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Abstract

To impart disturbance rejection properties is an important goal in the design of an appropriate process control structure. In a multivariable
control system, the effectiveness of disturbance rejection can depend strongly on the direction of the disturbance. In this paper, we present
a study of the controllability and disturbances effect for a general nonlinear plant. For this purpose, controller-independent measures are
defined and computed by solving a simple optimization problem in the time-domain. Finally, several examples are considered to illustrate the
proposed method.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Traditionally, the maximum obtainable profit in the chem-
ical industry was attained by increasing the production to
its admissible maximum level. However, due to the energy
crisis of the early 1970s, and with the resulting sharp rise
of the cost of energy, profitability became associated with
decreased production costs. Therefore, the process synthe-
sis started to involve a trade-off between the search for eco-
nomically attractive designs and those that can be operated
safely as well as meeting specifications. This balance in-
volves, inevitably, the interaction of design and control.

The importance of designing processes that can be ac-
ceptably controlled, is widely recognized as a relevant topic,
and has been studied by many researchers (Barhi, 1995;
Fisher, Doherty, & Douglas, 1988; Hovd & Skogestad, 1992;
Narraway & Perkins, 1994; Straub & Grossman, 1993). A
significant consideration is whether it is possible to reduce
the effect of disturbances to an acceptable level using the
available manipulated variables. In this context, three rel-
evant questions are introduced in the work byHovd and
Braatz (2000):
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(i) What is the minimum output error that is obtainable
for the worst possible combination of disturbances with
the optimal use of the manipulated variables?

(ii) What is the minimum required magnitude for the ma-
nipulated variables to obtain an acceptable output error
for the worst possible combination of disturbances?

(iii) What is the largest possible disturbance for which an
acceptable output error is obtained with the available
manipulated variables?

As regards processes linear representations, the mathe-
matical formulation of each of the above questions in
terms of optimization problems has already been provided
(Skogestad & Wolff, 1992; Wolff, Skogestad, Hovd, &
Mathisen, 1992). Moreover, an appealing discussion on the
solutions of these problems has recently been presented by
Hovd and Braatz (2000).

Lee, Braatz, Morari, and Packard (1995)introduced
screening tools to help eliminate undesirable control struc-
ture candidates for which a robustly performing contro-
ller does not exist. They especially dealt with the problem
of actuator/sensor selection. The approach is based on
the Structured Singular Value Theory and uses Lin-
ear Fractional Transformation to represent the uncertain
system.

During the last years, the need for developing algorithms
for simultaneous solution of process and control design has
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Nomenclature

cp coolant heat capacity
cv control valve setting
C concentration of A in CSTR
Cool1 heat transferred between cooling jacket

and reactor in CSTR #1
Cool2 heat transferred between cooling jacket

and reactor in CSTR #2
Dh heat of reaction
E/R activation energy
F fuel input
k0 Arrhenius constant
L drum level
M control horizon
P drum pressure
Q flowrate
S steam flow
T temperature in CSTR
Te feed water temperature
Ts sample time
U set of possible input variables
Ua overall heat transfer coefficient
V volume of CSTR
wc feed water input
W set of possible disturbances
z0 process profit

been tackled by many researchers. However, many of the
published criteria either assume a specific design approach
or a specific uncertainty description. Consequently, they are
not useful as general design-independent screening tools.
A contribution to this topic due toBraatz, Lee, and Morari
(1996), presented screening tools for systems with general
structured model uncertainty. Nonconservative estimates
for the achievable performance can be attained using this
screening approach. Provided the controller structure is de-
fined, the tools can be used to select actuators, sensors, as
well as appropriate variables pairings.

Kookos and Perkins (2001)introduced a decomposition
algorithm for solving the combined process and control de-
sign problem. They considered that the process uncertain-
ties can be modeled as a function of a finite number of
time-invariant but uncertain parameters. The proposed cal-
culation scheme is based on the systematic generation of
lower and upper bounds to reduce effectively the size of the
search space. In a more recent work,Kookos and Perkins
(2003)present mixed-integer linear programming formula-
tions for the efficient calculation of the disturbance rejec-
tion measures previously proposed bySkogestad and Wolff
(1992). The formulation developed for linear systems can be
solved for global optimality using the available solvers. The
authors outline the equivalent formulation for nonlinear sys-
tems and they associate it with the flexibility index problem.

However, several nonlinear aspects of many real processes
have not been thoroughly considered yet. For instance, the
saturation feature of the manipulated variables is only con-
sidered by assuming that these variables are bounded, but
sometimes this is not a realistic assumption. In this field, only
some considerations related with question (iii) have been
introduced byGrossman, Halamane, and Swaney (1983).

In this paper, we present a study of the controllability of
a general nonlinear plant and the disturbances effects on it.
Different controllability measures related to disturbances in-
fluence are proposed based on nonlinear optimization. First,
a steady-state approach is formulated to solve the question
(ii) above mentioned. This measure is herein used to com-
pare several control strategies for reactors. A controllability
measure of a system can be related to its operability level.
Then, the system’s operability can be quantified through the
maximum economic profit which can be achieved(Raspanti
& Figueroa, 2001). For this purpose, the problem of the
maximum economic profit when the process is under dis-
turbances, is herein dealt with as a nonlinear dynamic op-
timization formulation. This is an extension of the back-off
problem where the operating point is moved away from
the one calculated in the optimization level, in order to en-
sure the feasible process operation to compensate for the
likely effect of the disturbances (Bandoni, Romagnoli, &
Barton, 1994; Barhi, 1995). In this work, a steam-generation
unit with parameter uncertainty is considered as an applica-
tion example to evaluate the performance of the proposed
approach.

The work is organized as follows. The steady-state
measure for control effort is developed inSection 2. In
Section 3, the economical profit bounds attainable by a
given process are analyzed. The use of these techniques is
presented via simulations inSection 4. Finally, in Section 5,
the conclusions are drawn.

2. Controllability analysis

It is now a well-known fact there are some plants with
better disturbance rejection capabilities than others. Usually
the terms “controllability” and “dynamic resilience” are re-
ferred to as the inherent control properties of the plants.
That is, if a plant has poor controllability, then the responses
of that plant will be poor no matter what controller is se-
lected to be used. In this sense,Lewin (1996)developed a
graphical method to enable the diagnosis of disturbance re-
siliency for linear processes affected by disturbance vectors.
In this way, it is possible to quantify the necessary con-
trol action for rejecting a disturbance vector. This control
effort depends on the disturbance direction and frequency.
The method is useful as a screening tool during the process
design stage, as well as for selecting from different control
structures.

In the development of disturbance effect measures, let us
consider a wide set of linear transfer function models of the



S.I. Biagiola et al. / Computers and Chemical Engineering 28 (2004) 1799–1808 1801

following form:

Y(s) = G(s)U(s)+Gd(s)D(s) (1)

whereU is the vector of manipulated inputs,D is the vector
of disturbances, andY is the vector of outputs (i.e. controlled
variables). The objective is to keep the errorE = Y − R

small, whereR is the vector of reference signals (or set-
points).G andGd are transfer matrices that do not need to
be square. Provided these considerations are held, the effect
of the disturbances on the open-loop system (i.e.,U = 0)
can be stated as

Yol(s) = Gd(s)D(s) (2)

Taking into account the underlying idea of using the mea-
sures for process design, it is desirable to find measures
independent of the control scheme selected. Then, for most
controllability measures, it is usual to consider a perfect
control condition as follows:

Ucl(s) = −G(s)−1Gd(s)D(s) (3)

By considering expressions(1)–(3), some measures based
on the Euclidean norm can be developed(Skogestad &
Wolff, 1992). These analyses can be performed on steady
state or as function of frequency(Hovd & Skogestad, 1992).
However, these measures do not concern about many impor-
tant considerations on process design, such as nonlinearities
or operative constraints. In order to include these issues
into the analysis, in this work we consider those processes
described by the following general nonlinear time-domain
representation:

ẋ = f(x, u, d) (4)

y = h(x, u, d) (5)

subject to a set of inequality constraints:

zc = z(x, u, d) = 0 (6)

The disturbancesd are assumed to belong to a setW , i.e.d ∈
W . For instance,W can be defined as the set of all amplitude
bounded step functions. On the other hand, the inputsu are
assumed to belong to a setU, i.e. u ∈ U. Without loss of
generality, let us assume that the steady-state solution of this
system is given for(x, u, d) = (0,0,0).

Based on the back-off concept (Figueroa, Bahri, Bandoni,
& Romagnoli, 1996; Perkins & Walsh, 1994), we define the
following measures.

Open-loop steady-state worst disturbance: It is the distur-
bance that produces the largest amplitude deviation from the
desired output setpoint at steady state (ẋ = 0) and open-loop
condition (u = 0). In order to measure that amplitude, the
Euclidean norm is considered. Mathematically,

z0 = maxd∈W ‖y‖
s.t.
f(x, u, d) = 0
y − h(x, u, d) = 0
u = 0

(7)

Note that the objective function value is a measure of the
steady-state process performance that can be attained, and
the problem solution is obtained for the worst disturbance
direction.

Open-loop dynamic worst disturbance: It is defined as the
disturbance which gives rise to the largest output amplitude.
To determine this measure, the open-loop time output is
considered (i.e.u = 0). Mathematically,

z0 = maxd∈W maxt∈[0,∞) ‖y‖
s.t.
ẋ − f(x, u, d) = 0
y − h(x, u, d) = 0
u = 0

(8)

It must be remarked that in this case the optimization prob-
lem is also solved in the time-domain. The worst disturbance
must be found, and it is the one that produces the largest
output deviation for the whole time response.

Another important measure is related to the magnitude of
the necessary control action to reject disturbances. This is an
important measure in the case of process inputs saturation.

Steady-state control action amplitude: It is the magnitude
of the control action that rejects the worst disturbance at
steady-state. Mathematically,

z0 = maxd minu ‖u‖
s.t.
f(x, u, d) = 0
h(x, u, d) = 0

(9)

Note that the worst disturbance is now calculated following
the criterion of the largest control action required to reject it.
Sometimes, in this particular problem, it is very important
to include the presence of constraints. To cope for this need,
a modified version of problem(9) is stated as follows:

z0 = maxd minu ‖u‖
s.t.
f(x, u, d) = 0
h(x, u, d) = 0
zc(x, u, d) ≤ 0

(10)

The solution to this problem is the answer to question (ii) for
nonlinear systems described byEqs. (4) and (5)in Section 1.
A remarkable feature of the optimization problems treated
in this section, is the typical existence of local minima. This
fact can be overcome by introducing multiple starting points
in the solution of the nonlinear programming software. In
Section 4, this measure will be used to compare different
schemes for reactor temperature control. In a similar mode,
the problems in items (i) and (iii) can be mathematically
formulated as follows.

Closed-loop dynamic minimum output error:

z0 = maxd minu maxt ‖y‖
s.t.
ẋ − f(x, u, d) = 0
h(x, u, d) = 0
zc(x, u, d) ≤ 0

(11)
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Closed-loop dynamic worst disturbance:

z0 = maxd,u ‖d‖
s.t.
ẋ − f(x, u, d) = 0
h(x, u, d) = 0
zc(x, u, d) ≤ 0

(12)

In the next section, the achievable performance for a partic-
ular process configuration will be studied.

3. Achievable performance

The operating point of a chemical process is usually de-
signed to maximize (or minimize) an objective function (e.g.
the profit, subject to constraints like the ones inferred from
the characteristics of the plant, operating conditions, product
specifications and others). This objective can be formulated
as follows:

z0 = maxus z0(x, us)

s.t.
f(x, us, uc, d

N) = 0
y − h(x, us, uc, d

N) = 0
zc(x, us, uc, d

N) ≤ 0

(13)

where z0(x, us) is a performance index (typically with
economic meaning), computed at steady-state free of dis-
turbances. The vectoru of control variables is divided into
two vectorsuc andus, that represent the vector of manipu-
lated variables and the vector of free variables, respectively.
These latter variables are used to determine the optimal
operating point of the process. In this expression,dN stands
for the nominal set of disturbances (perturbation-free con-
dition). The constraintszc define the feasible set for the
possible operating points. In a second stage, a controller is
designed to regulate the behavior of the plant around the
desired steady-state value. The underlying idea is that the
controller provides perfect control, so that the plant remains
at, or at least close to, its nominal operating point against
disturbances, parameter variations and uncertainties on the
plant dynamics.

The effect of the disturbances at such regulation level will
perturb the process causing the operating point movement
away from the previously designed one. Thus, this point will
be surrounded by a region within which the plant will actu-
ally operate. Under these perturbed conditions, the plant op-
eration may become infeasible (in steady-state and/or along
transient). This has led different authors(Bandoni et al.,
1994; Figueroa et al., 1996; Perkins & Walsh, 1994)to in-
clude operative conditions (such as the possible presence of
disturbances) at the stage of the operating point design. The
mathematical formulation can be stated as follows:

maxus z0(x, us)

s.t.
ẋ − f(x, us, uc, d) = 0
zc(x, us, uc, d) ≤ 0
d ∈ W

(14)

The main idea of this strategy is to move the operating point
away from the boundary of the feasibility region to com-
pensate for the effect the expected disturbances could have
on the plant operation. This is called back-off. Through this
procedure we ensure that the process will operate at its opti-
mum, with no constraint violations. In practice, the back-off
problem is usually solved by finding an operative point that
guarantees the plant operation for the worst disturbances,
i.e. those disturbances that provoke the largest constraint
violation. It was originally calculated from the desire for
evaluating and comparing control strategies on the basis
of economical criteria(Figueroa et al., 1996; Narraway &
Perkins, 1994).

In this paper, we propose a modification of this problem
to compute the best achievable performance for the process
structure independently of the particular controller selec-
tion. Taking into account that a discrete-time controller
will be used to regulate the continuous-time process, we
will consider that the manipulated variables can be dis-
cretized as the sequenceUc = [uc(0), uc(1), . . . , uc(M)],
sinceuc(t) = uc(k) for Tsk ≤ t < Ts(k + 1). Notice that
k = 0, . . . ,M, whereM is the so-called control horizon
andTs is the sampling time. Therefore, the problem can be
formulated as follows.

Achievable performance: It is the maximum value for the
performance indexz0 attainable for the considered process
structure. The index is calculated in order to guarantee that
no constraints violation takes place, despite of the distur-
bance situation (i.e. for alld ∈ W). Mathematically,

maxus,uc(0),uc(1),... ,uc(M) z0(x, us)

s.t.
ẋ − f(x, us, uc, d) = 0
zc(x, us, uc, d) ≤ 0
d ∈ W

(15)

To solve this nonlinear optimization problem, it is possible
to use the algorithm for the dynamic back-off computation
(Figueroa et al., 1996). This is a two step algorithm. In an
inner loop, a worst disturbance is computed for a given set
of optimization parameters (us, uc(0), . . . , uc(M)). Then,
the problem stated in(15) is solved in an outer loop for a
discrete set of worst perturbations. The iterative procedure
is executed while no worst disturbance in the inner loop
produces constraints violation(Figueroa et al., 1996).

Some remarks should be pointed out:

• The same as in the previous section, in the optimization
procedure it is typical the presence of local minima. In
this sense, trying multiple starting points can be useful in
the solution of the nonlinear programming software.

• The dynamic optimization implicit in this problem has to
be performed for a given horizon (i.e., the simulation is
performed whilet < P). This horizon should be large
enough to make sure the complete transient of the process
is considered.
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• As in Model Predictive Control schemes, the manipulated
variables are assumed constant beyond the control horizon
(i.e. uc(t) = uc(M) if t ≥ TsM).

• To force the process to return to the desired steady-state
(i.e. complete disturbance rejection), the measured vari-
ables can be constrained to be equal to their steady-state
values at the end of the simulation horizon (i.e.|y(P) −
y(0)| ≤ ε for any small enoughε ≥ 0).

• It could be possible that no solution is found for the set
of possible disturbances. This would involve that there is
not feasible operation for the analyzed process.

In the following section, the use of the above nonlinear
measures is illustrated by means of two simulation examples.
In Section 4.1, the application of the Steady-State Control
Action Amplitude is used for evaluating different control
arrays. Afterwards, inSection 4.2, the problem formulated
in Eq. (15)is solved to perform the operability analysis of
a steam generation unit.

4. Simulation results

4.1. Reactor temperature control

In this section, an illustrative case study is dealt with.
It consists of two jacketed, cooled, continuous stirred tank
reactors (CSTR) in series, with an intermediate mixer in-
troducing a second feed(de Hennin & Perkins, 1993). The
whole process is sketched inFig. 1. The following single,
irreversible, exothermic, first-order reaction takes place in
both reactors:

A → B

The energy and composition balances inside the reactors
brings up the following differential equations:

V 1 dC1

dt
= −k0e−(E/RT1)C1V 1 +Q1

F(C
1
F − C1) (16)

V 1 dT 1

dt
= Dhk0e−(E/RT1)C1V 1 +Q1

F(T
1
F − T 1)+ Cool1

(17)

V 2 dC2

dt
= −k0e−(E/RT2)C2V 2 +Q1

F(C
2
F − C2) (18)

Fig. 1. Flowsheet example.

Table 1
Parameters of the CSTRs with intermediate mixer

Parameter Value

Q1
F (m3/s) 0.2062

Q2(m3/s) 0.3552
V 1 (m3) 5.0
V 2 (m3) 5.0
cp (J/(kg K)) 1.0
E/R (K) 6000
Ua (W/K) 0.35
Dh (K m3/mol) 5.0
k0 (s−1) 2.7 × 108

V 2 dT 2

dt
= Dhk0e−(E/RT2)C2V 2 +Q2

F(T
2
F − T 2)+ Cool2

(19)

To model the mixer, the dynamics is neglected. Therefore,
the balances around the mixer can be written as follows:

C2
F = Q1

FC
1 +Q2C2

Q2
F

(20)

T 2
F = Q1

FT
1 +Q2T2

Q2
F

(21)

Q2
F = Q1

F +Q2 (22)

The process model parameters are shown inTable 1. A de-
tailed list is in the “Nomenclature”. The temperatures and
compositions of both feed streams are considered to be dis-
turbances, and the bounds for these variables are shown in
Table 2. The controlled variables are the temperatures inside
the reactors (i.e.T 1 andT 2). The temperature control is per-
formed by means of a coolant medium that flows through a
jacket around the reactor. In this process, there exist many
different alternatives as regards the manipulated variables
selection. Traditionally, the coolant flow rate or the coolant
temperature are used as control variable. The first alterna-
tive is easy to implement and it involves a minimal cost of
equipment. However, it presents an operability problem due
to the large nonlinearity relationship between the coolant
flow rate and the removed heat. To overcome this problem,
the coolant temperature can be chosen as the manipulated
variable because of the linear relationship between it and
the removed heat. Nevertheless, in this case, the equipment
cost increases significantly due to the additional heat ex-
changer requirement. A third alternative has been presented
by Richalet (1999). It involves the use of a combination

Table 2
Disturbances bounds

Disturbance Lower Nominal Upper

C1
F (mol/m3) 19.5 20 22

C2 (mol/m3) 19.5 20 22
T 1

F (K) 295 300 320
T2 (K) 295 300 320
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Fig. 2. Flowrate control.

of the flowrate and the coolant temperature as manipulated
variable.

4.1.1. Case 1: coolant flowrate control
In this case, let us consider that the internal reactor tem-

perature is controlled by manipulating the coolant flowrate
(Qj

cw). The scheme is shown inFig. 2. In this case, the
amount of heat transferred between reactor and coolant
is

Coolj = UaQ
j
cwcp

Ua +Q
j
cwcp

(T
j

ci − T j) (23)

for j = 1,2 and where theT j

ci are constant. Note the strong
nonlinearity between the transferred heat and the control
variable.

4.1.2. Case 2: coolant temperature control
In this case, let us consider that the internal reactor tem-

perature is controlled using the coolant temperature (T
j

ci) as
manipulated variable. The scheme is shown inFig. 3. In this
case, the mathematical expression between the amount of
heat transferred and the control variable is as inEq. (23).
But now, T j

ci is the control variable and theQj
cw are con-

stant. Note that in this form, we obtain a linear relationship
between manipulated and controlled variables, but an addi-
tional equipment must be included in the process.

4.1.3. Case 3: strategy for flowrate and coolant
temperature control

In this case, let us consider that the internal reactor tem-
perature is controlled using the joint action of coolant tem-
perature (T j

ci) and coolant flowrate (Qj
cw). The controlled

process scheme is shown inFig. 4.

Fig. 3. Temperature control.

Fig. 4. Flowrate and temperature control.

Fig. 5. Control for flowrate and temperature of coolant (without ex-
changer).

4.1.4. Case 4: flowrate and coolant temperature control
(without heat exchanger)

In this case, as in the previous one, let us consider that the
internal reactor temperature is controlled using the joint ac-
tion of coolant temperature (T j

ci) and coolant flowrate (Qj
cw).

The difference with Case 3 is that, to reduce implementa-
tion costs, the heat exchanger was excluded and a coolant
recycle was added as is shown inFig. 5. In this case, the
manipulated variables are the total coolant flowrate (Q

j
cw)

and the flowrate of recycle stream (Q
j

hw). The expression
for the amount of heat transferred in this scheme is

Coolj = Uacp(Q
j
cw −Q

j

hw)

Ua + (Q
j
cw −Q

j

hw)cp
(T j − T

j

ci) (24)

Hence, a highly nonlinear expression is obtained.
The nominal values for the variables involved in the con-

trol schemes are shown inTable 3. Based on the Steady-State
Control Action Amplitude described inSection 2, we pro-
pose a comparison between the different control schemes.
For this purpose,Eq. (10)was considered and the results are
shown inTable 4. In this case, the norm of the manipulated
variable was normalized to its nominal value. From these
results is obvious that the strategy which requires lower con-
trol efforts is the Scheme 2. It is obvious the greater avail-
ability of resources is always beneficial for the disturbance

Table 3
Values of the variables involved in the control schemes

Variables Schemes 1–3 Scheme 4

Q1
cw (m3/s) 0.35 0.5

Q2
cw (m3/s) 0.80 0.9

T 1
ci (K) 150 150
T 2

ci (K) 150 150
Q1

hw (m3/s) – 0.15
Q2

hw (m3/s) – 0.10
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Table 4
Results for example 1

Variables Scheme 1 Scheme 2 Scheme 3 Scheme 4

C1
F (mol/m3) 22.00 22.00 19.50 21.4646

T 1
F (K) 320.0 315.127 320.0 320.0
C2 (mol/m3) 19.59 22.00 19.50 19.50
T2 (K) 300.45 320.00 295.0 295.0
Q1

cw (m3/s) 0.7529 – 1.20 1.20
Q2

cw (m3/s) 0.7993 – 0.3127 1.20
T 1

ci (K) – 100.000 185.047 –
T 2

ci (K) – 129.631 100.0 –
Q1

hw (m3/s) – – – 0.50
Q2

hw (m3/s) – – – 0.496

Index −1.325 −0.1296 −7.137 −23.196

rejection. However, this scheme involves larger cost of im-
plementation than the others. In particular, an interesting
point is that Scheme 4 presents a higher control effort than
Scheme 1. It is important to remark that this is because the
nominal value for the recycle flow rate is small. Then, when
the manipulated control action is normalized, the division
produces large values. The normalized changes show how
much the system must be overdesigned to compensate for
the effects of disturbances.

An efficient algorithm has been generated to solve the
problems stated in Cases 1–4 using MATLAB 5.3 optimiza-
tion Toolbox. A solver to deal with the algebraic equations
was embedded in the optimization program used to carry out
the simulations. This was performed on a 550 MHz Pentium
III processor. As discussed at the end ofSection 3, many
starting points can be tested to avoid reaching local minima.
For this purpose, 16 points were randomly generated and
used to start the optimization. In order to quantify the com-
putational time required to find the solution, an average of
20 s were needed to solve Case 1.

Fig. 6. Pressure inside the boiler for a critical disturbance.

Table 5
Optimization variables and disturbances for the steam generating unit

Variables/parameters Lower bound Nominal Upper bound

F (kg/s) 30.0 – 50.0
wc (kg/s) 150.0 – 240.0
Te/1000 (K) 0.28 0.29 0.32
cv 0.7 0.8 0.9
α1 0.9 1.0 1.05
α2 0.9 1.0 1.05

Table 6
Critical disturbances values for the steam generating unit

Disturbance Critical 1 Critical 2 Critical 3 Critical 4 Critical 5

Te/1000 (K) 0.29 0.32 0.32 0.28 0.32
cv 0.76 0.9 0.7 0.8477 0.84
α1 1.05 0.97 1.05 1.05 0.9
α2 0.93 1.0 0.9 1.05 0.98

4.2. Steam generation unit

In this example, the algorithm proposed inSection 3will
be used to perform the operativity analysis of a Steam Gen-
eration Unit in the presence of parameters uncertainty. The
motivation for this analysis is the large operating cost in-
volved in the operation of these units and their need to satisfy
specific energy demands. The process studied in this paper
consists of a 200 MW drum type boiler. The model for this
unit has been developed byRay and Majumder (1983):

dP

dt
= −0.00193α1SP1/8 + 0.014524F − 0.000736wc

+ 0.00121L+ 0.000176Te (25)

dS

dt
= 10cvP

1/2 − 0.785716α2S (26)
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Fig. 7. Level inside the boiler for a critical disturbance.

Fig. 8. Fuel flowrate to the boiler for a critical disturbance.

dL

dt
= 0.00863wc + 0.002F + 0.463cv − 6 × 10−6P2

− 0.00914L− 8.2 × 10−5L2 − 0.007328S (27)

The states of the boiler’s model are the drum pressure (P),
the steam flow to the H.P. turbine (S) and the drum level (L).
The statesP andL are the controlled variables. It has two
optimization variables (they are also manipulated variables):
the fuel input (F ) and the feed water input (wc), and two
disturbances: the feed water temperature (Te) and the control
valve setting (cv). The uncertain parameters included in this
model areα1 andα2. The bounds for these variables and

uncertain parameters are described inTable 5. The process
constraints are 120≤ P ≤ 190,S ≥ 90 and 40≤ L ≤ 80,
and the objective function isz0 = 0.6S + 0.5P − 0.8F −
0.1wc. The sample time isTs = 100 s, the control horizon is
M = 10 and the simulation horizon is 40Ts. The following
restrictions were included to guarantee that both the pressure
and the level return to their steady-state values:|P(40Ts)−
P(0)| ≤ 10−3 and|L(40Ts)−L(0)| ≤ 10−3. As described in
the previous cases, the optimization Toolbox running under
MATLAB 5.3 was used to accomplish the simulation on the
same hardware. The solution of the dynamic system was
performed using a differential equations solver embedded in
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Fig. 9. Water flowrate to the boiler for a critical disturbance.

the optimization program. The average computational time
consumed for solving the external loop was 1 h.

It should be noted that the developed performance cri-
teria is controller-independent. The values of the indepen-
dent process variables are calculated by the optimization
of a previously defined objective function. In this way,
the optimal values for the manipulated variables are ob-
tained without making any assumption about the controller
structure. Therefore, a multivariable control action is nec-
essary to achieve the desired performance objective in this
example.

The critical disturbances and uncertain parameters ob-
tained in the solution of the problem are described inTable 6.
The optimal back-off point is determined for a set of free
variables. The optimum is achieved withF = 35.1772 kg/s
and wc = 150.00 kg/s which gives an objective function
value of z0 = $110.934. The time responses achieved for
the controlled variablesP andL are shown inFigs. 6 and 7.
It can be noted that both controlled variables return to their
stationary steady states in spite of the presence of distur-
bances. The disturbances are perfectly rejected and no con-
straints violation is committed. The necessary movements
for the manipulated variablesF andwc along the control
horizon are shown inFigs. 8 and 9.

5. Conclusions

In this work, several measures for quantifying the pro-
cess controllability have been introduced. They can be used
as effective criteria for the purpose of assessing the perfor-
mance of both an open-loop plant or a controlled one. The
proposed indices are useful for measuring the ability of a
certain design to operate in the presence of disturbances.

Additionally, they can be used as a tool to achieve the com-
parison between different process design alternatives.

It must be remarked that the proposed controllability mea-
sures were defined, and are valid, for a general type of non-
linear processes. In this way, it is possible to consider a wide
spectrum of processes that include some typical character-
istics such as inputs saturation or complex relations.
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