

Available online at www.sciencedirect.com

International Journal of Mechanical Sciences 47 (2005) 1473-1474

www.elsevier.com/locate/ijmecsci

Letter to the Editor

Comments on "Buckling behavior of a graphite/epoxy composite plate under parabolic variation of axial loads"

The writers wish to compliment the authors of this interesting paper, which covers an important topic in elastomechanics [1].

It is not clear from the paper what type of external loading (boundary condition) generates a stress resultant N_x defined in the paper by their Eq. (4) [1]:

$$N_x = N_0 \left(1 - 6\frac{x}{a} + 6\frac{x^2}{a^2} \right). \tag{1}$$

On the other hand, using this expression, the authors integrate the "equilibrium equations of plate theory" and obtain very simple and convenient expressions for the stress resultants N_y and N_{xy} :

$$N_{y} = -\frac{6N_0}{\beta^2} \frac{y}{b} \left(1 - \frac{y}{b} \right),\tag{2}$$

$$N_{xy} = -\frac{3N_0}{\beta} \left(1 - 2\frac{x}{a} \right) \left(1 - 2\frac{y}{b} \right),\tag{3}$$

where $\beta = a/b$.

Admittedly these expressions do satisfy the plate equilibrium equations (which are equilibrium equations of plane stress in the mathematical theory of elasticity)

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0,\tag{4a}$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} = 0. \tag{4b}$$

However, the aforementioned polynomial expressions do not constitute a unique solution. One must satisfy the compatibility condition for plane stress [2,3]:

$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}.$$
 (5)

0020-7403/\$ - see front matter \odot 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijmecsci.2005.04.012

Unfortunately, the expression for N_x , N_y and N_{xy} do not satisfy the compatibility equation and this occurs for:

- isotropic plates,
- orthotropic plates,
- plates of generalized anisotropy.

For the last two situations, the stress resultants will probably turn out to be dependent on the constitutive parameters.

Acknowledgments

Research on structural mechanics is sponsored at the Institute of Applied Mechanics by Secretaría General de Ciencia y Tecnología of Universidad Nacional del Sur and by CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas.

References

- [1] Hu H, Badiz A, Abatan A. Buckling behavior of a graphite/epoxy composite plate under parabolic variation of axial loads. International Journal of Mechanical Sciences 2003;45:1135–47.
- [2] Timoshenko SP, Goodier JN. Theory of elasticity. New York: McGraw Hill; 1951.
- [3] Laura PAA, Maurizi MJ. Introduction to solid mechanics. Buenos Aires, Argentina: EUDEBA; (in Spanish) 1979.

D.V. Bambill¹, C.A. Rossit¹, D.H. Felix Institute of Applied Mechanics, Department of Engineering, Universidad Nacional del Sur, Av. Alem 1253, 8000-Bahía Blanca, Argentina E-mail address: dbambill@criba.edu.ar (D.V. Bambill)

¹Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).