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Abstract

State estimation has become an important area of research in the field of process engineering. This is because there are many application
that demand the knowledge of many of the state variables, if not all of them. Among others, the implementation of nonlinear control methods
as well as monitoring some relevant process variables can be mentioned. The purpose of this paper is to introduce a nonlinear high gain
observer in order to estimate the whole process state variables. Whenever some construction conditions hold, it is possible to obtain estimates
that converge asymptotically to the actual values. Moreover, this estimator has robust performance in the presence of model uncertainty
and measurement noise. A quantitative analysis is developed to measure the observer robustness. Though the estimated states can be us
for many purposes, in this work we aim at using the estimates for output regulation. For this goal, a nonlinear controller based on exact
linearization is designed. As a particular application, we consider the open-loop unstable jacketed exothermic chemical reactor. This CSTR
is widely recognized as a difficult problem for the purpose of control. In order to achieve the control goal, a simple algorithm lying on exact
linearization principle is considered. Finally, computer simulations are developed for showing the performance of the proposed nonlinear
observer (NO). The performance of the observer when used for control purpose was also evaluated.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction variables. There exist many possible kinds of estimators
to be used depending on the mathematical structure of the
With the purpose of process monitoring, control and op- process model and the information availablBa(thier,
timization, the knowledge of some physical state variables Hammouri, & Othman, 1992Soroush, 199y
of the process is demanded. For instance, there exist many In spite of the fact that theories and applications for lin-
process control strategies, in which the information about ear systems are well developed, the highly nonlinear nature
the internal state of the process is necessary to calculateof many chemical processes has given rise to nonlinear ob-
the control input. Consequently, the presence of unknown servers (NO). These observers are designed in such a way
state variables becomes a difficulty which can be over- that they can cope with the intrinsic nonlinearities of the
come with the inclusion of an appropriate state estimator process dynamics. However, the construction of NO still
(Gattu & Zafiriou, 1992 Nagrath, Prasad, & Bequette, provides an open research field because the advance in the
2002. area of NO often faces many typical obstacles such as very
Therefore, the development of suitable algorithms to restrictive conditions to be satisfied, uncertainty in the per-
perform the estimation has captured the attention of many formance and robustness and/or unsatisfactory estimates in
researchers. In this sense, several techniques have been irthe presence of noisy measurements.
troduced to estimate state variables from the available mea- A detailed discussion on the current available state esti-
surements, usually related to meaningful physico-chemical mation techniques applicable to a broad class of nonlinear
systems, is provided bllouyon (1997) Another compre-
« Corresponding author. Tek:54-291-4595153; hensive evaluation of various NO was presented/\!ang,
fax: +54-291-4595154. Peng, and Huang (1997)n a recent paperDochain
E-mail addressfigueroa@uns.edu.ar (J.L. Figueroa). (2003) gives an overview of some state and parameters
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nonlinear efficient state estimator for later multi-purpose ap-
Nomenclature plications. From the construction perspective, the observer
q reactor feed flow rate herein proposed can be considered as a Luenberger-like ob-
V  reactor volume server(Kailath, 1980) Many observers of this type has been
x1f  dimensionless reactor feed concentration dealt with in the literature, specially concerning electrical,
xot dimensionless reactor feed temperature mechanical or robotics applications. For instance, trajectory
x3t dimensionless cooling-jacket feed temperature tracking using nonlinear reduced-order observers was ap-
plied to a robot arm and to a neural netwoBafcia &
Greek letters D'Attellis, 1995). In the field of chemical processes, the
B dimensionless heat of reaction work by Gauthier et al. (1992% considered a relevant con-
5 dimensionless heat-transfer coefficient tribution in the field of high-gain observers. They proposed
81  reactor to cooling-jacket volume ratio a design method that involves finding a symmetric posi-
8,  reactor to cooling-jacket density heat capacity tive definite matrix which is the stationary solution of a set
ratio of differential equationsKazantzis, Kravaris, and Wright
¢ nominal Damkéhler number based on the (2000)used a nonlinear observer for monitoring autonomous
reaction feed processes. The design methodology involved the solution
y  dimensionless activation energy of partial differential equations. An important feature is
K dimensionless Arrhenius reaction rate that no robustness evaluation of the estimators was accom-
nonlinearity plished in those works. In a recent contributigkguilar,
T dimensionless time Martinez-Guerra, and Poznyak (2008jroduced a modi-
fied Luenberger-like observer specifically dedicated to the

estimation of reaction heat in continuous chemical reactors.

The estimator design does not include the whole process dy-
estimation approaches available for chemical and biochem-namics, hence a large gain is required so that the estimation
ical processes. error reaches the vicinity of zero.

With respect to the nonlinear estimation techniques per- The approach herein proposed guarantees the estimation
formed up to now, the extended Kalman filter (EKF) is one error converges towards zero whenever the observer gain is
of the most (if not the most) widely diffused observer among adequately chosen. The estimation procedure is oriented to
other nonlinear observers based on linearization techniqgueghose nonlinear control methods that require the knowledge
(Stephanopoulos & San, 1984; Tadayyon & Rohani, 2001 of the internal state of the process. The observer implemen-
The main drawback of these techniques consists in the dif-tation is simple and it requires small computational effort.
ficulties to determine a priori its convergence and speed of Another advantageous feature of this NO is that it shows
convergence. In EKF approach, a Riccati equation must berobust performance in the presence of noisy measurements
solved to obtain the estimator gain. This approach assumesand model uncertainty. A bound for the estimation error is
the knowledge of the noise model in order to obtain the op- deduced as a measure for quantifying the observer robust-
timum estimated value. However, that model is frequently ness. Additionally, the proposed observer is compared with
unknown and it must be assumed. Hence, wrong noise as+two other widely diffused techniques: the EKF and a sliding
sumptions could lead to biased estimates or even divergenonlinear observer.

(Ljung, 1979) In particular, the state estimation methodology is here fo-

A method based on extended linearization has also beencused to the control of a jacketed CSTR. This kind of reac-
developed to carry out state estimati@agmann & Rugh, tors are highly nonlinear, and are known to be an interest-
1986. The procedure is based on linearizing with respect ing challenge to be overcome by any new estimation and/or
to a fixed operating point, and involves finding a function control technique.
of the output in order to keep the system poles invariant It must be highlighted that this type of reactors present
in the vicinity of the mentioned point. Hence, the design interesting operational problems due to complex open-loop
procedure is subject to very tight conditions, and even when behavior such as input and output multiplicities, igni-
the output function is found (which is not an easy task) only tion/extinction behavior, parameter sensitivity and even
local performance is ensured. nonlinear oscillations Russo & Bequette, 1995refer-

Another estimation approach includes the sliding ob- ences therein). These characteristics explain the need for
servers Canudas de Wit & Slotine, 1998lotine, Hedrick, and the difficulty of feedback control system design. Ad-
& Misawa, 1987 Wang et al., 1991 The design procedure ditionally, it is often desirable to operate CSTRs under
consists in determining a switching gain. One restrictive as- open-loop unstable conditions. This is because the reac-
pect is that the outputs must lie on specified sliding surfacestion rate may yield good productivity while the reactor
to achieve the estimation. temperature is still low enough to prevent side reactions

Taking into account the characteristics of the observers or catalyst degradation. Therefore, if any state feedback
above discussed, the objective of this work is to present astrategy is applied for controlling the CSTR, it will demand
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an accurate determination of the internal state of the 2.1. Luenberger-like nonlinear observer (LNO)
process.

In this work, an exact linearization based controller is  To perform the state estimation of the process given by
used for the nonlinear CSTR regulation. This design tech- Egs. (1) and (2)the following LNO is developed:
nique has been extensively treated in the literature. There are; N 1a A
many works dealing with the exact linearization technique ~ — /%) +8(u + O M Kino(y — ~(®)) (3)

to control nonlinear processesravaris and Chung (1987)  The system irEq. (3)is a nonlinear observer for the state
treated the globally linearizing control approach using con- yector x. Note that the error, calculated as the difference
cepts from differential geometrifenson and Seborg (1990)  petween the measured outputand its evaluation on the
presented two different approaches for input/output (I/O) estimated statels(z), is used to improve the estimation and
linearization of general nonlinear processes. However, theseyorks as a correction factor. The produ@t () K no is
works, as well as many others dealing with this approach the nonlinear gain of the observer, wheeno is a matrix

state of the process is known, and available to be used inyector@(x). This vectord(x) is defined as

the 1/O strategyProll and Karim (1994 applied both exact

linearization and /O linearization to the control of a biore- h(x)

actor. They discussed the issue of invertability and tested the Lth(x)

approach performance for parameters uncertainties. How-®(x) = . (4)
ever, they remained two issues opened for further study: :

state estimation and the influence of dynamics uncertain- L;‘*lh(x)

ties. Viel, Busvelle, and Gauthier (199%ked 1/O lineariza- _ o _ _
tion for stabilizing polymerization reactors. They combined WhereLs/(x) represents the Lie derivative bix) in the di-
the control technique with a nonlinear Kalman-like state réction of f(x) (Isidori, 1995) Hence, the following equal-

observer. ities behave:
The work is organized as follows. IiBection 2 a _ 0h(x)
Luenberger-like nonlinear observer (LNO) is proposed and Lth(o) = ox fx) ®)
two other known observers are describedSkction 3 the i1
controller synthesis is dealt with. The comparison between ; j _ 9Ly Th)
\ anson BEWEEN 7 Jp (x) = ——= f(x) (6)
the observers performance is presented via simulation in ox

Section 4 as well as the proposed observer/controller be- e vectora constitutes a nonlinear change of coordinates.
havior. Finally, inSection 5 the conclusions are presented. The objective is to transform the original process represen-
tation to obtain a tranformed one in order to make easier
) ) the observer design. The transformed model of the process
2. Nonlinear full-order observer designs contains known parametersandC (seeAppendix A that

o ) S are inserted into the following Lyapunov equation to design
The objective of this section is to introduce an observer for he opserver gaik No:

estimating the whole state vector. To attend to the jacketed T
CSTR process, in which the reaction is typically followed up (A — KinoC)' P + P(A — KinoC) = —Q (7)

by temperature measurements and the control action usuall o . .
y tempe . ; : Ywhere P and Q are positive definite matrix that must sat-
consists in following a desired temperature profile, the fol-

lowing nonlinear single input/single output (SISO) general isfy Eq. (7) Additionally, the following constraint must be

model is proposed for the process: satisfied:

i — 2pm(Ly, + Lo,

x = flx) + gx)u (1) gm +2pm(Ly + L,U) <0 8)
with andgm the maximum and minimum eigenvalues of

y=hx) ) pm andgm g

P andQ, respectivelyL, andL,, are Lipschitz constants of
where the vectox (x € R") stands for the state variables the process (se&ppendix A. Hence, the dynamics of the
and the input (u € R) represents the manipulated variable €stimation erroe,, defined ag, = x — %, will be stable.

to accomplish the temperature control. The measured outputProvided that is invertible, thatl is a bound for the input

is represented by vector(y € R). u and given the initial conditioft(0), the following property
In order to perform the estimation, a Luenberger-like Pehaves for any > 0:
observer is developed and proposed for nonlinear state”ex(t)” < 5 |e (0)|| )

estimation. Its stability and robustness properties are pre-

sented. Then, for comparison purpose, two different known with § > 0. Consequently, the norm of the estimation er-
observers are briefly described: the EKF and a sliding ror goes to zero as — oo. Then, the convergence of the
observer. algorithm is guaranteed.
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A detailed demonstration based on Lyapunov arguments Therefore, there is a mismatch between the real output vector
is presented i\ppendix Awhere the observer convergence yand the measured ong(). Then, to construct the observer,
and its relationship with the gain selection are dealt with. the following correction term is proposed:
In addition, inAppendix Awe present an extension of the
proposed LNO for single input/multiple output (SIMO) non-
linear systems represented by the more general model:
Jo) + g(x, u), y = h(x).

Provided certain stability hypotheses are held, the ob- X
server brings an on-line estimation of the whole process APPendix A:
state. It can be easily implemented and it only uses the in-
formation brought by the output measurements. Moreover, llex|l < C1€”[lex(0)[| +
the observer is built using the whole process model, and this
nonlinear procedure avoids loosing information about the with C; and C3 constantsEq. (14) implies that there is
dynamics as well as simplifications, order reduction, or the a trade-off between the speed of convergence and the ulti-
frequently used linearization methods. mate bound. To increasein order to augment the speed of

To evaluate the robustness properties of the LNO, a ded-convergence involves an increment|&_no Anll. The re-
icated study is performed. As regards state and parametesults inEqgs. (11)—(14explain some observations based on
estimation in chemical and biochemical procesBeg;hain simulations reported in many work&authier et al., 1992;
(2003)introduces a weak point related to the theory of the Kazantzis et al., 2000)These observations connect the ob-
EKO and the nonlinear observers. These observers are comserver gain value and the remaining estimation error when
monly used assuming perfect knowledge of the process andthere exists dynamics uncertainty as well as the deteriorat-
that it is difficult to develop error bounds in the presence of ing performance with the observer gain increment in the

O~ @ Kino (ym — 9) (13)

After some calculations, it can be shown that the follow-
ing expression is a bound for the estimation error (see

C3l|KLNo Anll

(@ -1

(14)

large uncertainty in the parameters. To tackle this point, a
gquantitative analysis for the proposed LNO is herein devel-
oped.

Let us consider the model of the process dynamics con-
tains a certain degree of uncertainty, such that it can be writ-
ten as follows:

X = f(x) + At (x) + [g(x) + Ag(x)]u
y=hx)

where A¢ (x) and Ag(x) stand for the unknown dynamics.

It can be demonstrated that if the LNO is built using only
the known model dynamics, and provided some conditions
hold, then the following time function is a bound for the
estimation error (seAppendix A):

(10)

C
lex < C1€" ex(0)]| + f(ee’ —1 (11)

whereC; and C; are positive constants ards a negative

constant derived from the observer gain design. Hence, a

bound for the estimation errer, has been deduced for pro-
cesses with dynamics uncertainty. This bound implies that
the norm of the estimation error decays with time as fast
as the value® allows it. From the theoretically perspective,
the stationary error can be zeroéiftends toco. However,
taking into account practical aspects (as shown later), this
design parameter must take a limited value.

Now, another robustness analysis is considered. We study?

the case where the available measured outputs to perfor
the estimation differ from the real outputs. Assume that a
LNO is designed for the process given Bygs. (1) and (2)
and that the following measured outputs,) are used to
accomplish the estimation:

Ym=y+ Ap (12)

m

presence of noisy outputs.

2.2. Extended Kalman filter (EKF)

The EKF has been widely used to deal with processes that
include high nonlinearities. The derivation of this approach
can be found indJazwinski (197Q)

Given the process modél) and (2)and the initial val-
uesx(0]0), P(0|0), Q and R, where the symbol() stands
for the estimated variables, then the predicted stasad
weighting matrix P are computed at the instaht+ 1 by
performing the integration of the following equations:

= fG) + gGu (15)

P=[f(3) +g®ul P+ P[fr(®) + gx@ul" + 0 (16)

wherek is the number of iterations the algorithm has already
been accomplishedf, andg, are the Jacobian matrices of
f andg on x. This is an improved version of the EKF with
respect to the most diffused approach in which both the pre-
dicted states and the covariance matrix are calculated using
the linearized modeBRastin & Dochain, 1990; Tadayyon &
Rohani, 200}.

It must be noticed that for the Kalman filter as a linear
unbiased minimum variance estimator, the paramete®
nd Q are the covariance matrices of the estimation, the
white noise sequences in the measurements and the states,
respectively. However, when used in the EKF, they lost their
original meaning and turn out to be only tuning parameters.
However, the speed of estimation convergence is strongly
influenced by the initial value of matriR. Since this value
is unknown, it must be guessed in order to start the EKF
algorithm.
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In a second step, the filter gain is calculated as follows: performance. The vectar contains the typical switching

. elements included in sliding structures:
Kexp(k + 1) = P(k 4 1|k)h  (x(k + 1]k))

sign(y1 — 21)
T -1
x [hy P(k + 1|k)h, + R] a7 Sig(yz — 22)
with #,, the Jacobian matrix of on x. o= (26)
Afterwards, the measurementk + 1) is processed: . T
sign(yp — zp)

Xk + Uk + 1) = x(k + 1]k) + KEKAF(k +1) where

x [yk + 1) — h(x(k + 1]k))] (18) sign(y) 1, y>0 @
and then, the new weighting matrix is computed: gny) = -1, y<0O
P(k + 1k + 1) =[I — Kekp(k + Dhy] P(k + 1]k) If the new state variables are obtained through the same

B T nonlinear transform as the onekiy. (4) it can be straight-
X [1 = Kexrk+ ?hx] forwardly shown that the systef22) and (23)coincides
+ Kexr(k + DRKggp(k + 1) (19) with the one given byA.3) and (A.4) which was obtained
to construct the LNO. Therefore, the estimation algorithm

Then, the countet is incremented in one and the algorithm . - . :
in original coordinates can be written as follows:

is executed again. Further constructive aspects of the EKF

can be found inJazwinski (1970) F= fR) +g®u+ 0@ Ksno)signy — h(3))  (28)
In the following, another nonlinear estimation technique . . o
is described. It is based on sliding modes principle. where the correction teré(y — 3) in (20) satisfies:
W(y - ) = O @) Ksno(Do (29)

2.3. Sliding nonlinear observer (SNO)
Once the internal state of the system can be observed,

For the purpose of comparison with the proposed LNO, an appropriate control technique based on state knowledge
a nonlinear sliding observer is considered. This kind of ob- can be performed to achieve a desired trajectory for the
servers has already been reported in the literatDemgdas  temperature inside the reactor. Therefore, we now turn to
de Wit & Slotine, 1991 Slotine et al., 1987Walcott & Zak, devise the control strategy.
1987.

To construct a SNO for the process representedsy (1)
and (2) it is necessary to devise a correction functibrso 3. Controller design

that(Wang et al., 1997)
Although in many applications in the field of nonlinear

X =)+ @) u+t¥y-3) (20) processes the control problem is solved via Taylor lineariza-
$=h@) (21) tion techniques, it is possible to achieve an improved control

performance from an exploitation of the nonlinear model
Provided the Jacobian matrix #fx) exists and it is of full structure using nonlinear control design.
rank in any subset dk", the representation given Bs. (1) The objective is to control a scalar output variable which
and (2)can be transformed to obtain: is a measured function of the state variables. Then, the goal
7= f*z u) (22) is to track a reference output signal denogéc).

To design an exact linearization controller involves finding

y=Cz (23) a nonlinear transforn2 Khalil (1996}
whereC = [1, 0]. For design purposes, vectoiis parti- 1(x)
tioned into: Lil(x)

2(x) = 30
z= [Zm ] (24) @ : o

Zum
_ . L (x)

wherezyn = y. Hence, the observer in the tranformed vari-
ables can be stated as follows: wherel(x) is a function of the states. Hence, a vectas
. defined such that:
2= f*(Z, u) + Ksno()o (25) “
where Ksno(?) is a time-varying matrix. This gain is the o
observer parameter to be designéthng et al. (1997)eter- (=1 . | =2 (32)

mine Ksno to keep the dynamics poles gfn — Zum invari- :
ant at certain constant values in order to achieve a desired I
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Provided an appropriate transforf?(x) is chosen, the new
representation ig coordinates can be written:

i1=10

{2 =103

e =... (32)
é-nfl = Cn

& = B +aQu

where

a(®) = LgLi1(271(©) (33)
B©) = LI () (34)

If the nonlinear expressiof(¢) + «(¢) u is denotedy, with
v the new control input, the system given By. (32)turns
into a linear controllable form.

It must be pointed out that: ifx) verifies relative degree
n with respect to the control input and £2(x) is a diffeo-
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feed ——— Pproduct
x1f, x2f, q X1, X2
| I X309 ¢oolant
x2
>
reactor
coolant ).(3_ x3 jacket

Fig. 1. Scheme of jacketed CSTR.

mixing and constant physical parameters allow to obtain the
dynamical model. The differential equations can be written
in a dimensionless form as follow®Russo and Bequette,
1995)

morphic transform, hence sufficiency conditions are attained

to guarantee the nonlinear system in original coordinates is -1 q(x15 — x1) — Px1K(x2) (35)
controllable. Note thal(x) is an appropriate function of the

states which has to be chosen. However, there is no infor- dx;

mation a priori about how this function is. Any selection of gy — 4(¥2f —¥2) = 8(x2 — x3) — fpxa(x2) (36)
[(x) will be appropriate if it allows obtaining a diffeomor-

phic transform2(x). In many low-order systems, the selec- &3 _ 81[ge(xat — x3) + 882(x2 — x3)] (37)
tion of /(x) can be easily guessed. However, for high-order dr

systems, this selection is rarely a trivial task. In such cases,with «:

a solver for partial differential equations (PDES) can be use- o/ (14x2/)

ful to find /(x) (Kazantzis et al., 2000)The theoretical ap-  K(*2) = e (38)

proach as well as many solved examples on this matter Aerne state variables;, x> andxz stand for the dimensionless

dealt with byKhali (1996). I . . reactant concentration, the reactor temperature and the cool-
Wher_1ever the hypothesis are hold, it is possible to find a ing jacket temperature. The symbglrepresents the cooling
control Inputv (_and thfn”) such that the outpuy reaches jacket flow rate and the other symbols represent constant pa-
the deswed. trajectory”. . . . rameters whose values are defined@ble 1 These values
) The basis of the c_ontrol agtlon here_m proposgd IS 10 \ere taken fronNagrath et al. (2002Russo and Bequette
find a controi laww which conS|st§ of a ImEar f”F‘C“O” of (1995)reported that this set of parameters cause a particular
(@1, .-, &n, ") such_that the tracl_qng err_cgy _y.) 'S gov- | operation of the reactor given by ignition/extinction behav-
erned by a prespecified stable linear differential equation. ior. The process dynamics is nonlinear due to the Arrhenius
The design parame.t ers are the roqts of the Laplace trar]S'rate expression which describes the dependence of the reac-
form of that linear differential equation. Those eigenvalues ion rate constanid) on the temperaturerf). That is why the

I(ggb z];st?r?]tS) must be chosen to achieve a stable closedogTR exhipits an open-loop unstable performance as well as

Table 1

4. Application to a continuous stirred tank reactor CSTR model parameters

(CSTR)

Parameter Value

The performances of the proposed estimation algorithms ¢ 0.072
will be compared and illustrated through the applicationto a 8 8.0
jacketed tank reactor. The constructive features of the reactor’ 0.3

are depicted irFig. 1 ; 2(1).0
The mathematical model of the CSTR, where an exother- s, 10
mic irreversible first-order reaction takes place, has beens; 1.0
constructed using three nonlinear ordinary differential equa- xuf 1.0
tions. The material and energy balances based on the as** g'g

sumptions of constant volume inside the reactor, perfect o
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operational and control problems. Moreover, it shows mul- with
tiplicity behavior with respect to the jacket temperature and -
jacket flow rate(Nagrath et al., 2002)The CSTR modeled
by Egs. (35) and (37hehaves as an open-loop unstable sys- Yext= | Xaf (41)
tem if the temperature inside the reactor is betwe&rahd q
3.0. However, from an economical point of view, it is often
desirable to operate the reactor inside this region. Hence, theand
selected control strategy must allow to operate the process

in the required point. The control objective is to make the di- JGrexd
mensionless temperature inside the reactgy follow a de- Jext = 0 (42)
sired trajectory. Both temperatures andxz are measured. 0

In this work, we propose a control technique based on exact

linearization as described Bection 3 which demands the ~ The presence of the two zeros fax: involves that the dy-

knowledge of the internal state of the process. To cope with hamics model for the disturbances is assumed negligible.

this, an appropriate state observer must be connected withNote that Corr is the correction term designed according to

the controller. Therefore, the observers performance is first€ach observer, as described3action 2

analyzed. To evaluate and to compare the observers performance,
In order to evaluate the observers behavior in the more the system was first simulated assumiggandg as constant

realistic situation in which neithers; nor ¢ are measured, Pparameters (se&able ). The process was excited through

the observer structures were slightly modified. Beshand a constant input signak. = 0.5 (the jacket flow rate). This

g can be considered the main disturbances of the processvariable would be later used as the manipulated variable for

Note that in the presence of unmeasured disturbances, alcontrol purposes.

the observers can be “extended” to perform the disturbances The states initial conditions were set to:(0) = 0.58,

estimation together with the states estimation. In such a way,x2(0) = 2.67, x3(0) = 0.12, x1(0) = 0.80, x1(0), X2(0) =

the observers append modeled disturbances as augmente#(0), ¥3(0) = x3(0), X3r = 1,4 = 1.

states to the original system model. Then, the following  The estimation results obtained are depicteBigs. 2—-4
observer structure is obtained: Although the whole state vector was estimated, only the

i FoxtGext) + gGexit + COIT (39) unmeasured statery) was plotted together with the dis-
Xext = fext(Xext) + §(Xext)u turbances actual and estimated values. The three observers
V= h(Xex) (40) structures presented iSection 2 were used. For that

0.95

0.9

0.85

0.8

0.75

x1
~

0.7t v

= actual
1 estimate (EKF)
O estimate (LNO) B
= = estimate (SNO)

0.65

0.6

0.55

4
0_45? I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Time

Fig. 2. Concentration inside the reactor.
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Fig. 3. Jacket feed temperature.

purpose, the EKF parameters were set to the following For the Luenberger-like observer, the g&nno was set

values: to
6.5199 01829
000 O 0 6.9024 02193
000 O 0 Kino = | 0.6253 00201
Rz[o.om 0 } 0=|000 O 0 |, 0.1679 06551
0 0.001 0 00 Q1 O 0.0168 Q0630
000 0 001 to fix the poles of the pail(A, C) to {—0.025 —0.025
0 0 00O —0.625 —0.250, —6.250; (see Appendix A). The SNO
00 0O0O time-varying gain was calculated in order to obtain
POO)=|0 0 0 0 0 tln(;es—(lj?vanantpolesequalt({):—0.0Z, —0.02, —0.03, —0.03,
00000 In order to test the behavior of the proposed LNO in
0 00O0O the presence of model uncertainty, several estimations were

performed. For this purpose, it was considered a mismatch

between the real dimensionless activation energyand
The initial value of P as well as the values ok and Q, its value in the model. It is already known that the activa-
are the EKF parameters. In practice, these values can be obtion energy is a difficult parameter to identify. For instance,
tained from previously available plant data. However, when Henson and Seborg (199€9nsidered in their article a mis-
more accurate parameters are required to achieve optimamatch of 2%. Because this parameter is in the exponential
state estimation or if no real data are available, the appropri- expression for the reaction rate, the uncertainty is magni-
ate values of these parameters are set using a trial and errofied. In this work, a difference up to 25% between the real
approach Tadayyon and Rohani, 20plin the CSTR ap- parameter and its value in the model was considered.
plication, the previous values were respectively chosen for Fig. 5 shows the observer performance attained in
R, QO and P(0]0), as they provided better estimation results the presence of parameter mismatch. The error bound
than other tested values. is given by the completeEq. (11) and it goes to a
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Fig. 4. Reactor feed flow rate.

€ [0.8x3(0), 1.2x31(0)], ¢(0) € [0.95(0),

finite non-zero value a3 — oo (see dash-dotted line  x3¢(0)
1.05¢(0)]. The full-line curves inFig. 5 show the different

in Fig. 5. The initial conditions to start the estima-

tion were randomly generated subject to the follow- observer realizations. On the hand, the full-line curves in
ing constraints:x1(0) € [0.8x1(0), 1.2x1(0)], x2(0) € Fig. 6 shows the different observer realizations when no
[0.95x2(0), 1.05x2(0)], x3(0) € [0.95x3(0), 1.05x3(0)], parameter uncertainty exists. Then, the error bound is given

0.7

0.6\

0 1 2 3
Time

Fig. 5. Estimation error (under dynamics uncertainty): observer realizations (—) and calculated belnd (-
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0.4

Time

Fig. 6. Estimation error (without dynamics uncertainty): observer realizations (—) and calculated beynd (-

by the first term in the expressidfl), and it goes to zero  show the estimation results obtained in this case. For
ast — oo (see dash-dotted line). this purpose, the outputs, and x3 were corrupted with

To test the observers performance in other disadvan-uniformly distributed white noise signals. Then, it was
tageous conditions, additional simulations were carried assumed that zero-mean noise signals were respectively
out based on noise corrupted measuremehRigs. 7-9 added to the nominal outputs. The noise signals amplitudes
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Fig. 7. Reactant concentration inside the reactor.
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Fig. 8. Cooling-jacket feed temperature.

varied between—5 and +5% of the nominal outputs results are shown iRigs. 10—-13The peaking phenomenon

values. that appears in the EKF simulations is due to the presence
Additionally, other simulations were performed to evalu- of significant overshoots in the estimated variables. As was

ate the observers responses for time-varyigigandg. The previously mentioned, the design parameters of the EKF are

12

-: — actual

Tos v estimate (EKF)
= o estimate (LNO)
= = estimate (SNO)

08 ]
07h il
06 | | | | |
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Time

Fig. 9. Reactor feed flow rate.



1892

0.95

0.9

0.85

0.8

Q 0.7 ' estimate (EKF) —
o estimate (LNO)
0.65 B
0.6 .
Je
\: o
055F o° B
o
°
o
05k 4
)
0.45 1 1 1 1 1 1 1 1
0 2 4 6 10 12 14 16 18
Time

S.l. Biagiola, J.L. Figueroa/Computers and Chemical Engineering 28 (2004) 1881-1898

= actual

Fig. 10. Concentration inside the reactor.

20

just tuning values to be guessed. This is because when thdor the operation point was considered. However, the EKF
filter is applied to a nonlinear deterministic problem, the is preferred to the KF when used for estimation in non-
parameters lose the original meaning they had in the lin- linear processes, especially when used in a wide operation
ear KF. The KF has been used for estimation in jacketed region. With respect to the LNO estimation results shown
in Figs. 10 and 12the peaks are more severe than those

CSTR (Nagrath et al., 2002and a linearized model valid
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x 3f
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' estimate (EKF)
0 estimate (LNO)

10
Time

12

14

Fig. 11. Cooling-jacket feed temperature.
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Fig. 12. Reactor feed flow rate.

generated by the EKF. In this case, three unmeasured vari-and then decrease/increase with a variable magnitude. The
ables must be estimated and only two measured variablegpeaks amplitude and their extinction speed depend on the na-
are available. For this reason, the estimation can give rise toture of the system nonlinearity, the initial estimation errors,
a phenomenon known as peaking. This happens when somes well as on the magnitude of the observer gain. The peak-
of the estimated states increase/decrease to a certain valumg phenomenon plays an important role in the stabilization
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Fig. 13. Reactant concentration, cooling-jacket feed temperature and reactor feed flow rate.
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of nonlinear systemsSgpulchre, 1997Sussmann & Koko-
tovic, 199).

the actual variable. Besides that, the high switching gain time.
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Fig. 14. States and parameters estimation: (A) estimates curves; (B) error curves.

poses, they can be inappropriate when used to calculate the

required control action. Particularly, if we want to determine
As regards the sliding observer, the results show thereon-line the necessary control input some difficulties may
is a certain time interval before the estimates start to reacharise because the estimates are not derivable with respect to

originates a chattering phenomenon usually associated to The estimation results show the advantageous behavior of
sliding estimation methods. Although the estimation results the LNO with respect to the other approaches. Additionally,
obtained with the SNO may be acceptable for many pur- the LNO exhibits a satisfactory performance when used with
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Fig. 15. Controlled temperature and control input.
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noisy measurements. While the LNO estimates show thethe feedback controller herein introduced shows a satisfac-
noise has been partially filtered by the observer, the EKF tory behavior to achieve reference tracking. In this way,
estimates evidence that the measurements noise is amplifieanany different points of the open-loop unstable region are
by the observer. reached.

The LNO exhibits good convergence properties, i.e. the
estimates rapidly reach the actual values. Moreover, it has
the convenient feature that the gain can be easily designeds. Conclusions
in order to let the observer achieve a certain speed of con-

vergence. The assignment of arbitrarily chosen eigenvalues |n the present work, the problem of state variables es-

for the pair(A, C) is a fast manner to obtaiRno, how- timation has been tackled. In particular, the analysis has
ever, a stability analysis must be accomplished such as thepeen focused on the estimation of the states and time vary-
sufficient condition ofEq. (A.14) ing parameters in an open-loop unstable CSTR. In order

To continue with the control objective, states and distur- to perform the estimation, we proposed a high-gain full or-
bances were estimated and the estimates were on-line useder observer that robustly estimates the whole state vector
to calculate the control inpufc. The estimation results are  and the varying parameters based on the available mea-
shown inFig. 14 The states initial conditions were set to: surements. The stability properties of the estimator were

x1(0) = 0.7748,x2(0) = 1.5000,x3(0) = 0.4952,%1(0) = developed. Provided model uncertainty does not exist, the
1.10x1(0), ¥2(0) = x2(0), ¥3(0) = x3(0), ¥3r = -1, = 1. estimation error converges towards zero. However, if there
In order to propose a candidate functibiy) to obtain  is a mismatch between the real process dynamics and the

the transforms2(x) to achieve exact linearization, it must model used, the error norm converges to a finite bounded
be taken into account thdtx) must satisfy the following  value. A similar behavior takes place if there is a bounded

condition: difference between the available measured outputs and the
al(x) real ones. Moreover, the observer design was used in a con-
a—x(g(x) [fgle) =10 Q] (43) trol strategy to track a desired reference for the temperature
inside the reactor. The controller has been developed fol-
where [f, g](x) is defined agdg(x)/0x) f(x)—(9f(x)/x)g(x). lowing the principle of input/states exact linearization and

It can be straightforwardly verified that if any of the outputs  the conditions which demands the knowledge of the internal
(x2 or x3) is selected as a candidate f¢x), the condition  state of the system and disturbances. Because there were
(43)does not hold. Therefore, the system is not input/output some unmeasured variables, the problem was overcome by
linearizable. However, replacinigr) by x1 allows to obtain  jncorporating the extended observer to the control structure.

a diffeomorphic transform2 which shows the system is Finally, computer simulations were developed to illustrate
input/states linearizable. the performance of the nonlinear observer. Good agreement
The necessary control lag to track the desired temper-  petween the actual and estimated states was attained, as well
ature trajectory Is: as a successful behavior of the whole observer/controller
. structure.
. 1 S s . de(x2) N
ge() = 331G —%3) [(q + 48 — pox1 @ 1)
y % — a(z — %) — ﬁq&%x(ﬁz) Acknowledgements
8251802 _23)} (44) This' work was financially suppor.ted by the National
Council of Scientific and Technological Research (CON-

o . ICET) and by the Universidad Nacional del Sur.
The coefficientsk; are chosen to achieve a stable model

for the tracking error dynamics. Particularhy = 2.5 and
A2 = 1.5 were selected to fix the eigenvalues of the error Appendix A
dynamics to—1 and—1.5. The tracking error is given by
x5(1) — x2(1), wherex3 (1) is the desired trajectory for the
temperature inside the reactor anglr) is the controlled
output.

Fig. 15 shows the measured temperature and the refer-

ence trajectory. The manipulated siggal) is also depicted Troparevsky, & Mancilla Aguilar, 2000 The change of co-

in Fig. 15 From the results, it can be seen that the pro- ordinates selected in this work is the one givenBay. (4)
posed observer/controller structure shows good performanchhiCh transforms the original system by defining the fol-
in achieving the output regulation. It is remarked that al- lowing transform variable:

though other control techniques have been reported in the
literature to stabilize the CSTR in a desired operation point, z = &(x) (A1)

The design parameteéf, no must be selected in order to
guarantee the estimation algorithm convergence. The LNO
herein proposed is constructed using a change of coordi-
nates Ciccarella, Dalla Mora, & Germani, 199%arda,
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and
x=o (2 (A.2)

which constitutes a change of coordinate&ih Therefore,
the original system given i¥gs. (1) and (2¢an be rewritten
in the new coordinates as follows:

z=Az+BU(@ X2) + L@ (@ () (A.3)
y=Cz (A.4)
with

01 0 0 0

0 1 0

A= B B = )

00 0 0 1
c=[1 0 .- 0] (A.5)
and

Lgh(x)

Lg®(u = ) u (A.6)

LgLi  h(x)
Then, the following observer in thedomain is proposed:
Z=(A - KinoO)z + Kinoy + B (@7 (2))
+ Lg®(@ 1 (@)u (A7)

The time derivative of the estimation errar € z) can be
written as follows:

¢, =7 —%=(A— KinoO)e; + B[LIh(7L(z))
— Lh(@71(2)] + [Lg®(@1(2))
— Lg®(@1(2))]u (A.8)

To select the constant vector gdiino, the following Lya-
punov candidate function is chosen:

V=relPe (A.9)
with P a positive definite matrix. Then,

V =¢élPe +e] Pe, (A.10)

V=el[(A— KinoC) P + P(A — KinoC)le:
+2(y — ) "Pe. + 2(w — &) "Peu (A.11)

wherey(-) ando(-) stand forL{ h(@~1(-)) andLg@(¢1(»)),
respectively. Now, provided tha® and a positive definite
matrix Q satisfy theEq. (7}

(A — KinoC) TP+ P(A — KinoC) = —Q (A.12)

and letgm andpy be the minimum and the maximum eigen-
values ofQ and P, respectively. Under the assumptions that:

lull < U
ly =71 < Lyllz = 2| (A.13)

lo— ol < Lollz = 2|

whereL, andL,, are the Lipschitz constants of the respec-
tive functions and provided the previous conditions behave,
the following inequality can be obtained:

V < (—gm +2pm(Ly + LoU)) ez |1 (A.14)

If the gain K\ no is selected such thaiy and gy satisfy
Eq. (8)

—qm + 2pm(Ly + L,U) <0

then, V turns out to be negative and the norm of the esti-
mation error goes to zero as— oo. Hence, the conver-
gence of the algorithm is guaranteed. If the transfdr(n)

is nonsingular andd—1 is uniformly Lipschitz, then revis-
iting Egs. (A.1) and (A.2}he condition given b¥eq. (9)is
obtained.

It must be remarked tha&iq. (A.14)sets a sufficient con-
dition to guarantee stability. However, in some cases it may
result rather conservative. That is why in many applications
good estimation performance could be achieved even when
the gainK| no does not satisfEq. (A.14)

To evaluate the robustness properties of the LNO, a quan-
titative analysis is herein introduced. Let us first consider
that in the process model there is some dynamics uncer-
tainty. This situation can be stated asHqg. (10)

X =[f00) + Ar(0] + [8(0) + Ag()]u;  y = h(x)

whereA¢ (x) andAg(x) are the unknown parts of the process
dynamics. In order to represent the uncertainty process in
the transform domain, let us rec&t). (A.1). Then,

0P .

=— A.15
o (A.15)

Z
Consequently, the uncertain process can be written as

i =Az+ B (@ (2) + Lg@(@ 1 (2)u
+81(071(2)) + S2(@ 7 (D))u (A.16)

y=Cz (A.17)
whered; = (3@/0ox)As ands, = (3d/0x)Ag. Because the

terms§; and d2 are not accurately known, the following
observer is proposed for the uncertain system:

P=AZ+BLR@TIE) + Lg@(@  E)u + Gy — 3)
(A.18)
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Therefore, the dynamics of the estimation error is given by:

6. 27-2=(A—GCe,+(y—79)

+ (w — @®)u + 81 + S2u (A.19)

In order to find a bound for the estimation error, a function
V like the one inEq. (A.9)is chosen. Then, tacking into ac-
count thatV > pmlle.||? (with pm, the minimum eigenvalue
of P) the following inequality is obtained:

V< (—q—m N Ly LwU)> %
Pm Pm

\%4
+2pm(A1+ A2l), [ — (A.20)
Pm
Let us rename as follows
o2 Jdm PN L)
2pm Pm
g2 M as 4 Ao0)
Pm
Then, the following bound foe, is obtained:
&
lell < [P le, ()] + = (€ — 1) (A.21)
Pm 0
If we recall that
Ix =% =072 — et @)l < Lyl — 2|
[@(x(0)) — @(x(0))|| < Lxollx(0) — x(0)]
then, the following expression is obtained:
llexll < Lnyo,/i—Me@tllex(O)ll + Lyg(ee' -1 (A.22)
m

which can be rewritten aq. (11)

C
lex]l < C16" [lex ()] + f(eg’ —1

1897

Then, after similar calculations than in the previous case,
the following bound for the estimation error is obtained:

PMm
lexll < LyLyo, | —€"|lex(0)]
Pm

Ly pm
+ L2 Kino Anll (€ — 1)

A.25
6 pm ( )

which can be written akq. (14)

C3||[KLNno A
3llKino h||(e9t_

lexll < C16"lex (0)]| + .

1)
A.1l. The extension of the LNO design for general
nonlinear SIMO systems

The LNO design procedure can now be extended for
any observable SIMO system represented by the following
model:

X = f(x) + g(x, u)
y = h(x)

where(x e R"), (u € R) and(y € R™).

In such a case, the vectaén(x) in Eq. (4)has to be refor-
mulated as follows in order to obtain a change of coordinates
for the SIMO system:

(A.26)
(A.27)

o =[h() L) L{h()  ha()

L{ho(x) e (x) L ()]

where the elements; are integers that must verify the nec-
essary condition) ;_, p; = n to obtain a diffeomorphic
transform®(x). As there exist more than one outpd(x)
may be constructed using different outputs selections. If all
them outputs are included in its construction, thee- m.
However, if only some of the outputs are used, thenm.

In this way, the transforma = @(x) is obtained. With this
transform and the model given tgs. (A.26) and (A.27)

with C; and C, constants. Hence, a bound for the estima- the observer can be reformulated.

tion errore, has been deduced for processes with dynamics

uncertainty.
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