %% g R
ay a vy 32
—4— +32—5—165+— |72
B B B B
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