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Yield stress fluids display complex dynamics, in particular when driven into the transient regime
between the solid and the flowing state. Inspired by creep experiments on dense amorphous materials,
we implement mesocale elasto-plastic descriptions to analyze such transient dynamics in athermal
systems. Both our mean-field and space-dependent approaches consistently reproduce the typical
experimental strain rate responses to different applied steps in stress. Moreover, they allow us to
understand basic processes involved in the strain rate slowing down (creep) and the strain rate
acceleration (fluidization) phases. The fluidization time increases in a power-law fashion as the
applied external stress approaches a static yield stress. This stress value is related to the stress
over-shoot in shear start-up experiments, and it is known to depend on sample preparation and age.
By calculating correlations of the accumulated plasticity in the spatially resolved model, we reveal
different modes of cooperative motion during the creep dynamics.

Yield-stress fluids (YSFs), such as dense emulsions, col-
loidal suspensions and pastes, display a rich rheological
behavior that has attracted considerable attention in the
last decades (see reviews by Bonn et al. [1] and Nicolas
et al. [2]). Typically, the rheological behavior of YSFs is
characterized by the flow curve measured in a stationary
flowing state. The dependency of the stationary shear
stress Σ on the applied shear rate γ̇ is in many cases
well described by a generalised form Σ(γ̇) ≈ σY + Aγ̇n,
where the prefactor A, the “Herschel-Bulkley” exponent
n and the yield stress σY (better referred as the dynam-
ical yield stress) are the relevant fitting parameters. But
it is well known that assessing the material’s bulk proper-
ties at finite shear flow and in the steady state limit, does
not fully account for the complex dynamics of certain
YSFs. For example, the interplay between external driv-
ing and internal aging has been shown to cause complex
thixotropic behaviors [3], leading to non-homogeneous
flow even under homogeneous driving conditions. The
important challenge is then to study not only the well es-
tablished flow properties in the homogeneous steady flow
regime, but also the spatially resolved transient dynam-
ics that bridges the solid response at small deformations
to the flowing state at large deformations.

In recent literature, efforts have involved typically two
kinds of protocol: shear start-up and creep tests [4–7].
The first approach controls the applied strain whereas the
latter records the strain rate response to a sudden stress
step. In particular, creep experiments measure the strain
rate evolution in response to a fixed stress σ applied at a
given waiting time tw after sample preparation [4, 5, 8–
13]. In this way, the response of the system is probed
as a function of its initial age. Such experiments reveal
an intriguing behavior with two salient features: (i) the
strain-rate γ̇(t) in response to a stress larger than the
yield stress is strongly non-linear and nonmonotonous,
with a so called “S-shaped” dependence of γ̇(t) [5–7],
including a nontrivial “primary creep regime” often de-

scribed by a power law γ̇ ∼ t−µ; (ii) the fluidization time
scale τf diverges when approaching the yield stress, yet
in a non-universal manner. Both features are found to de-
pend on sample preparation. The experiments ultimately
lead for small applied stresses to a dynamical arrest or
steady creep and for sufficiently large applied stresses to
steady flow or failure, depending on the material.

In this work, we reproduce and interpret the above
experimental features using mesoscopic modeling ap-
proaches. The implementations we use are suitable for
athermal amorphous systems, which constitute a large
sub-class of YSFs, including foams, emulsions, physical
gels and granular media [1]; where large Peclet numbers
assure that thermal fluctuations are negligible compared
with mechanical fluctuations induced by the response to
an external driving. Note that the material mechanical
properties and dynamics will always depend on its prepa-
ration protocol and subsequent waiting period prior to
deformation; during which slow temperature-dependent
processes such as glassy relaxation are indeed relevant. In
any case, our approach complements previous studies ad-
dressing creep in systems for which thermal fluctuations
are also important during the dynamics, based on the soft
glassy rheology model [14–17] or mode-coupling theory
[18, 19]. We work in particular with mean-field [20] and
spatially-resolved versions of elasto-plastic models; where
the flow of YSFs results from the interaction among local
plastic events triggered by external driving. It has been
shown that such models account for various properties
of YSFs [21–27]. While previous formulations consider
a fixed strain rate as a control parameter [25, 28–31],
we extend those models here to describe the constant
imposed stress condition relevant for creep. With that,
we reproduce the experimental features (i) and (ii) ex-
plained above. Interestingly, we find the same fluidization
time dependence on initial aging as Siebenbürger et al.
[5]. Furthermore, we show that the divergence of the flu-
idization time is described by a power-law relation when
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the distance to yield is measured with respect to an age-
dependent static yield stress σsY larger than the dynami-
cal yield stress σY itself. As in experiments, the resulting
power-law exponent appears to be non-universal.

METHODS

Mesoscopic elastoplastic model

Our spatially-resolved approach is extended from a
previous version used to describe steady state flows
[25, 28, 29, 32]. It consists in a square lattice where a
node (ij) represents a typical cluster of particles undergo-
ing plastic events [21] and i, j the discretized coordinates
along the x and y directions respectively. Once a reference
state is set, each node is associated with a local plastic
deformation γplij which is, in general, heterogeneous. In
addition, a node can develop an elastic strain γelij asso-
ciated with a local stress σij = µγelij . The local stress
is composed of two parts, σij = σEXT + σINTij , where
σEXT is the externally applied uniform stress, and σINTij

encodes the stress fluctuations resulting from the inter-
actions between plastic heterogeneities, more precisely

σINTij = µ
∑
i′j′

Gij,i′j′γ
pl
i′j′ . (1)

The interaction kernel G is of the Eshelby’s type [33] as
described in [29], plus an homogeneous part 1/N with
N the system size, so that the integral over space of the
internal stress caused by any plastic strain field is null.
Thus σINTij describes the local stress fluctuations in a
macroscopically stress free state. Applying a macroscopic
stress amounts to shifting uniformly the local stress with-
out altering internal fluctuations.

Besides, each node alternates between a local plastic
state and a local elastic state by switching a local state
variable nij between 1 and 0,respectively. Explicitly when
|σij | is larger than σc, the site becomes plastic (nij =
0 −→ nij = 1) at a rate 1/τpl and becomes elastic again
(nij = 1 −→ nij = 0) at a rate 1/τres [22, 29], i.e.

nij(t) : 0
|σ|>σc, τ

−1
pl−−−−−−−−⇀↽−−−−−−−−

∀σ, τ−1
res

1 (2)

The local dynamics is expressed as

d

dt
γplij = nij

σij
µτ̃

= nij
σINTij + σEXT

µτ̃
. (3)

We set in our simulation τ̃ = τres = τpl = 1, σc = 1
and µ = 1. The model described above is a reformulation
of the model in [29] but allowing us to model a stress con-
trolled protocol. To summarize, Eq. (1) and Eq. (3) forms
a closed stochastic dynamical system governing the evo-
lution of the plastic strain field γplij (t). Given the initial

condition defined by γplij (t = 0) and the imposed stress
σEXT , we simulate the system and measure the macro-
scopic plastic strain 〈γ〉pl(t)=̂

∑
ij γ

pl
ij (t)/N , from which

the strain rate response 〈γ̇〉pl(t) results directly.

Mean-field approach for creep dynamics

The probability distribution function P (σ, t)dσ gives
the fraction of nodes with a local stress in [σ, σ + dσ] at
time t. Our mean-field approach to approximating the
time evolution of this probability distribution for a typ-
ical site is inspired by the Hébraud-Lequeux model [30]
and thus belongs to the class of athermal local yield stress
models [31, 34]. One should note that for the derivation
of this model, we assume several strong simplifications
with respect to the spatial elasto-plastic description, such
that all comparisons can only be done on a qualitative
level. As we will discuss later the detailed aspects of the
creep curve depend on these simplifications whereas other
more general features, like power-law scalings, appear to
be very general. Our mean-field approach describes the
dynamics of the distribution P (σ, t), and differs from the
original model [30] by further taking into account a strain
rate that may vary in time γ̇(t):

∂tP (σ, t) = −1
τ
θ(|σ| − σc)P (σ, t) + Γ(t)δ(σ)

−G0γ̇(t)∂σP (σ, t) +D(t)∂2
σP (σ, t) . (4)

The first term on the right hand side describes local
yielding with rate 1/τ if the local stress exceeds a yield
stress σc (θ denotes the usual Heaviside distribution) and
the second term is the corresponding gain term account-
ing for a instantaneous complete relaxation of the stress.
Here δ(σ) is the Dirac distribution, and Γ(t) is the rate
of plasticity

Γ(t) = 1
τ

∫
|σ|>σc

dσP (σ, t) . (5)

The third term accounts for the local elastic response
with shear modulus G0. The last term in Eq. (4) is a
mean-field approximation for interactions between dif-
ferent macroscopic regions presented in the spatially re-
solved model. This term describes in an effective way the
stress fluctuations caused by the elastic response to sur-
rounding yielding events as a diffusive stochastic process
with a time-dependent diffusion constant D(t) propor-
tional to the rate of plasticity Γ(t):

D(t) = αΓ(t) . (6)

This approximation by a diffusive process assumes that
the ”kicks” received by a typical site are uncorrelated and
of finite variance, an approximation to the true dynamics
of elastoplastic models that has been improved, in the
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quasistatic limit of vanishing strain rate, by the work of
Lin and Wyart [35] taking into account the fact that these
kicks have a broad distribution. We are not aware of any
similar extension to finite strain rates, and in this work
will remain at the simpler level of description.

Driving the system with a constant stress,∫
dσσP (σ, t) = constant, leads
by integration of 4 to a self consistent determination

of the strain rate as

γ̇(t) = 1
τG0

∫
|σ|>σc

dσσP (σ, t). (7)

Note that this strain rate corresponds physically to the
rate of total plastic strain released by the yielding sites,
each site releasing σ/G0, Equations 4 and 7 can be solved
numerically starting from a given initial condition P0 =
P (σ, t = 0).

Initial condition and aging

In the mean-field approach, the initial condition is
fully defined by P0(σ) = P (σ, t = 0). To represent the
quenched state of a system before applying the step
stress, we consider a distribution of zero mean P I0 (σ)
that describes the internal stress fluctuations of a sys-
tem in a macroscopically stress free state. This distribu-
tion will be instantaneously shifted to the desired value
of the imposed stress σEXT at the beginning of the creep
protocol to mimic the application of a stress step, i.e.
P0 = P I0 (σ − σEXT ). In the spatially resolved elasto-
plastic model, the initial state is defined by γplij (t = 0).
Using Eq. (1), γplij (t = 0) can be converted to a field of
internal stress fluctuations σINTij (t = 0) from which a
zero mean distribution, such as P I0 (σINT ), can be con-
structed. Then the distribution of local stresses at the
onset of creep experiments can also be described as an
instantaneous shift of the zero mean distribution with
the imposed step stress σEXT , such as P I0 (σ − σEXT ).
In practice, we first choose a specific form of P I0 (σ), then
convert it back to a random realization of γplij (t = 0) and
the creep test is simulated by evolving the model under
a fixed value of σEXT . Once an initial condition is pre-
pared, we numerically integrate the dynamic equations
using an explicit Euler method.

In principle we should consider only distributions
P I0 (σ) with a compact support in both models, i.e.
P I0 (σ > σc) = 0, so that the system does not evolve until
the external load is applied. Hence, our models do not
explicitly resolve the aging dynamics, but we mimic the
role of aging by using different choices of the initial condi-
tion. In a first approach, we assume for the distribution
P I0 (σint) a Gaussian shape1 centered at zero [36]. The

1 Strictly speaking this initial condition may violate the compact

FIG. 1. Check of the consistency between different protocols.
Dashed line: flow curves obtained by strain rate control pro-
tocol. Squares: flow curves obtained by stress control proto-
col. (a) Spatially-resolved elasto-plastic model. (b) Mean-field
model.

only parameter is the standard deviation sd, characteriz-
ing the level of residual heterogeneity in the amorphous
system. As more relaxed systems display a less promi-
nent “Boson peak”, indicative of a better homogeneity of
the elastic properties [37], we assume that relaxation is
also reducing the width of the stress distribution. Thus a
P I0 (σint) with a smaller sd corresponds to a more relaxed
system, and we take 1/sd as an indirect measure of the
age. Interestingly, the standard deviation of our distri-
bution can be formally linked to the aging parameter in
the lambda-model for thixotropic materials [38, 39], as
discussed in the Supplementary Material of Ref. [20].

RESULTS

Flow curves

Let us start, prior to the study of the creep behavior, by
comparing the flow curves obtained from the stress con-
trol protocol here presented to those obtained from the
strain rate control protocol explained elsewhere [29, 30].
In the stress control protocol, we set the stress by choos-
ing an arbitrary initial condition among those with the
desired stress value. The system evolves with a stress-
preserved dynamics and reaches a steady flow regime at
large times when the memory of the initial condition is
completely erased. We then average γ̇(t) over a large time
window in the steady state. For both the spatial model
and the mean-field approach, the comparison shown in
Fig. 1 reveals a good consistency between the two types
of protocols. The dynamic yield stress σY of the spatially-
resolved model is estimated to be ∼ 0.7536. The dynamic

support, but in practice the standard deviations studied are small
enough such that the statistical weight beyond σc can be re-
garded as negligible.
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yield stress σY of the mean-field model is a decreasing
function of the mechanical coupling strength α, as ex-
plained in Ref. [31].

Creep curves

In the following, we use exclusively the stress-
controlled protocol. An initial condition with an imposed
stress is chosen, corresponding to the application of a step
stress on a relaxed sample in experiments.

FIG. 2. Creep behavior at different imposed stresses for the
same initial relaxation (aging). Left and right columns show
respectively data produced by the elasto-plastic and mean-
field models. The upper row shows the strain time series and
the bottom row shows the corresponding strain rate time se-
ries. Elasto-plastic model: sd ≈ 0.083, values of ∆σ from pur-
ple to red (bottom to top) 0.005, 0.01, 0.015, . . . , 0.1. Mean-
field model: α = 0.4, sd = 0.32, values of ∆σ from purple to
red (bottom to top) 0.1, 0.12, 0.14, . . . , 0.28.

Typical responses of γ̇(t) and γ(t) for the two models
just after the application of a step stress are shown in
Fig. 2 and Fig. 3. All these curves are obtained with an
imposed stress larger than the dynamical yield stress, i.e.
∆σ ≡ σEXT−σY > 0. The fact that the two models differ
in their behaviors of γ̇(t) for t . 1 is due to the different
ways in which they describe the plasticity, namely a vis-
cous relaxation in the spatially resolved model compared
to an instantaneous one in the mean field approach. Be-
yond a microscopic time scale tmic ' 1, up to which they
depend on the details of the different dynamics, we no-
tice that the strain responses of the two models behave
qualitatively in the same way. Already at early times af-
ter tmic ' 1, the strain rate γ̇ monotonically decreases
for the smallest ∆σ > 0 cases and correspondingly the
strain γ reaches a plateau. This implies that even when
the applied stress step is above the dynamic yield stress,

FIG. 3. Creep behavior for different initial relaxation at the
same imposed stress. Left and right columns show data pro-
duced, respectively, by the elasto-plastic and mean-field mod-
els. The upper row shows the strain time series and the bot-
tom row shows the corresponding strain rate. Elasto-plastic
model: ∆σ = 0.03, sd values from purple to red (bottom to
top) 0.083, 0.089, 0.096, 0.104. Mean-field model: ∆σ = 0.18,
sd from purple to red (bottom to top): 0.28,0.3,0.32,0.34

a quenched system submitted to a creep test may not
yield to a flowing state. This is one of the main differ-
ences with fixed shear rate protocols, where the system
is always forced to yield. We will come back to this point
later. For a larger imposed stress, instead, both the spa-
tial and mean-field models reproduce the characteristic
S-shaped curve for γ̇(t) observed in experiments [5–7].

For a fixed initial aging level (sd fixed in Fig. 2),
before entering the plateau of the steady-state regime,
γ̇(t) displays a creep regime where the strain rate de-
creases with time in an apparent power-law fashion until
it reaches a minimum. Within this creep regime, the accu-
mulated strain γ(t) shows a sub-linear increase in time.
After the minimum in γ̇, the system enters a fluidiza-
tion regime where the strain rate speeds up toward the
steady-state, and correspondingly the accumulated strain
γ(t) increases super-linearly to reach the linear regime of
a steady flowing state. As we further increase the stress,
the extent of the creep regime decreases, until it even-
tually disappears and the system enters directly the flu-
idization regime after tmic.

A similar effect is found for a given applied stress when
we vary the initial aging level (Fig. 3). The duration of
the creep regime decreases when increasing sd (decreas-
ing age), up to the point where it disappears for large
enough sd, and all curves reach the same steady strain
rate. This indicates that, at a given applied stress, a less
relaxed system is more likely to be fluidized. These de-
pendences on the applied stress and the initial relaxation
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are reminiscent of the creep tests performed in bentonite
suspensions [7] and colloidal hard sphere systems [5].

Several works suggest a power law slowing down γ̇ ∼
t−µ in the creep regime [6, 11, 13, 40, 41]. Our data can be
indeed fitted with such a power law for a modest range of
the parameters (sd, σEXT ). By doing so in curves where
we can fit at least one decade of power-law, we observe
that the exponent µ decreases with increasing applied
stress and decreasing initial aging (increasing sd). The
values of µ extracted from the two models are similar
and vary from 0.6 to 1.2 (fits not shown here) depending
on sd and σEXT , a range comparable to those reported
in experiments [6, 11, 13].

Note that, in order to produce a comparable time de-
pendence of the strain rate, significantly different values
of the control parameters ∆σ and sd are used as input in
the two different models, as shown in Fig. 2 and Fig. 3.
In principle some of the differences in the creep response
could result from finite size effects in the spatial model
and discretization effects in the mean-field description.
But here, we took care that for the parameter range stud-
ied, these effects are not relevant. Instead, to understand
this discrepancy, one has to recall that the rules for the
local plastic deformation in the two models are very dif-
ferent. In the mean-field model the local stress release
is instantaneous and complete whereas the spatial model
implements a duration of events and only a partial local
stress relaxation. This is also the origin of different behav-
iors of the two models in their γ̇(t) for t . tmic ' 1. Be-
fore the vertical dashed line (Fig.2 and Fig.3), the strain
rate γ̇(t) from the elasto-plastic model increases linearly
(thus γ(t) increases quadratically) until t ≈ tmic, while
the strain rate from the mean-field model begin with a
finite value and varying significantly only after tmic ' 1.
Another obvious difference is the interaction kernel of the
spatial model, leading to a spatially correlated dynamics.
As shown before, the flow curves do not match and in
the mean-field model, they depend on the value of α, and
consequently so do the creep curves. For these reasons we
can only hope to qualitatively reproduce the creep curves
with the mean-field model. Interestingly, however there
are other quantities like the fluidization time dependence
on the imposed stress that are still quantitatively compa-
rable and thus point towards more general behavior. We
will discuss this point in detail in the following section.

Fluidization time

We now discuss the relation between the fluidization
time scale and the distance of the applied stress to the dy-
namical yield stress ∆σ = σEXT−σY . Two characteristic
times can be recognized in the evolution of γ̇, at least for
intermediate values of the applied stress. We call τm the
time where the minimum of γ̇(t) occurs, after the creep
regime, and define τf as the inflection point of γ̇(t) in

the fluidization regime before entering the steady state.
Following [6], we choose τf to characterize a fluidization
time scale. Note that τf is always defined, even in the
absence of a creep regime (e.g., for large values of ∆σ)
where we can still recognize a fluidization phase with an
acceleration of γ̇, and it will characterize the typical time
needed to reach the steady flow.

FIG. 4. Fluidization time τf vs ∆σ for different ini-
tial relaxation levels. Main figure: Elasto-plastic model,
sd increases from the top to the bottom (sd =
0.078, 0.081, 0.083, 0.089, 0.096). Inset: Mean-field model
with α = 0.3, sd increases from the top to the bottom
(sd = 0.22, 0.24, 0.26, ..., 0.34).

Fig. 4 shows the τf dependence on ∆σ for different
initial aging levels. Experimental results on a carbopol
microgel [6] suggest a power law dependence τf ∼ ∆σ−β
with β measured from 2 to 8 depending on sample prepa-
ration. This behavior must be distinguished from stud-
ies on thermal systems [17, 42–44] which suggest an ex-
ponential relation instead. Our results show, especially
when sd is small (well relaxed systems), a convexity of
the curves indicating that the fluidization time increases
faster than a power law as ∆σ approaches zero. As sd
becomes larger, τf (∆σ) becomes more power-law-like.
Fig. 4 also shows that more relaxed systems display a
stronger increase in τf for decreasing ∆σ. This aging de-
pendence of τf (∆σ) qualitatively agrees with the exper-
imental results of Divoux et al. [6].

Despite the different functional forms when changing
sd, to quantify the dependence of τf (∆σ) on aging, we
define for each curve a value of β. When appropriate
(large sd, as discussed above) we directly fit a power law
τf = A∆σ−β , finding in both the spatial and mean-field
models consistent values (β ≈ 2.2 and 2.38, respectively),
lying in the range of experimental results. For initially
well relaxed systems (small sd), we define an effective
β = max d ln τf

d∆σ , that equally carries information on how
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fast the fluidization process slows down with decreasing
stress. Results are shown in Fig. 5(a). We see a system-
atic decrease of β with sd for both models. Moreover, the
estimated values of β cover the same range (from 2 to 8)
found in carbopol microgels [6, 45]. We also notice that,
for the mean field model the exponent β depends on the
mechanical coupling strength α. A larger mechanical cou-
pling strength yields a larger value of β for the same sd.
It has been proposed in earlier works [46] that the value
of α should depend on the specific form of the interaction
kernel, and within simulations of particle based models
it has been found that α typically lies in the range[47] of
0.26 to 0.33, which is consistent with the range of α of
the mean-field model studied here.

Rationalization of the creep dynamics

In this section, we attempt to rationalize the behavior
of the global observables reported above by analyzing in
detail the evolution of the stress probability distribution.
Although the two models seem quite different in their for-
mulation, the underlying physical process are quite simi-
lar. For example, local plasticity in the mean-field model
consists of a total release of local stress and a sudden
return to the elastic state, which can be viewed as the
local plasticity in the elasto-plastic model in the limit
τres → 0 and τ̃ → 0. In the elasto-plastic model, the
stress released by plastic events is re-distributed accord-
ing to the interaction kernel through Eq. (1) keeping the
average stress constant but broadening the distribution
P (σ, t) with an amplitude roughly proportional to the
rate of plastic events. This effect of stress redistribution
is reasonably approximated in the mean-field model by
the diffusive term in Eq. (4) with the diffusion coefficient
proportional to the plastic activation rate. Although the
more realistic elasto-plastic model contains more infor-

FIG. 5. (a) Exponent β vs standard deviation sd. Main fig-
ure: mean-field model. Blue: α = 0.2, Green: α = 0.3, Red:
α = 0.4. Inset: Spatially resolved model. (b) Exponent β vs
sd/(σc − σY ). The labels for different curves are the same as
in (a).

mation, the simpler mean-field model already captures
the key ingredients needed to understand the underlying
mechanism of creep in athermal amorphous systems.

We therefore focus on the mean-field model and, to
gain insights into the complex dynamics during creep
tests, proceed to analyse the complex nonlinear be-
haviour of Eq. (4) in a qualitative manner. The time evo-
lution of P (σ, t) is driven by the existence of a population
of sites in an unstable state, (P (σ > σc)). Actually, by
integrating Eq. (4) beyond σc, one obtains

τ Γ̇(t) ≈ −Γ(t) + Γ(t)
[
σc|P (σc)|+ α|∂σP (σc)|

]
(8)

using that the negative part beyond −σc is negligible for
positively imposed stress and γ̇(t) ≈ σc

G0
Γ(t), (since P (σ)

weights little and decreases fast beyond σc). When the
population of unstable sites τΓ is non-zero, it decreases
exponentially due to the loss term of plastic activation
represented by the first term on the r.h.s of Eq. (8). At
the same time, it is supplied by two comparable fluxes
represented by the last term in Eq. (8): the stress drift
due to the elasticity and the stress diffusion due to stress
redistribution. These fluxes are both proportional to the
unstable population. In particular, the drift and diffusion
induced fluxes are respectively proportional to P

∣∣
σ=σc

and ∂σP
∣∣
σ=σc

.
Let us first consider two extreme cases with σEXT >

σY , where a steady flowing state exists according to the
flow curve. If the standard deviation of the initial Gaus-
sian P0(σ) is large enough, the supply of the unstable
sites is as important as the plastic activation. Thus, the
supply and the loss rapidly reach a situation where they
compensate each other. This corresponds to the curves
with no creep regime at high imposed stresses in Figs. 2
and 3. On the other hand, if the standard deviation of the
initial distribution P0(σ) is very small, not only a small
portion of the population is unstable but also the val-
ues of P

∣∣
σ=σc

and ∂σP
∣∣
σ=σc

are close to zero. The term
of supply is then negligible compared to the loss term in
Eq. (8). As a consequence, drift and diffusion are as weak
as the unstable population at the beginning and become
even weaker as the unstable population decreases expo-
nentially. The strain rate rapidly decreases, the system
gets eventually stuck in a configuration where all sites
are below σc and the flow stops. This situation corre-
sponds to the curves with vanishing strain rate in Fig. 2.
Note that this situation can be observed in experiments
and simulations with fixed stress protocols [1] even if the
applied external stress is larger than the dynamic yield
stress σY (α).

The above analysis raises the question of the evolution
of P (σ, t) that causes the transition from the creep regime
to the fluidization regime and eventually the steady flow,
observed for intermediate values of sd. It further suggests
that τf can diverge before ∆σ tends to zero (see Fig. 4).
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For a well relaxed system (small sd), we can therefore in-
troduce a static yield stress σsY defined as the minimum
stress needed to fluidize a system at rest. σsY will depend
on the initial state and will be larger than the dynamical
yield stress σY . In an extreme situation where sd = 0,
one should apply σEXT ≥ σsY = σc to make the system
flow. This is consistent with previous studies on transient
dynamics that report an age dependent overshoot in the
stress-strain curve [15, 48–50]. Actually, the stress over-
shoot in the zero strain rate limit is closely related with
σsY . A comparison between the two is discussed later on.

FIG. 6. Comparison between γ̇q(t) (red dashed curves) gen-
erated by Eq. (9) and γ̇(t) (blue solid curves) generated by
Eq. (4) for three different applied stresses by which we have
different extents of creep regimes.

To gain a better understanding of the initial evolution
of the strain rate, we study the full dynamics in the early
regime -such that mesoscopic blocks have been activated
at most once- by setting P = Pq+Pa, with Pq referring to
the sites that have never been activated and Pa to those
activated once. Thus Pq(σ, t = 0) = P0(σ), Pa(σ, t =
0) = 0 and the distributions obey:

∂tPq(σ, t) = −G0γ̇q(t)∂σPq(σ, t) +Dq(t)∂2
σPq(σ, t)

−1
τ
θ(|σ| − σc)Pq(σ, t) . (9)

∂tPa(σ, t) = −G0γ̇q(t)∂σPa(σ, t) +Dq(t)∂2
σPa(σ, t)

+Γq(t)δ(σ) . (10)

where γ̇q(t), Γq(t) and Dq are defined as above, with P
replaced by Pq. We note that Eq. (9) and Eq. (10) ap-
proximate the full dynamics, ignoring the possibility of
multiple activation. As a result they will always lead to
a vanishing strain rate at long times, γ̇q(t) → 0. How-
ever, the comparison between this approximation and the
full solution will give us insights into the time range over
which the initial condition influences the fluidization pro-
cess.

In Fig. 6, we compare the approximate solution γ̇q(t)
obtained by solving Eqs.9 and 10 with the full solution
γ̇(t), for the same initial settings (sd, σEXT ). We used
three different values of the applied stress to have differ-
ent extents of the creep regime. Fig. 6 confirms that in
all situations, up to the mid-fluidization regime, γ̇q(t) and
γ̇(t) are in good agreement, indicating that the dynamics
governing the creep regime is dominated by the sites un-
dergoing their very first activations. The curves also show
that multiple plastic activations must come into play for
the crossover from the fluidization regime to the steady
flow to take place. We can conclude that the existence
of a creep regime and the value of τm is determined by
the initial condition, while the full fluidization process,
characterized by τf , corresponds to a process of diluting
the memory of the initial state through multiple plastic
activations.

Aging dependence of the fluidization time scaling

FIG. 7. Main figure: τf v.s. ∆σs for the elasto-plastic model.
Inset: τf v.s. ∆σs for the mean-field model, α = 0.3. The
values of sd are the same as in Fig.4

The previous analysis suggests that the critical yield
stress above which the fluidization takes place, is not de-
termined by the flow curve, but rather by the initial state
and its level of relaxation. Hence, the divergence of τf
as a power-law cannot be expected if the dynamic yield
stress σY is taken as a reference. We then estimate a
static yield stress from the divergence of the fluidization
time τf , by identifying for each sd the value σsY (sd) for
which a power-law τf ∼ ∆σ−βs

s ≡ [σext − σsY (sd)]−βs

holds. Finding the best power-law fitting we estimate
both βs(sd) and σsY (sd). The result of this analysis is
shown in Fig. 7. We observe power-laws that span over
a decade each, with effective exponents depending on sd.
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The exponent values display a clearer trend in the mean-
field case, where βs seems to increase systematically with
sd. We note however that, for the elasto-plastic model,
finite size effects may delay a bit the fluidization τf when
the imposed stress is small, so that the static yield stress
may be overestimated 2.

In order to make more explicit the dependency of σsY
and βs on sd, we plot σsY −σY and βs against sd/(σc−σy)
in Figs. 8 and 9 (circles). This choice of axes responds to
the fact that in the mean-field model σY depends in-
versely on the mechanical coupling strength α; so, the
effect of the initial stress distribution are only compa-
rable for different values of α when they are measured
relative to the distance between the instability thresh-
old σc and the dynamical yield stress σY (α). In a way,
the ratio sd/(σc − σY ) compares the relaxation level (or
stress spread) prior to a creep test to the spread for a
system flowing very slowly, since σc − σY characterizes
the spread of the stress distribution in the zero strain
rate limit. When sd and σc−σY become comparable, we
would expect σsY − σY to approach zero. In other words,
if the initial aging is not enough (large values of sd), the
overshoot in the stress-strain curve (that distinguishes
σsY and σY ) should cease to be observed. This is consis-
tent with recent observations in particle based simula-

FIG. 8. Elasto-plastic model. Main figures: Circle: difference
between static and dynamic yield stress σs

Y − σY against the
relative relaxation coefficient sd/(σc − σY ). Cross: σs

Y − σY

measured as the stress overshoot at zero shear rate limit. Er-
ror bars within the size of markers. Insets: βs v.s. relative
relaxation coefficient.

2 The maximum system size for the simulations has been chosen
such that we enter the stationary state after a reasonable run-
ning time. Performing a finite size analysis to more accurately
estimate the value of static yield stress is difficult within our
numerical protocol.

FIG. 9. Mean-field model. Main figures: Circle: The difference
between static and dynamic yield stress σs

Y − σY against the
relative relaxation coefficient sd/(σc − σY ). Cross: σs

Y − σY

measured as the stress overshoot at zero shear rate limit.
Insets: βs v.s. relative relaxation coefficient. Blue: α = 0.2,
Green: α = 0.3, Red:α = 0.4.

tions [51] and confirmed by our data. Both models show
σsY − σY decreasing to zero as sd/(σc − σY ) approaches
O(1). The insets of Figs. 8 and 9 present the creep expo-
nent βs against the relative relaxation. We see, for both
models, an increase in βs with increasing level of relative
relaxation. Apart from some numerical fluctuations, the
collapse of βs obtained for different values of α, shown
in the inset of Fig. 9, suggests a master relation between
βs and sd/(σc−σY ). The value of βs found at large sd is
comparable with experimental measurements [6]. We also
plot β against the relative relaxation level sd/(σc − σY )
in Fig.5(b). Curves for different values of α collapse to-
gether, while the curve of the elasto-plastic model is a bit
shifted aside.

The static yield stress

Previously we have mentioned the relation between the
static yield stress σsY and the zero strain rate limit of the
stress overshoot, we now address this point. We switch
to the strain rate controlled protocol and perform shear
start-up simulations at different values of strain rate from
the same initial conditions used for the creep tests. We
record the largest stresses reached in the stress-strain
curves produced under different values of strain rates and
initial relaxation levels (sd). We find that for a given sd
the stress overshoot decreases with applied strain rate,
converging to a finite value when the strain rate goes
to zero (see the supplemental material of Ref.[20]). The
corresponding limit values for each sd are plotted with
crosses in Figs. 8 and 9. We observe that, although the
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static yield stress and the stress overshoot do not per-
fectly match, they stay representative each other along
the trend as function of sd. Comparing the spatial and the
mean-field models, these quantities have a better agree-
ment for small values of sd, which justifies the idea that
the underlying physics of the static yield stress observed
in creep experiments and that of the quasi-static shear
stress overshoot are closely related. We also notice that
at large values of sd/(σc − σY ), a small but systematic
deviation exists. In such situations, the initial conditions
correspond to poorly relaxed systems, with a very short
fluidization time, for which deviations from the scenario
outlined above may be expected.

Correlations and cooperativity in the creep
dynamics

The effective dynamics described by Eqs.9 and 10 and
the results shown in Fig. 6 explain, from a mean-field
perspective, in terms of populations above and below
characteristic values, the underlying physical process in-
volved in creep and fluidization. In the spatially resolved
model we are able to further see the spatial distribution
of these populations. Therefore, we discuss now the un-
derlying physics of creep dynamics from the point of view
of the cooperativity of local plastic events in the elasto-
plastic model. Let us recall that on each site, the state
variable nij(t) alternates between zero and one respec-
tively for elastic and plastic states. In the creep simula-
tion, one sub-volume or block contributes to the macro-
scopic strain rate only when in its plastic state so that
the time evolution of the state variable field can be used
to infer the physical process underlying creep.

In order to implement this, we choose to accumulate
the state variable during a given time window

fij(t,∆t) =
∫ t+∆t/2

t−∆t/2
nij(t′)dt′ (11)

The field fij integrates the plastic activation information
during that time window. Here ∆t is chosen to be of the
same order of magnitude as t for the plastic activations
at a given time scale t to be well represented by fij(t).
(Actually we have ∆t ≈ 2t/3.) We then compute the
following correlation map

C∆i,∆j(t) = 〈fijfi+∆i,j+∆j〉 − 〈f〉2

〈f2〉 − 〈f〉2
(12)

where 〈·〉 represents ensemble averages. To characterize
a “cooperativity level” of the plastic events taking place
within a corresponding time window, we define the cor-
relation intensity IC as the integral of the absolute value
of the correlation map:

Ic(t) =
∫ ∣∣C∆i,∆j(t)

∣∣dv. (13)

FIG. 10. Elasto-plastic model: The strain rate γ̇(t) (a)
and the corresponding correlation intensity Ic(t) (b) for
different applied stresses. From bottom to top ∆σ =
0.025, 0.035, . . . , 0.85

This quantity is indicative of how strongly plastic events
are correlated during a specific stage of the creep test.

The correlation intensity as function of time and the
corresponding γ̇(t) for different values of the imposed
step stress are presented in Fig. 10. After a linear in-
crease of both Ic(t) and γ̇(t) for t . tmic ' 1 (not-shown),
leading all curves to a common Ioc level, we observe dis-
tinctive features according to the value of the stress. For
the smallest applied stress, the correlation intensity de-
creases with time and drops to zero, similar to the strain
rate. For stresses that lead to steady state flow in the
long term, the correlation intensity continues to increase
beyond Ioc . Note that while the behaviour of the strain
rate at early stages is not a clear indicator of fluidisation,
an increasing Ic(t) appears to be clearly correlated with
it.

For those curves leading to a steady flowing state in
Fig. 10(a), the corresponding correlation intensities Ic(t)
(Fig. 10(b)) exhibit two characteristic time scales: (1) a
bump of Ic before entering the steady state flow, for ex-
ample between points 3 and 6 on the blue curve and
between points 2 and 4 on the red curve. This bump lies
roughly in the same range as the inflection point in γ̇, i.e.
corresponds to the fluidization time τf . This relates the
fluidization time scale τf to a maximum cooperativity
of plastic events. The amplitude of the maximum in Ic
decreases with increasing the applied stress beyond σsY .
When the applied stress is big enough, less cooperation
is needed in the system in order to overcome the static
yield stress. The large amplitude in Ic observed between
points 3 and 6 for the blue curve corresponds to a stress
that is very close to the static threshold σsY . There, sig-
nificant spatial correlations are needed in order to fluidize
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FIG. 11. Accumulated plasticity maps and correlation maps
within a time window for the first peak in the correlation
intensity. Correlations are plotted in log scale for a better
visibility. (a)(b) correspond to the point 4 of the blue solid
curve in Fig.10. (c)(d) correspond to the point 3 of the red
solid curve in Fig.10.

the system. (2) At longer times, after entering the steady
state where no other time scales can be recognized from
the γ̇(t) curves, further information comes from the cor-
relation intensity. Ic(t) displays a local maximum at long
time (point 7 on the red curve) after which it decreases
again to a low value in the steady state, point 9. Although
the strain rate seems to reach a steady state earlier, the
true steady flowing state is achieved only after the corre-
lation level (cooperativity) is relaxed to a steady value. In
fact, the strain rate is still evolving up to that moment,
but on a very small scale. One recognizes also in Fig. 10
that the steady state cooperativity level of plastic events
is inversely related to the steady state strain rate. Intu-
itively, a fast strain rate tends to activate plastic events
rather randomly, while a slow strain rate leaves enough
room (time) for correlations in plastic activity to develop
[52].

Activity maps and spatial correlation maps

The previous discussion of the development and corre-
lations of cooperativity can be explicitly visualized in our
spatial model by snapshots of accumulated plasticity and
spatial correlations within a time window, at different

stages of the dynamics and for different applied stresses.
Figs. 11 shows these maps at the instants marked by the
number labels in Fig. 10.

At the beginning, not far from Ic(t) = Ioc , even when
there is significantly more plastic activity for the larger
applied stresses than for the smaller one, their correlation
maps are almost structureless. A clearer spatial structure
of correlation only appears at the onset of fluidization,
close to the peak of Ic(t) (Fig. 11(b,d)). At this point,
the accumulated activity looks homogeneous in space for
the large applied stress (Fig. 11(c)), while the coopera-
tivity of plastic events is confirmed by the quadrupolar
form in the correlation map displayed in Fig. 11(d). On
the other hand, for the small applied stress we already
observe the plastic activity organized in several vertical
and horizontal bands (Fig. 11(a)) and a very pronounced
vertical correlation pattern in Fig. 11(b), corresponding
to the fluidization phase (4 to 5 in Fig. 10). This suggests
that a strong correlation developing along the y-direction
could be responsible for the burst of plastic events leading
to fluidization (and the speed-up of γ̇). Of course, there is
no a priori preferred direction for cooperativity and the
vertical correlation band observed in this example should
be equally frequent as an horizontal one. Note that the
elasto-plastic model may over-emphasize the stripes for-
mation for the cases of small applied stresses due to the
Fourier space implementation of the interaction kernel G
and the fact that the model assumes homogeneous elas-
ticity mediating the interactions among plastic events.
Nonetheless, transient shear banding during creep is in-
deed observed in more realistic MD models[4].

After the fluidization regime, the behavior of plastic
activity for the smaller applied stress is similar to that
for the larger applied stress (not shown). For the large
applied stress, the quadrupolar correlation gradually de-
velops until one arrives at the last maximum in Ic and
drops back to a very weak spatial pattern in the steady
state. Correspondingly, plastic activity is more organized
into thin slip lines at the last peak of the correlation in-
tensity than in the steady state. The phenomenology is
a bit more complex for the small applied stress, close to
σsY . The burst of cooperative plastic events that orga-
nize into the shear bands in the fluidization regime not
only speeds up the strain rate but may also induce sites
outside the bands to become unstable: since plastic ac-
tivations inside a band tend to decrease the stress, this
should be balanced by an increase of local stresses outside
the bands in order for the overall averaged stress to keep
constant. As a result, more plastic events take place ran-
domly outside the shear bands; this acts against overall
cooperativity: the correlation intensity drops significantly
after the large bump (3 to 6 in Fig. 10). The remaining
process afterwards is very much like the one in the case of
the large applied stress. Activity maps show thin random
slip lines for both stresses and the correlations are both
very weakly quadrupolar. The only difference is that the
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last maximum in Ic(t) appears later and the final sta-
tionary correlation pattern is a bit more pronounced for
the smaller stress.

CONCLUSIONS

We used both spatially-resolved and mean-field meso-
scopic models to study the creep behavior of athermal
amorphous materials with different initial relaxation de-
grees. Despite the simplicity of the models, they are suffi-
cient to reproduce the S-shaped strain rate response ob-
served in experiments. Further, the two models are con-
sistent in both qualitative and quantitative manners, so
that the mean-field model can be considered as a sim-
plified way to understand the more realistic spatially re-
solved model. We measured the power law slowing down
γ̇ ∼ t−µ in the creep regime. We found that the exponent
µ produced by both models lies in the same numerical
range as experimental results but is not universal with
respect to the applied stress and the level of initial re-
laxation. We distinguished, within the framework of the
models, the different underlying physical processes for the
two time scales τm and τf that characterize the creep be-
havior. τm is determined by the initial stress distribution
P0(σ) around the marginal stability threshold σc, while
τf is closely related to subsequent plastic activations and
spatial cooperativity of plastic events. We interpreted our
results on the relation between the fluidization time τf
and the applied stress σEXT by defining a static yield
stress σsY , which increases with initial relaxation. A con-
vincing power law τf ∼ (σEXT − σsY )−βs is observed,
with βs increasing when shortening the initial aging and
taking values comparable to those reported in experi-
mental studies. Finally, we defined an intensity of spatial
cooperativity that can serve as a precursor to distinguish
systems that fluidize from those stuck at the early stage
of the creep phase. The onset of the fluidization regime
is associated, especially for small stresses, with a strong
spatial cooperativity. Moreover, we noticed that spatial
correlations in cooperativity seem to be qualitatively dif-
ferent between systems that undergo a creep regime prior
to the fluidization and those that fluidize directly.
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