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Abstract

State estimation has become an important area of research in the field of process engineering. This is because there are many applications
that demand the knowledge of many of the state variables, if not all of them. Among others, the implementation of nonlinear control methods
as well as monitoring some relevant process variables can be mentioned. The purpose of this paper is to introduce a nonlinear high gain
observer in order to estimate the whole process state variables. Whenever some construction conditions hold, it is possible to obtain estimates
that converge asymptotically to the actual values. Moreover, this estimator has robust performance in the presence of model uncertainty
and measurement noise. A quantitative analysis is developed to measure the observer robustness. Though the estimated states can be used
for many purposes, in this work we aim at using the estimates for output regulation. For this goal, a nonlinear controller based on exact
linearization is designed. As a particular application, we consider the open-loop unstable jacketed exothermic chemical reactor. This CSTR
is widely recognized as a difficult problem for the purpose of control. In order to achieve the control goal, a simple algorithm lying on exact
linearization principle is considered. Finally, computer simulations are developed for showing the performance of the proposed nonlinear
observer (NO). The performance of the observer when used for control purpose was also evaluated.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With the purpose of process monitoring, control and op-
timization, the knowledge of some physical state variables
of the process is demanded. For instance, there exist many
process control strategies, in which the information about
the internal state of the process is necessary to calculate
the control input. Consequently, the presence of unknown
state variables becomes a difficulty which can be over-
come with the inclusion of an appropriate state estimator
(Gattu & Zafiriou, 1992; Nagrath, Prasad, & Bequette,
2002).

Therefore, the development of suitable algorithms to
perform the estimation has captured the attention of many
researchers. In this sense, several techniques have been in-
troduced to estimate state variables from the available mea-
surements, usually related to meaningful physico-chemical
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variables. There exist many possible kinds of estimators
to be used depending on the mathematical structure of the
process model and the information available (Gauthier,
Hammouri, & Othman, 1992; Soroush, 1997).

In spite of the fact that theories and applications for lin-
ear systems are well developed, the highly nonlinear nature
of many chemical processes has given rise to nonlinear ob-
servers (NO). These observers are designed in such a way
that they can cope with the intrinsic nonlinearities of the
process dynamics. However, the construction of NO still
provides an open research field because the advance in the
area of NO often faces many typical obstacles such as very
restrictive conditions to be satisfied, uncertainty in the per-
formance and robustness and/or unsatisfactory estimates in
the presence of noisy measurements.

A detailed discussion on the current available state esti-
mation techniques applicable to a broad class of nonlinear
systems, is provided byMouyon (1997). Another compre-
hensive evaluation of various NO was presented byWang,
Peng, and Huang (1997). In a recent paper,Dochain
(2003) gives an overview of some state and parameters
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Nomenclature

q reactor feed flow rate
V reactor volume
x1f dimensionless reactor feed concentration
x2f dimensionless reactor feed temperature
x3f dimensionless cooling-jacket feed temperature

Greek letters
β dimensionless heat of reaction
δ dimensionless heat-transfer coefficient
δ1 reactor to cooling-jacket volume ratio
δ2 reactor to cooling-jacket density heat capacity

ratio
φ nominal Damköhler number based on the

reaction feed
γ dimensionless activation energy
κ dimensionless Arrhenius reaction rate

nonlinearity
τ dimensionless time

estimation approaches available for chemical and biochem-
ical processes.

With respect to the nonlinear estimation techniques per-
formed up to now, the extended Kalman filter (EKF) is one
of the most (if not the most) widely diffused observer among
other nonlinear observers based on linearization techniques
(Stephanopoulos & San, 1984; Tadayyon & Rohani, 2001).
The main drawback of these techniques consists in the dif-
ficulties to determine a priori its convergence and speed of
convergence. In EKF approach, a Riccati equation must be
solved to obtain the estimator gain. This approach assumes
the knowledge of the noise model in order to obtain the op-
timum estimated value. However, that model is frequently
unknown and it must be assumed. Hence, wrong noise as-
sumptions could lead to biased estimates or even diverge
(Ljung, 1979).

A method based on extended linearization has also been
developed to carry out state estimation (Baumann & Rugh,
1986). The procedure is based on linearizing with respect
to a fixed operating point, and involves finding a function
of the output in order to keep the system poles invariant
in the vicinity of the mentioned point. Hence, the design
procedure is subject to very tight conditions, and even when
the output function is found (which is not an easy task) only
local performance is ensured.

Another estimation approach includes the sliding ob-
servers (Canudas de Wit & Slotine, 1991; Slotine, Hedrick,
& Misawa, 1987; Wang et al., 1997). The design procedure
consists in determining a switching gain. One restrictive as-
pect is that the outputs must lie on specified sliding surfaces
to achieve the estimation.

Taking into account the characteristics of the observers
above discussed, the objective of this work is to present a

nonlinear efficient state estimator for later multi-purpose ap-
plications. From the construction perspective, the observer
herein proposed can be considered as a Luenberger-like ob-
server(Kailath, 1980). Many observers of this type has been
dealt with in the literature, specially concerning electrical,
mechanical or robotics applications. For instance, trajectory
tracking using nonlinear reduced-order observers was ap-
plied to a robot arm and to a neural network (García &
D’Attellis, 1995). In the field of chemical processes, the
work by Gauthier et al. (1992)is considered a relevant con-
tribution in the field of high-gain observers. They proposed
a design method that involves finding a symmetric posi-
tive definite matrix which is the stationary solution of a set
of differential equations.Kazantzis, Kravaris, and Wright
(2000)used a nonlinear observer for monitoring autonomous
processes. The design methodology involved the solution
of partial differential equations. An important feature is
that no robustness evaluation of the estimators was accom-
plished in those works. In a recent contribution,Aguilar,
Martínez-Guerra, and Poznyak (2002)introduced a modi-
fied Luenberger-like observer specifically dedicated to the
estimation of reaction heat in continuous chemical reactors.
The estimator design does not include the whole process dy-
namics, hence a large gain is required so that the estimation
error reaches the vicinity of zero.

The approach herein proposed guarantees the estimation
error converges towards zero whenever the observer gain is
adequately chosen. The estimation procedure is oriented to
those nonlinear control methods that require the knowledge
of the internal state of the process. The observer implemen-
tation is simple and it requires small computational effort.
Another advantageous feature of this NO is that it shows
robust performance in the presence of noisy measurements
and model uncertainty. A bound for the estimation error is
deduced as a measure for quantifying the observer robust-
ness. Additionally, the proposed observer is compared with
two other widely diffused techniques: the EKF and a sliding
nonlinear observer.

In particular, the state estimation methodology is here fo-
cused to the control of a jacketed CSTR. This kind of reac-
tors are highly nonlinear, and are known to be an interest-
ing challenge to be overcome by any new estimation and/or
control technique.

It must be highlighted that this type of reactors present
interesting operational problems due to complex open-loop
behavior such as input and output multiplicities, igni-
tion/extinction behavior, parameter sensitivity and even
nonlinear oscillations (Russo & Bequette, 1995, refer-
ences therein). These characteristics explain the need for
and the difficulty of feedback control system design. Ad-
ditionally, it is often desirable to operate CSTRs under
open-loop unstable conditions. This is because the reac-
tion rate may yield good productivity while the reactor
temperature is still low enough to prevent side reactions
or catalyst degradation. Therefore, if any state feedback
strategy is applied for controlling the CSTR, it will demand
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an accurate determination of the internal state of the
process.

In this work, an exact linearization based controller is
used for the nonlinear CSTR regulation. This design tech-
nique has been extensively treated in the literature. There are
many works dealing with the exact linearization technique
to control nonlinear processes.Kravaris and Chung (1987),
treated the globally linearizing control approach using con-
cepts from differential geometry.Henson and Seborg (1990),
presented two different approaches for input/output (I/O)
linearization of general nonlinear processes. However, these
works, as well as many others dealing with this approach
(Daoutidis & Kravaris, 1989), considered that the internal
state of the process is known, and available to be used in
the I/O strategy.Pröll and Karim (1994)applied both exact
linearization and I/O linearization to the control of a biore-
actor. They discussed the issue of invertability and tested the
approach performance for parameters uncertainties. How-
ever, they remained two issues opened for further study:
state estimation and the influence of dynamics uncertain-
ties.Viel, Busvelle, and Gauthier (1995)used I/O lineariza-
tion for stabilizing polymerization reactors. They combined
the control technique with a nonlinear Kalman-like state
observer.

The work is organized as follows. InSection 2, a
Luenberger-like nonlinear observer (LNO) is proposed and
two other known observers are described. InSection 3, the
controller synthesis is dealt with. The comparison between
the observers performance is presented via simulation in
Section 4, as well as the proposed observer/controller be-
havior. Finally, inSection 5, the conclusions are presented.

2. Nonlinear full-order observer designs

The objective of this section is to introduce an observer for
estimating the whole state vector. To attend to the jacketed
CSTR process, in which the reaction is typically followed up
by temperature measurements and the control action usually
consists in following a desired temperature profile, the fol-
lowing nonlinear single input/single output (SISO) general
model is proposed for the process:

ẋ = f(x) + g(x)u (1)

y = h(x) (2)

where the vectorx (x ∈ Rn) stands for the state variables
and the inputu (u ∈ R) represents the manipulated variable
to accomplish the temperature control. The measured output
is represented by vectory (y ∈ R).

In order to perform the estimation, a Luenberger-like
observer is developed and proposed for nonlinear state
estimation. Its stability and robustness properties are pre-
sented. Then, for comparison purpose, two different known
observers are briefly described: the EKF and a sliding
observer.

2.1. Luenberger-like nonlinear observer (LNO)

To perform the state estimation of the process given by
Eqs. (1) and (2), the following LNO is developed:

˙̂x = f(x̂) + g(x̂)u +O−1(x̂)KLNO(y − h(x̂)) (3)

The system inEq. (3) is a nonlinear observer for the state
vector x. Note that the error, calculated as the difference
between the measured outputy and its evaluation on the
estimated statesh(x̂), is used to improve the estimation and
works as a correction factor. The productO−1(x̂)KLNO is
the nonlinear gain of the observer, whereKLNO is a matrix
of constants to be designed andO is the Jacobian of the
vectorΦ(x). This vectorΦ(x) is defined as

Φ(x) =




h(x)

Lfh(x)

...

Ln−1
f h(x)


 (4)

whereLfh(x) represents the Lie derivative ofh(x) in the di-
rection off(x) (Isidori, 1995). Hence, the following equal-
ities behave:

Lfh(x) = ∂h(x)

∂x
f(x) (5)

L
j

f h(x) = ∂L
j−1
f h(x)

∂x
f(x) (6)

The vectorΦ constitutes a nonlinear change of coordinates.
The objective is to transform the original process represen-
tation to obtain a tranformed one in order to make easier
the observer design. The transformed model of the process
contains known parametersA andC (seeAppendix A) that
are inserted into the following Lyapunov equation to design
the observer gainKLNO:

(A − KLNOC)TP + P(A − KLNOC) = −Q (7)

whereP andQ are positive definite matrix that must sat-
isfy Eq. (7). Additionally, the following constraint must be
satisfied:

−qm + 2pM(Lγ + LωU) < 0 (8)

with pM andqm the maximum and minimum eigenvalues of
P andQ, respectively.Lγ andLω are Lipschitz constants of
the process (seeAppendix A). Hence, the dynamics of the
estimation errorex, defined asex = x − x̂, will be stable.
Provided thatO is invertible, thatU is a bound for the input
u and given the initial condition̂x(0), the following property
behaves for anyα > 0:

‖ex(t)‖ ≤ δe−αt‖ex(0)‖ (9)

with δ > 0. Consequently, the norm of the estimation er-
ror goes to zero ast → ∞. Then, the convergence of the
algorithm is guaranteed.
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A detailed demonstration based on Lyapunov arguments
is presented inAppendix Awhere the observer convergence
and its relationship with the gain selection are dealt with.
In addition, inAppendix A we present an extension of the
proposed LNO for single input/multiple output (SIMO) non-
linear systems represented by the more general model:ẋ =
f(x) + g(x, u), y = h(x).

Provided certain stability hypotheses are held, the ob-
server brings an on-line estimation of the whole process
state. It can be easily implemented and it only uses the in-
formation brought by the output measurements. Moreover,
the observer is built using the whole process model, and this
nonlinear procedure avoids loosing information about the
dynamics as well as simplifications, order reduction, or the
frequently used linearization methods.

To evaluate the robustness properties of the LNO, a ded-
icated study is performed. As regards state and parameter
estimation in chemical and biochemical processes,Dochain
(2003)introduces a weak point related to the theory of the
EKO and the nonlinear observers. These observers are com-
monly used assuming perfect knowledge of the process and
that it is difficult to develop error bounds in the presence of
large uncertainty in the parameters. To tackle this point, a
quantitative analysis for the proposed LNO is herein devel-
oped.

Let us consider the model of the process dynamics con-
tains a certain degree of uncertainty, such that it can be writ-
ten as follows:

ẋ = f(x) + %f (x) + [g(x) + %g(x)]u
y = h(x)

(10)

where%f (x) and%g(x) stand for the unknown dynamics.
It can be demonstrated that if the LNO is built using only

the known model dynamics, and provided some conditions
hold, then the following time function is a bound for the
estimation error (seeAppendix A):

‖ex‖ ≤ C1 eθt‖ex(0)‖ + C2

θ
(eθt − 1) (11)

whereC1 andC2 are positive constants andθ is a negative
constant derived from the observer gain design. Hence, a
bound for the estimation errorex has been deduced for pro-
cesses with dynamics uncertainty. This bound implies that
the norm of the estimation error decays with time as fast
as the valueθ allows it. From the theoretically perspective,
the stationary error can be zero ifθ tends to∞. However,
taking into account practical aspects (as shown later), this
design parameter must take a limited value.

Now, another robustness analysis is considered. We study
the case where the available measured outputs to perform
the estimation differ from the real outputs. Assume that a
LNO is designed for the process given byEqs. (1) and (2)
and that the following measured outputs (ym) are used to
accomplish the estimation:

ym = y + %h (12)

Therefore, there is a mismatch between the real output vector
y and the measured one (ym). Then, to construct the observer,
the following correction term is proposed:

O−1(x̂)KLNO
(
ym − ŷ

)
(13)

After some calculations, it can be shown that the follow-
ing expression is a bound for the estimation error (see
Appendix A):

‖ex‖ ≤ C1 eθt‖ex(0)‖ + C3‖KLNO %h‖
θ

(eθt − 1) (14)

with C1 and C3 constants.Eq. (14) implies that there is
a trade-off between the speed of convergence and the ulti-
mate bound. To increaseθ in order to augment the speed of
convergence involves an increment of‖KLNO %h‖. The re-
sults inEqs. (11)–(14)explain some observations based on
simulations reported in many works(Gauthier et al., 1992;
Kazantzis et al., 2000). These observations connect the ob-
server gain value and the remaining estimation error when
there exists dynamics uncertainty as well as the deteriorat-
ing performance with the observer gain increment in the
presence of noisy outputs.

2.2. Extended Kalman filter (EKF)

The EKF has been widely used to deal with processes that
include high nonlinearities. The derivation of this approach
can be found inJazwinski (1970).

Given the process model(1) and (2)and the initial val-
uesx̂(0|0), P(0|0), Q andR, where the symbol (∧) stands
for the estimated variables, then the predicted statex̂ and
weighting matrixP are computed at the instantk + 1 by
performing the integration of the following equations:

˙̂x = f(x̂) + g(x̂)u (15)

Ṗ = [fx(x̂) + gx(x̂)u] P + P [fx(x̂) + gx(x̂)u]T + Q (16)

wherek is the number of iterations the algorithm has already
been accomplished;fx andgx are the Jacobian matrices of
f andg on x. This is an improved version of the EKF with
respect to the most diffused approach in which both the pre-
dicted states and the covariance matrix are calculated using
the linearized model (Bastin & Dochain, 1990; Tadayyon &
Rohani, 2001).

It must be noticed that for the Kalman filter as a linear
unbiased minimum variance estimator, the parametersP , R
and Q are the covariance matrices of the estimation, the
white noise sequences in the measurements and the states,
respectively. However, when used in the EKF, they lost their
original meaning and turn out to be only tuning parameters.
However, the speed of estimation convergence is strongly
influenced by the initial value of matrixP . Since this value
is unknown, it must be guessed in order to start the EKF
algorithm.



S.I. Biagiola, J.L. Figueroa / Computers and Chemical Engineering 28 (2004) 1881–1898 1885

In a second step, the filter gain is calculated as follows:

KEKF(k + 1) = P(k + 1|k)hT
x (x̂(k + 1|k))

× [hx P(k + 1|k)hT
x + R]−1 (17)

with hx, the Jacobian matrix ofh on x.
Afterwards, the measurementy(k + 1) is processed:

x̂(k + 1|k + 1) = x̂(k + 1|k) + KEKF(k + 1)

× [y(k + 1) − h(x̂(k + 1|k))] (18)

and then, the new weighting matrix is computed:

P(k + 1|k + 1) = [I − KEKF(k + 1)hx]P(k + 1|k)
× [I − KEKF(k + 1)hT

x ]

+KEKF(k + 1)RKT
EKF(k + 1) (19)

Then, the counterk is incremented in one and the algorithm
is executed again. Further constructive aspects of the EKF
can be found inJazwinski (1970).

In the following, another nonlinear estimation technique
is described. It is based on sliding modes principle.

2.3. Sliding nonlinear observer (SNO)

For the purpose of comparison with the proposed LNO,
a nonlinear sliding observer is considered. This kind of ob-
servers has already been reported in the literature (Canudas
de Wit & Slotine, 1991; Slotine et al., 1987; Walcott & Zak,
1987).

To construct a SNO for the process represented byEqs. (1)
and (2), it is necessary to devise a correction functionΨ so
that (Wang et al., 1997):

˙̂x = f(x̂) + g(x̂) u + Ψ(y − ŷ) (20)

ŷ = h(x̂) (21)

Provided the Jacobian matrix ofh(x) exists and it is of full
rank in any subset ofRn, the representation given byEqs. (1)
and (2)can be transformed to obtain:

ż = f ∗(z, u) (22)

y = Cz (23)

whereC = [Ip 0]. For design purposes, vectorz is parti-
tioned into:

z =
[
zm
zum

]
(24)

wherezm = y. Hence, the observer in the tranformed vari-
ables can be stated as follows:

˙̂z = f ∗(ẑ, u) + KSNO(t)σ (25)

whereKSNO(t) is a time-varying matrix. This gain is the
observer parameter to be designed.Wang et al. (1997)deter-
mineKSNO to keep the dynamics poles ofzum− ẑum invari-
ant at certain constant values in order to achieve a desired

performance. The vectorσ contains the typical switching
elements included in sliding structures:

σ =




sign(y1 − ẑ1)

sign(y2 − ẑ2)

...

sign(yp − ẑp)


 (26)

where

sign(y) =
{

1, y > 0

−1, y < 0
(27)

If the new state variablesz are obtained through the same
nonlinear transform as the one inEq. (4), it can be straight-
forwardly shown that the system(22) and (23)coincides
with the one given by(A.3) and (A.4), which was obtained
to construct the LNO. Therefore, the estimation algorithm
in original coordinates can be written as follows:

˙̂x = f(x̂) + g(x̂)u +O−1(x̂)KSNO(t)sign(y − h(x̂)) (28)

where the correction termΨ(y − ŷ) in (20) satisfies:

Ψ(y − ŷ) = O−1(x̂)KSNO(t)σ (29)

Once the internal state of the system can be observed,
an appropriate control technique based on state knowledge
can be performed to achieve a desired trajectory for the
temperature inside the reactor. Therefore, we now turn to
devise the control strategy.

3. Controller design

Although in many applications in the field of nonlinear
processes the control problem is solved via Taylor lineariza-
tion techniques, it is possible to achieve an improved control
performance from an exploitation of the nonlinear model
structure using nonlinear control design.

The objective is to control a scalar output variable which
is a measured function of the state variables. Then, the goal
is to track a reference output signal denotedy∗(t).

To design an exact linearization controller involves finding
a nonlinear transformΩ Khalil (1996):

Ω(x) =




l(x)

Lf l(x)

...

Ln−1
f l(x)


 (30)

wherel(x) is a function of the states. Hence, a vectorζ is
defined such that:

ζ =




ζ1

ζ2

...

ζn


 = Ω(x) (31)
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Provided an appropriate transformΩ(x) is chosen, the new
representation inζ coordinates can be written:

ζ̇1 = ζ2

ζ̇2 = ζ3

. . . = . . .

ζ̇n−1 = ζn

ζ̇n = β(ζ) + α(ζ)u

(32)

where

α(ζ) = LgL
n−1
f l(Ω−1(ζ)) (33)

β(ζ) = Ln
f l(Ω

−1(ζ)) (34)

If the nonlinear expressionβ(ζ)+α(ζ) u is denotedv, with
v the new control input, the system given byEq. (32)turns
into a linear controllable form.

It must be pointed out that: ifl(x) verifies relative degree
n with respect to the control inputu andΩ(x) is a diffeo-
morphic transform, hence sufficiency conditions are attained
to guarantee the nonlinear system in original coordinates is
controllable. Note thatl(x) is an appropriate function of the
states which has to be chosen. However, there is no infor-
mation a priori about how this function is. Any selection of
l(x) will be appropriate if it allows obtaining a diffeomor-
phic transformΩ(x). In many low-order systems, the selec-
tion of l(x) can be easily guessed. However, for high-order
systems, this selection is rarely a trivial task. In such cases,
a solver for partial differential equations (PDEs) can be use-
ful to find l(x) (Kazantzis et al., 2000). The theoretical ap-
proach as well as many solved examples on this matter are
dealt with byKhalil (1996).

Whenever the hypothesis are hold, it is possible to find a
control inputv (and then,u) such that the outputy reaches
the desired trajectoryy∗.

The basis of the control action herein proposed is to
find a control lawv which consists of a linear function of
(ζ1, . . . , ζn, y

∗) such that the tracking error(y∗ −y) is gov-
erned by a prespecified stable linear differential equation.
The design parameters are the roots of the Laplace trans-
form of that linear differential equation. Those eigenvalues
(i.e. the roots) must be chosen to achieve a stable closed
loop system.

4. Application to a continuous stirred tank reactor
(CSTR)

The performances of the proposed estimation algorithms
will be compared and illustrated through the application to a
jacketed tank reactor. The constructive features of the reactor
are depicted inFig. 1.

The mathematical model of the CSTR, where an exother-
mic irreversible first-order reaction takes place, has been
constructed using three nonlinear ordinary differential equa-
tions. The material and energy balances based on the as-
sumptions of constant volume inside the reactor, perfect

Fig. 1. Scheme of jacketed CSTR.

mixing and constant physical parameters allow to obtain the
dynamical model. The differential equations can be written
in a dimensionless form as follows(Russo and Bequette,
1995):

dx1

dτ
= q(x1f − x1) − φx1κ(x2) (35)

dx2

dτ
= q(x2f − x2) − δ(x2 − x3) − βφx1κ(x2) (36)

dx3

dτ
= δ1[qc(x3f − x3) + δδ2(x2 − x3)] (37)

with κ:

κ(x2) = ex2/(1+x2/γ) (38)

The state variablesx1, x2 andx3 stand for the dimensionless
reactant concentration, the reactor temperature and the cool-
ing jacket temperature. The symbolqc represents the cooling
jacket flow rate and the other symbols represent constant pa-
rameters whose values are defined inTable 1. These values
were taken fromNagrath et al. (2002). Russo and Bequette
(1995)reported that this set of parameters cause a particular
operation of the reactor given by ignition/extinction behav-
ior. The process dynamics is nonlinear due to the Arrhenius
rate expression which describes the dependence of the reac-
tion rate constant (κ) on the temperature (x2). That is why the
CSTR exhibits an open-loop unstable performance as well as

Table 1
CSTR model parameters

Parameter Value

φ 0.072
β 8.0
δ 0.3
γ 20
q 1.0
δ1 10
δ2 1.0
x1f 1.0
x2f 0.0
x3f −1.0
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operational and control problems. Moreover, it shows mul-
tiplicity behavior with respect to the jacket temperature and
jacket flow rate(Nagrath et al., 2002). The CSTR modeled
by Eqs. (35) and (37)behaves as an open-loop unstable sys-
tem if the temperature inside the reactor is between 1.5 and
3.0. However, from an economical point of view, it is often
desirable to operate the reactor inside this region. Hence, the
selected control strategy must allow to operate the process
in the required point. The control objective is to make the di-
mensionless temperature inside the reactor (x2) follow a de-
sired trajectory. Both temperaturesx2 andx3 are measured.
In this work, we propose a control technique based on exact
linearization as described inSection 3, which demands the
knowledge of the internal state of the process. To cope with
this, an appropriate state observer must be connected with
the controller. Therefore, the observers performance is first
analyzed.

In order to evaluate the observers behavior in the more
realistic situation in which neitherx3f nor q are measured,
the observer structures were slightly modified. Bothx3f and
q can be considered the main disturbances of the process.
Note that in the presence of unmeasured disturbances, all
the observers can be “extended” to perform the disturbances
estimation together with the states estimation. In such a way,
the observers append modeled disturbances as augmented
states to the original system model. Then, the following
observer structure is obtained:
˙̂xext = fext(x̂ext) + g(x̂ext)u + Corr (39)

ŷ = h(x̂ext) (40)
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Fig. 2. Concentration inside the reactor.

with

x̂ext =




x̂

x̂3f

q̂


 (41)

and

fext =




f(x̂ext)

0

0


 (42)

The presence of the two zeros infext involves that the dy-
namics model for the disturbances is assumed negligible.
Note that Corr is the correction term designed according to
each observer, as described inSection 2.

To evaluate and to compare the observers performance,
the system was first simulated assumingx3f andq as constant
parameters (seeTable 1). The process was excited through
a constant input signalqc = 0.5 (the jacket flow rate). This
variable would be later used as the manipulated variable for
control purposes.

The states initial conditions were set to:x1(0) = 0.58,
x2(0) = 2.67, x3(0) = 0.12, x̂1(0) = 0.80, x1(0), x̂2(0) =
x2(0), x̂3(0) = x3(0), x̂3f = −1, q̂ = 1.

The estimation results obtained are depicted inFigs. 2–4.
Although the whole state vector was estimated, only the
unmeasured state (x1) was plotted together with the dis-
turbances actual and estimated values. The three observers
structures presented inSection 2 were used. For that
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Fig. 3. Jacket feed temperature.

purpose, the EKF parameters were set to the following
values:

R =
[

0.001 0

0 0.001

]
, Q =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0.01 0

0 0 0 0 0.01




,

P(0|0) =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




The initial value ofP as well as the values ofR andQ,
are the EKF parameters. In practice, these values can be ob-
tained from previously available plant data. However, when
more accurate parameters are required to achieve optimal
state estimation or if no real data are available, the appropri-
ate values of these parameters are set using a trial and error
approach (Tadayyon and Rohani, 2001). In the CSTR ap-
plication, the previous values were respectively chosen for
R, Q andP(0|0), as they provided better estimation results
than other tested values.

For the Luenberger-like observer, the gainKLNO was set
to

KLNO =




6.5199 0.1829

6.9024 0.2193

0.6253 0.0201

0.1679 0.6551

0.0168 0.0630




to fix the poles of the pair(A,C) to {−0.025,−0.025,
−0.625,−0.250,−6.250} (see Appendix A). The SNO
time-varying gain was calculated in order to obtain
time-invariant poles equal to:{−0.02,−0.02,−0.03,−0.03,
−0.60}.

In order to test the behavior of the proposed LNO in
the presence of model uncertainty, several estimations were
performed. For this purpose, it was considered a mismatch
between the real dimensionless activation energy (γ) and
its value in the model. It is already known that the activa-
tion energy is a difficult parameter to identify. For instance,
Henson and Seborg (1990)considered in their article a mis-
match of 2%. Because this parameter is in the exponential
expression for the reaction rate, the uncertainty is magni-
fied. In this work, a difference up to 25% between the real
parameter and its value in the model was considered.

Fig. 5 shows the observer performance attained in
the presence of parameter mismatch. The error bound
is given by the completeEq. (11), and it goes to a
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Fig. 4. Reactor feed flow rate.

finite non-zero value ast → ∞ (see dash-dotted line
in Fig. 5). The initial conditions to start the estima-
tion were randomly generated subject to the follow-
ing constraints:x̂1(0) ∈ [0.8x1(0), 1.2x1(0)], x̂2(0) ∈
[0.95x2(0), 1.05x2(0)], x̂3(0) ∈ [0.95x3(0), 1.05x3(0)],
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||e
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|

Time

Fig. 5. Estimation error (under dynamics uncertainty): observer realizations (—) and calculated bound (-· -).

x̂3f(0) ∈ [0.8x3f(0), 1.2x3f(0)], q̂(0) ∈ [0.95q(0),
1.05q(0)]. The full-line curves inFig. 5 show the different
observer realizations. On the hand, the full-line curves in
Fig. 6 shows the different observer realizations when no
parameter uncertainty exists. Then, the error bound is given



1890 S.I. Biagiola, J.L. Figueroa / Computers and Chemical Engineering 28 (2004) 1881–1898

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

||e
x|

|

Time

Fig. 6. Estimation error (without dynamics uncertainty): observer realizations (—) and calculated bound (-· -).

by the first term in the expression(11), and it goes to zero
ast → ∞ (see dash-dotted line).

To test the observers performance in other disadvan-
tageous conditions, additional simulations were carried
out based on noise corrupted measurements.Figs. 7–9
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Fig. 7. Reactant concentration inside the reactor.

show the estimation results obtained in this case. For
this purpose, the outputsx2 and x3 were corrupted with
uniformly distributed white noise signals. Then, it was
assumed that zero-mean noise signals were respectively
added to the nominal outputs. The noise signals amplitudes
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Fig. 8. Cooling-jacket feed temperature.

varied between−5 and +5% of the nominal outputs
values.

Additionally, other simulations were performed to evalu-
ate the observers responses for time-varyingx3f andq. The
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Fig. 9. Reactor feed flow rate.

results are shown inFigs. 10–13. The peaking phenomenon
that appears in the EKF simulations is due to the presence
of significant overshoots in the estimated variables. As was
previously mentioned, the design parameters of the EKF are
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just tuning values to be guessed. This is because when the
filter is applied to a nonlinear deterministic problem, the
parameters lose the original meaning they had in the lin-
ear KF. The KF has been used for estimation in jacketed
CSTR (Nagrath et al., 2002)and a linearized model valid
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Fig. 11. Cooling-jacket feed temperature.

for the operation point was considered. However, the EKF
is preferred to the KF when used for estimation in non-
linear processes, especially when used in a wide operation
region. With respect to the LNO estimation results shown
in Figs. 10 and 12, the peaks are more severe than those
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generated by the EKF. In this case, three unmeasured vari-
ables must be estimated and only two measured variables
are available. For this reason, the estimation can give rise to
a phenomenon known as peaking. This happens when some
of the estimated states increase/decrease to a certain value
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Fig. 13. Reactant concentration, cooling-jacket feed temperature and reactor feed flow rate.

and then decrease/increase with a variable magnitude. The
peaks amplitude and their extinction speed depend on the na-
ture of the system nonlinearity, the initial estimation errors,
as well as on the magnitude of the observer gain. The peak-
ing phenomenon plays an important role in the stabilization
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Fig. 14. States and parameters estimation: (A) estimates curves; (B) error curves.

of nonlinear systems (Sepulchre, 1997; Sussmann & Koko-
tovic, 1991).

As regards the sliding observer, the results show there
is a certain time interval before the estimates start to reach
the actual variable. Besides that, the high switching gain
originates a chattering phenomenon usually associated to
sliding estimation methods. Although the estimation results
obtained with the SNO may be acceptable for many pur-

Fig. 15. Controlled temperature and control input.

poses, they can be inappropriate when used to calculate the
required control action. Particularly, if we want to determine
on-line the necessary control input some difficulties may
arise because the estimates are not derivable with respect to
time.

The estimation results show the advantageous behavior of
the LNO with respect to the other approaches. Additionally,
the LNO exhibits a satisfactory performance when used with
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noisy measurements. While the LNO estimates show the
noise has been partially filtered by the observer, the EKF
estimates evidence that the measurements noise is amplified
by the observer.

The LNO exhibits good convergence properties, i.e. the
estimates rapidly reach the actual values. Moreover, it has
the convenient feature that the gain can be easily designed
in order to let the observer achieve a certain speed of con-
vergence. The assignment of arbitrarily chosen eigenvalues
for the pair(A,C) is a fast manner to obtainKLNO, how-
ever, a stability analysis must be accomplished such as the
sufficient condition ofEq. (A.14).

To continue with the control objective, states and distur-
bances were estimated and the estimates were on-line used
to calculate the control inputqc. The estimation results are
shown inFig. 14. The states initial conditions were set to:
x1(0) = 0.7748,x2(0) = 1.5000,x3(0) = 0.4952,x̂1(0) =
1.10x1(0), x̂2(0) = x2(0), x̂3(0) = x3(0), x̂3f = −1, q̂ = 1.

In order to propose a candidate functionl(x) to obtain
the transformΩ(x) to achieve exact linearization, it must
be taken into account thatl(x) must satisfy the following
condition:

∂l(x)

∂x
(g(x) [f, g](x)) = [0 0] (43)

where [f, g](x) is defined as(∂g(x)/∂x)f(x)−(∂f(x)/∂x)g(x).
It can be straightforwardly verified that if any of the outputs
(x2 or x3) is selected as a candidate forl(x), the condition
(43)does not hold. Therefore, the system is not input/output
linearizable. However, replacingl(x) by x1 allows to obtain
a diffeomorphic transformΩ which shows the system is
input/states linearizable.

The necessary control lawqc to track the desired temper-
ature trajectory is:

qc(t) = 1

δδ1(x̂3f − x̂3)

[(
q̂ + δ − βφx̂1

dκ(x̂2)

dt
− λ1

)

× dx̂2

dt
− λ2(x̂2 − x∗

2) − βφ
dx̂1

dt
κ(x̂2)

− δ2δ1δ2(x̂2 − x̂3)

]
(44)

The coefficientsλi are chosen to achieve a stable model
for the tracking error dynamics. Particularly,λ1 = 2.5 and
λ2 = 1.5 were selected to fix the eigenvalues of the error
dynamics to−1 and−1.5. The tracking error is given by
x∗

2(t) − x2(t), wherex∗
2(t) is the desired trajectory for the

temperature inside the reactor andx2(t) is the controlled
output.

Fig. 15 shows the measured temperature and the refer-
ence trajectory. The manipulated signalqc(t) is also depicted
in Fig. 15. From the results, it can be seen that the pro-
posed observer/controller structure shows good performance
in achieving the output regulation. It is remarked that al-
though other control techniques have been reported in the
literature to stabilize the CSTR in a desired operation point,

the feedback controller herein introduced shows a satisfac-
tory behavior to achieve reference tracking. In this way,
many different points of the open-loop unstable region are
reached.

5. Conclusions

In the present work, the problem of state variables es-
timation has been tackled. In particular, the analysis has
been focused on the estimation of the states and time vary-
ing parameters in an open-loop unstable CSTR. In order
to perform the estimation, we proposed a high-gain full or-
der observer that robustly estimates the whole state vector
and the varying parameters based on the available mea-
surements. The stability properties of the estimator were
developed. Provided model uncertainty does not exist, the
estimation error converges towards zero. However, if there
is a mismatch between the real process dynamics and the
model used, the error norm converges to a finite bounded
value. A similar behavior takes place if there is a bounded
difference between the available measured outputs and the
real ones. Moreover, the observer design was used in a con-
trol strategy to track a desired reference for the temperature
inside the reactor. The controller has been developed fol-
lowing the principle of input/states exact linearization and
the conditions which demands the knowledge of the internal
state of the system and disturbances. Because there were
some unmeasured variables, the problem was overcome by
incorporating the extended observer to the control structure.

Finally, computer simulations were developed to illustrate
the performance of the nonlinear observer. Good agreement
between the actual and estimated states was attained, as well
as a successful behavior of the whole observer/controller
structure.
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Appendix A

The design parameterKLNO must be selected in order to
guarantee the estimation algorithm convergence. The LNO
herein proposed is constructed using a change of coordi-
nates (Ciccarella, Dalla Mora, & Germani, 1993; Garćıa,
Troparevsky, & Mancilla Aguilar, 2000). The change of co-
ordinates selected in this work is the one given byEq. (4),
which transforms the original system by defining the fol-
lowing transform variablez:

z = Φ(x) (A.1)
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and

x = Φ−1(z) (A.2)

which constitutes a change of coordinates inRn. Therefore,
the original system given byEqs. (1) and (2)can be rewritten
in the new coordinates as follows:

ż = Az+ BLn
f h(Φ

−1(z)) + LgΦ(Φ−1(z))u (A.3)

y = Cz (A.4)

with

A =




0 1 0 · · · 0

0 0 1 · · · 0
...

...

0 0 · · · 0 0


 , B =




0
...

0

1


 ,

C = [
1 0 · · · 0

]
(A.5)

and

LgΦ(·)u =




Lgh(x)

LgLfh(x)

...

LgL
n−1
f h(x)


 u (A.6)

Then, the following observer in thez-domain is proposed:

˙̂z = (A − KLNOC)ẑ + KLNOy + BLn
f h(Φ

−1(ẑ))

+LgΦ(Φ−1(ẑ))u (A.7)

The time derivative of the estimation error (z − ẑ) can be
written as follows:

ėz = ż − ˙̂z = (A − KLNOC)ez + B[Ln
f h(Φ

−1(z))

−Ln
f h(Φ

−1(ẑ))] + [LgΦ(Φ−1(z))

−LgΦ(Φ−1(ẑ))]u (A.8)

To select the constant vector gainKLNO, the following Lya-
punov candidate function is chosen:

V = eT
z Pez (A.9)

with P a positive definite matrix. Then,

V̇ = ėT
z Pez + eT

z Pėz (A.10)

V̇ = eT
z [(A − KLNOC)TP + P(A − KLNOC)]ez

+ 2(γ − γ̂)TPez + 2(ω − ω̂)TPezu (A.11)

whereγ(·) andω(·) stand forLn
f h(Φ

−1(·)) andLgΦ(Φ−1(·)),
respectively. Now, provided thatP and a positive definite
matrix Q satisfy theEq. (7):

(A − KLNOC)TP + P(A − KLNOC) = −Q (A.12)

and letqm andpM be the minimum and the maximum eigen-
values ofQ andP , respectively. Under the assumptions that:

‖u‖ ≤ U

‖γ − γ̂‖ ≤ Lγ‖z − ẑ‖
‖ω − ω̂‖ ≤ Lω‖z − ẑ‖

(A.13)

whereLγ andLω are the Lipschitz constants of the respec-
tive functions and provided the previous conditions behave,
the following inequality can be obtained:

V̇ ≤ (−qm + 2pM(Lγ + LωU))‖ez‖2 (A.14)

If the gainKLNO is selected such thatpM and qm satisfy
Eq. (8):

−qm + 2pM(Lγ + LωU) < 0

then, V̇ turns out to be negative and the norm of the esti-
mation error goes to zero ast → ∞. Hence, the conver-
gence of the algorithm is guaranteed. If the transformΦ(x)

is nonsingular andΦ−1 is uniformly Lipschitz, then revis-
iting Eqs. (A.1) and (A.2)the condition given byEq. (9) is
obtained.

It must be remarked thatEq. (A.14)sets a sufficient con-
dition to guarantee stability. However, in some cases it may
result rather conservative. That is why in many applications
good estimation performance could be achieved even when
the gainKLNO does not satisfyEq. (A.14).

To evaluate the robustness properties of the LNO, a quan-
titative analysis is herein introduced. Let us first consider
that in the process model there is some dynamics uncer-
tainty. This situation can be stated as inEq. (10):

ẋ = [f(x) + %f (x)] + [g(x) + %g(x)]u; y = h(x)

where%f (x) and%g(x) are the unknown parts of the process
dynamics. In order to represent the uncertainty process in
the transform domain, let us recallEq. (A.1). Then,

ż = ∂Φ

∂x
ẋ (A.15)

Consequently, the uncertain process can be written as

ż = Az+ BLn
f h(Φ

−1(z)) + LgΦ(Φ−1(z))u

+ δ1(Φ
−1(z)) + δ2(Φ

−1(z))u (A.16)

y = Cz (A.17)

whereδ1 = (∂Φ/∂x)%f andδ2 = (∂Φ/∂x)%g. Because the
terms δ1 and δ2 are not accurately known, the following
observer is proposed for the uncertain system:

˙̂z = Aẑ + BLn
f h(Φ

−1(ẑ)) + LgΦ(Φ−1(ẑ))u + G(y − ŷ)

(A.18)
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Therefore, the dynamics of the estimation error is given by:

ėz � ż − ẑ = (A − GC)ez + (γ − γ̂)

+ (ω − ω̂)u + δ1 + δ2u (A.19)

In order to find a bound for the estimation error, a function
V like the one inEq. (A.9)is chosen. Then, tacking into ac-
count thatV ≥ pm‖ez‖2 (with pm the minimum eigenvalue
of P) the following inequality is obtained:

V̇ ≤
(

− qm

pm
+ 2

pM

pm
(Lγ + LωU)

)
V

+ 2pM(%1 + %2U)

√
V

pm
(A.20)

Let us rename as follows

θ � − qm

2pm
+ pM

pm
(Lγ + LωU)

ξ � pM

pm
(%1 + %2U)

Then, the following bound forez is obtained:

‖ez‖ ≤
√

pM

pm
eθt‖ez(0)‖ + ξ

θ
(eθt − 1) (A.21)

If we recall that

‖x − x̂‖ = ‖Φ−1(z) − Φ−1(ẑ)‖ ≤ Lγ‖z − ẑ‖
‖Φ(x(0)) − Φ(x̂(0))‖ ≤ Lx0‖x(0) − x̂(0)‖
then, the following expression is obtained:

‖ex‖ ≤ LγLx0

√
pM

pm
eθt‖ex(0)‖ + Lγ

ξ

θ
(eθt − 1) (A.22)

which can be rewritten asEq. (11):

‖ex‖ ≤ C1eθt‖ex(0)‖ + C2

θ
(eθt − 1)

with C1 andC2 constants. Hence, a bound for the estima-
tion errorex has been deduced for processes with dynamics
uncertainty.

Now, a different case will be considered. Assume that a
LNO is design for the process given byEqs. (1) and (2). To
accomplish the estimation, the available measured outputs
(ym) are:

ym = y + %h

as defined inEq. (12). Therefore, the observer algorithm in
thez-domain can be written as follows:

˙̂z = Aẑ + γ̂ + ω̂ u + KLNO
(
ym − ŷ

)
(A.23)

And the error dynamics is given by

ėz = (A − KLNO C)ez + (γ − γ̂) + (ω − ω̂)u − KLNO%h

(A.24)

Then, after similar calculations than in the previous case,
the following bound for the estimation error is obtained:

‖ex‖ ≤ LγLx0

√
pM

pm
eθt‖ex(0)‖

+ Lγ

θ

pM

pm
‖KLNO%h‖(eθt − 1) (A.25)

which can be written asEq. (14):

‖ex‖ ≤ C1eθt‖ex(0)‖ + C3‖KLNO%h‖
θ

(eθt − 1)

A.1. The extension of the LNO design for general
nonlinear SIMO systems

The LNO design procedure can now be extended for
any observable SIMO system represented by the following
model:

ẋ = f(x) + g(x, u) (A.26)

y = h(x) (A.27)

where(x ∈ Rn), (u ∈ R) and(y ∈ Rm).
In such a case, the vectorΦ(x) in Eq. (4)has to be refor-

mulated as follows in order to obtain a change of coordinates
for the SIMO system:

Φ(x) =
[
h1(x) L1

f h1(x) · · · L
ρ1
f h1(x) h2(x) · · ·

L
ρ2
f h2(x) · · · hr(x) · · · L

ρr
f hr(x)

]T

where the elementsρi are integers that must verify the nec-
essary condition

∑r
i=1 ρi = n to obtain a diffeomorphic

transformΦ(x). As there exist more than one output,Φ(x)

may be constructed using different outputs selections. If all
them outputs are included in its construction, thenr = m.
However, if only some of the outputs are used, thenr > m.
In this way, the transformz = Φ(x) is obtained. With this
transform and the model given byEqs. (A.26) and (A.27),
the observer can be reformulated.
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