
1 23

Parasitology Research
Founded as Zeitschrift für
Parasitenkunde
 
ISSN 0932-0113
Volume 117
Number 12
 
Parasitol Res (2018) 117:3953-3963
DOI 10.1007/s00436-018-6105-2

Ortholinea concentrica n. sp. (Cnidaria:
Myxozoa) from the Patagonian seabass
Acanthistius patachonicus (Jenyns, 1840)
(Perciformes: Serranidae) off Patagonia,
Argentina
Gema Alama-Bermejo & Jesús
S. Hernández-Orts



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag GmbH Germany, part of Springer

Nature. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



ORIGINAL PAPER

Ortholinea concentrica n. sp. (Cnidaria: Myxozoa) from the Patagonian
seabass Acanthistius patachonicus (Jenyns, 1840) (Perciformes:
Serranidae) off Patagonia, Argentina

Gema Alama-Bermejo1,2
& Jesús S. Hernández-Orts1

Received: 22 May 2018 /Accepted: 30 September 2018 /Published online: 8 October 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
The Patagonian seabass Acanthistius patachonicus (Jenyns, 1840) (Serranidae) is a marine fish valued for commercial and sport
fisheries from Argentina. We report a new myxosporean (Cnidaria: Myxozoa) infecting the urinary system of the Patagonian
seabass from San Antonio Bay, San Matías Gulf, on the Atlantic Ocean. The mature myxospores were subspherical, 8.2–
11.0 μm× 7.9–11.0 μm and 7.7–9.0 μm in thickness; two subspherical polar capsules, 2.4–3.8 μm× 2.3–3.6 μm, with 3 to 4
turns of the polar tubule; openings on different valves in almost opposite directions. Ornamented shell valves exhibited 17–20
concentrically organized surface ridges. SSU rDNA phylogenetics analyses placed the new species in the freshwater urinary tract
clade, clustering in a clade formed by Myxobilatus gasterostei (Parisi, 1912), Acauda hoffmani Whipps, 2011, and other
Ortholinea spp. Based on spore morphology, site of infection, and molecular data, we described this myxozoan as Ortholinea
concentrica n. sp.

Keywords Myxozoa .Marine fish . Urinary system . South America . Taxonomy . SSU rDNA . Phylogeny

Introduction

Myxozoans are microscopic cnidarian endoparasites from
aquatic environments. They have complex life cycles, that
alternate between an intermediate host (mainly fish) and a
definitive host (annelids or bryozoans). They are a diverse
and widespread group of spore-forming parasites, with
approx. 2400 species described, representing 18% of all
known cnidarian species (Zhang 2011; Okamura et al.
2015). Taxonomy and systematics of this group of parasites
are challenging, since the traditional classification, based on
spore morphology, does not always correlate with the more
recent molecular phylogeny-based systematics (Fiala et al.

2015a). Recent large-scale cophylogenetic studies determined
that the invertebrate host is the strongest defining character for
myxozoans evolution, with two large clades: polychaete in-
fecting myxozoans (marine clade) and oligochaete infecting
myxozoans (freshwater clade) (Holzer et al. 2018).

The oligochaete-freshwater urinary tract clade (also known
as freshwater urinary bladder clade, see Fiala 2006 and Holzer
et al. 2018) is a heterogeneous clade containing representa-
tives from at least 7 different genera, each of them with very
different spore morphotype (Whipps 2011; Karlsbakk and
Køie 2011; Fiala et al. 2015a). Ortholinea Shulman, 1962 is
a representative of this clade and a genus known to have
ancestors that likely reinvaded marine habitats (Karlsbakk
and Køie 2011; Fiala et al. 2015a, b). Due to its phylogenetical
proximity, Ortholinea was recently transferred from
Ortholineidae to Myxobilatidae (Karlsbakk et al. 2017).
Ortholinea contains approx. 20 species, most of them
inhabiting the excretory system of marine fishes. Only two
species have their complete life cycle elucidated, using marine
oligochaetes as definitive invertebrate hosts (Rangel et al.
2015, 2017).

The Patagonian seabass Acanthistius patachonicus
(Jenyns, 1840) (Serranidae) is a common rocky reef fish in
South-Western Atlantic valuable for both commercial and
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recreational fisheries (http://www.fishbase.org; Irigoyen et al.
2008; Galván et al. 2009). A. patachonicus has no reported
myxozoan infections, and only one species of the genus
Ortholinea, O. basma Ali, 2000 was reported in the South
Atlantic (Mackenzie & Kalavati 2014). During a parasitolog-
ical survey, myxozoan parasites were detected in the urinary
bladder of the Patagonian seabass. Herein, we describe a new
species of myxozoan from the urinary system of the
Patagonian seabass using morphological and molecular data
to establish its identity and determine its phylogenetic rela-
tionships within Ortholinea and other members of the fresh-
water urinary system clade.

Material and methods

Fish collection

Between May and June 2017, 10 Patagonian seabass
A. patachonicus (15.0 ± 3.5 cm total length and 68.1 ±
53.5 g in weight, 1 female and 9 undetermined sex) were
caught by rod from Punta Verde (40° 43′ 47′′ S, 64° 54′ 45′′
W) in San Antonio Bay, San Matías Gulf, Argentina. Fish
were captured during low tide in a rocky area, kept refrigerat-
ed and examined within 24 h of capture. Wet mounts of the
skin, gills, gall bladder, intestine, and urinary system (kidney,
ureter, and urinary bladder) were examined for parasites using
light microscopy at × 400–1000 magnification. This study
focuses on the parasites detected in the urinary system.

Morphological analysis

Digital images of myxozoan stages were obtained at × 400–
1000magnification with a Nikon Cool P5100 camera mounted
on a Nikon Eclipse E200 microscope. Morphological descrip-
tions and measurements of spores followed the recommenda-
tions of Lom and Arthur (1989). Measurements were taken
from digital images using the software ImageJ 1.47v (National
Institutes of Health, Bethesda, USA) and calibrated against a
digital image of a graticule. Drawings of spores were made
using photomicrographs. Measurements are given in micro-
meters and are presented as the mean followed by the standard
deviation and the range in parenthesis. Archival smears were
stained with Diff Quik and mounted with DPX (Sigma-
Aldrich, Missouri, USA).

Urine collected from the urinary bladder containing
myxospores was fixed in 2.5% glutaraldehyde in 0.1 M PBS
and processed for scanning electron microscopy (SEM), by
adhering the spores to a poly-D-lysine coated coverslip,
followed by fixation, postfixation and dehydratation accord-
ing to Alama-Bermejo et al. (2012). Samples were critical
point dried, gold sputtered-coated and examined using a
JEOL JSM-7401F Scanning Electron Microscope (JEOL

Ltd., Tokyo, Japan) at the Laboratory of Electron
Microscopy, Institute of Parasitology, Czech Academy of
Sciences.

Molecular analysis

The kidney (n = 10), ureter (n = 1), and urinary bladder (n = 8)
were preserved in 96% ethanol. Tissue was air-dried and re-
suspended in TNES (10 mM Tris-HCl (pH 8), 125 mMNaCl,
10 mM EDTA, 0.5% SDS, 4 M urea), digested with
100 μg/ml of proteinase K, overnight at 55 °C, and extracted
following a standard phenol-chloroform protocol. The extract-
ed DNAwas re-suspended in 50–100 μL RNAse/DNAse-free
water. SSU rDNA amplicons were first amplified using
primers 18e (5′-CTG GTT GAT CCT GCC AGT-3′; Hillis
and Dixon 1991) and 18R (5′-CTA CGG AAA CCT TGT
TAC G-3′; Whipps et al. 2003), followed by a nested PCR
with MYX1F (5′-GTG AGA CTG CGG ACG GCT CAG-3′;
Hallett and Diamant 2001) and MX3 (5′-CCA GGA CAT
CTTAGG GCATCA CAG A-3′; Andree et al. 1998). PCRs
were conducted in 10–20 μl reactions with 0.025Uμl−1

Titanium Taq DNA polymerase and 10× buffer which
contained 1.5 mM MgCl2 (BD Biosciences Clontech, Shiga,
Japan), with 0.2 mM of each dNTP, 0.5 mM of each primer,
and 10–150 ng of template DNA. PCR cycling conditions
consisted of 95 °C for 3 min, followed by 30 cycles of
94 °C for 50 s, 58–60 °C for 50 s and 68 °C for 1 min 30 s
to 2 min, and final extension 68 °C for 10 min. DNA
amplicons were visualized with a 1% agarose gel in sodium
acetate buffer and purified for sequencing using a Gel/PCR
DNA Fragments Extraction Kit (Geneaid Biotech Ltd., New
Taipei City, Taiwan). Nested PCR primers were used for se-
quencing. Sequences were obtained with an ABI PRISM
3130 × 1 automatic sequencer (Applied Biosystems, Foster
City, USA). The overlapping partial sequences of SSU
rDNA were trimmed and assembled into consensus contigs
using Geneious 7.0.6. (Biomatters Ltd., Auckland, New
Zealand).

Phylogenetic analyses

SSU rDNA sequences were submitted to the Basic Local
Alignment Search Tool (BLAST) on GenBank to identify
the closest relatives. Newly generated sequences were aligned
together with sequences for species of Ortholinea and species
of other related genera retrieved from GenBank (see Table 1
for details). Alignment and phylogenetic analyses were per-
formed with programs as plugins in Geneious 7.0.6. An align-
ment was created using MAFFT v. 7.017, with L-INS-I algo-
rithm and default parameters. All similar sequences were
within the freshwater urinary bladder clade according to
Fiala (2006). The basal freshwater myxosporean Myxidium
lieberkuehniBütschli, 1882 was used as outgroup. No regions
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Table 1 Taxa included in the phylogenetic analyses with data on the host, locality, and GenBank accession number (SSU rDNA)

Species Host Locality GenBank
accession no.

Source

Genus AcaudaWhipps, 2011

A. hoffmaniWhipps, 2011 Lepomis macrochirus
Rafinesque, 1819

Cazenovia Lake,
New York (USA)

HQ913566 Whipps (2011)

Genus Chloromyxum Mingazzini, 1890

Chloromyxum sp. Salmo salar Linnaeus, 1758 Amhainnan Stratha
Bhig River,
Scotland (UK)

AJ581917 Holzer et al. (2004)

Genus Hoferellus Berg, 1898

H. azevedoiMatos, da Silva, Hamoy
& Matos, 2018

Chaetobranchus flavescens
Heckel, 1840

Marajó Island, State
of Pará (Brazil)

MF162297 Matos et al. (2018)

H. alosaeWünnemann, Holzer,
Pecková, Bartošová-Sojková,
Eskens & Lierz (2016)

Alosa alosa (Linnaeus, 1758) Dordogne/Garonne
River (France)

KU301052 Wünnemann et al.
(2016)

H. anuraeMutschmann, 2004 Hyperolius kivuensis Ahl, 1931 Kakamega (Kenya) KU141397 Alama-Bermejo et al.
(2016)

H. carassii Achmerov, 1960, Carassius gibelio (Bloch 1782) Jihlava (Czech Republic) KU141400 Alama-Bermejo et al.
(2016)

H. cyprini (Doflein, 1898) Cyprinus carpio Linnaeus, 1758 Jihlava (Czech Republic) KU141402 Alama-Bermejo et al.
(2016)

H. gnathonemi Alama-Bermejo,
Jirků, Kodádková, Pecková, Fiala
& Holzer, 2016

Gnathonemus petersii
(Günther, 1862)

Nigeria, Africa (not exact
location, fish obtained
from pet shop).

KU141398 Alama-Bermejo et al.
(2016)

H. gilsoni (Debaisieux, 1925) Anguilla anguilla
(Linnaeus, 1758)

Amhainnan Stratha
Bhig River,
Scotland (UK)

AJ582062 Holzer et al. (2004)

Hoferellus sp. C. carpio Chřeštóvice
(Czech Republic)

KU141401 Alama-Bermejo et al.
(2016)

Genus Myxidium Buetschli, 1882

M. giardi (Cépede, 1906) A. anguilla Amhainnan Stratha
Bhig River,
Scotland (UK)

AJ582213 Holzer et al. (2004)

M. lieberkuhni Bütschli, 1882 Esox lucius Linnaeus, 1758 Europe X76639 Schlegel et al. (1996)

M. streisingeri Whipps, Murray
& Kent, 2015

Danio rerio (Hamilton, 1822) Baltimore, Maryland
(USA)

KM001685 Whipps et al. (2015)

Genus Myxobilatus Davis, 1944

M. gasterostei (Parisi, 1912) Gasterosteus aculeatus
Linnaeus, 1758

Willamette River,
Oregon (USA)

EU861210 Atkinson and
Bartholomew (2009)

Genus Ortholinea Shulman, 1962

O. auratae Rangel, Rocha,
Borkhanuddin, Cech, Castro,
Casal, Azevedo, Severino,
Székely & Santos, 2014

Limnodriloides agnes
Hrabĕ, 1967

Portimão, Algarve
(Portugal)

KR025868 Rangel et al. (2015)

O. labracis Rangel, Rocha, Casal,
Castro, Severino, Azevedo,
Cavaleiro & Santos, 2017

Dicentrarchus labrax
(Linnaeus, 1758)

Portimão, Algarve
(Portugal)

KU363830 Rangel et al. (2017)

O. mullusi Gürkanlı, Okkay, Çiftçi,
Yurakhno & Özer, 2018

Mullus barbatus
Linnaeus, 1758

off Sinop, Black Sea
(Turkey)

MF539825 Gürkanlı et al. (2018)

O. orientalis (Shulman &
Shulman-Albova, 1953)

Clupea harengus
Linnaeus, 1758

Øresund (Denmark) HM770871 Karlsbakk and Køie
(2011)

O. saudii Abdel-Baki, Soliman,
Saleh, Al-Quraishy &
El-Matbouli, 2015

Siganus rivulatus
Forsskål & Niebuhr, 1775

off Jeddah, Red Sea,
(Saudi Arabia)

JX456461 Abdel-Baki et al. (2015)

Ortholinea sp. Aequidens plagiozonatus
Kullander, 1984

Brazil KP637274 Unpublished

Ortholinea sp A. alosa Dordogne/Garonne
River (France)

KU301053 Wünnemann et al.
(2016)
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were excluded from the analysis. Phylogenetic analyses used
included maximum likelihood (ML), maximum parsimony
(MP) and Bayesian inference (BI). ML was implemented in
RAxML v. 7.2.8 (Stamatakis et al. 2005), MP in PAUP v4.0
(Swofford 2002) and BI in MrBayes 3.2.6 (Ronquist and
Huelsenbeck 2003). GTR + I + G was the best-fit model ac-
cording to jModeltest 2.1.10 (Darriba et al. 2012). ML and
MP analyses were conducted using heuristic searches with
random taxa addition and the TBR swapping algorithm. All
characters were treated as unordered and gaps as missing data.
Bootstrap support was calculated from 1000 replicates. For
BI, posterior probabilities were calculated over 1000,000 gen-
erations via two independent runs of four simultaneous
Markov chain Monte Carlo with every 200th tree saved.
Burn-in was set to 100,000 generations. Identity of bases
which are identical (%) were calculated with PAUP v4.0.
The alignment was 5′ and 3′ ends trimmed and inserts of
Myxidium streisingeri Whipps, Murray & Kent, 2015
(GenBank accession no. KM001684) were excluded.

Results

Ortholinea concentrica n. sp.

Taxonomic summary

Type host: Acanthistius patachonicus (Jenyns, 1840)
(Perciformes: Serranidae), Patagonian seabass.

Type locality: Punta Verde, San Antonio Bay, San Matías
Gulf (40°43′47^S, 64°54′45^W) Rio Negro, Argentina.

Site in host: urinary system (kidney, ureters and urinary
bladder).

Prevalence: 30% (3/10) microscopic detection, 60% (6/10)
molecular detection.

Etymology: named for the concentric pattern of ridges on
the shell valve of the spores.

Material deposited: Invertebrate Collection ofMuseo de La
Plata, FCNyM-UNLP, La Plata, BuenosAires, Argentina (two
Diff Quik stained slides of air-dried spores, Cat. No. MLP-Oi
4184 and 4185).

Molecular data: partial SSU rDNA sequence 1627 bp
(GenBank Acc. Number MH793352).

Description

Myxospores typical of the genus Ortholinea, and abundant
pre-sporogonic and early sporogonic stages were observed
in the urinary bladder. No parasite stages were visually detect-
ed in the kidney smears or ureter, but only SSU DNA was
detected (Table 2). No clinical signs were observed.

Description of the myxospores Based on 41 myxospores
from the urinary bladders of two hosts and spores exam-
ined under SEM. Subspherical myxospores (Fig. 1a–f
and 2) measured 8.9 ± 0.6 (8.2–11.0) × 8.7 ± 0.6 (7.9–
11.0) (valvular view), and 8.3 ± 0.4 (7.7–9.0) in thickness
(sutural view). Two valves, joined by transverse, straight
suture, with 17 to 20 surface ridges partially organized
concentrically, some bifurcated, occupying entire valve
surface (Fig. 3). Different surface ridges organization ob-
served: i) spiraling center near shell valve margin (Fig. 3a);
ii) spiraling center at mid-level of shell valve (Fig. 3b); or
iii) with two spiraling centers (Fig. 3c). Two subspherical
polar capsules, 3.1 ± 0.3 (2.4–3.8) × 2.7 ± 0.2 (2.3–3.6).
Polar capsule openings at anterior end (Fig. 3), each of
them opening in a different valve in almost opposite direc-
tions. Polar tubule (filament) had 3 to 4 coils. Sporoplasm
binucleate.

Description and localization of the plasmodia Based on 31
plasmodia from one host. Motile amoeboid round and
pyriform plasmodia, 46.6 ± 23.4 (13.7–111.1) × 32.6 ±
13.6 (13.0–65.4), in lumina of urinary bladder (Fig.
1g–i). Polysporic plasmodia, spores developing in pairs.
Profuse budding and/or long pseudopods in some
plasmodia. Sometimes plasmodia clustered together
(Fig. 1i).

Remarks

Ortholinea concentrica n. sp. is morphologically similar to
O. auratae Rangel, Rocha, Borkhanuddin, Cech, Castro,

Table 1 (continued)

Species Host Locality GenBank
accession no.

Source

Ortholinea sp. S. rivulatus Israel DQ333433 Unpublished

Genus Zschokkella
Auerbach, 1909

Zschokkella sp. A. anguilla Amhainnan Stratha
Bhig River,
Scotland (UK)

AJ581918 Holzer et al. (2004)
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Casal, Azevedo, Severino, Székely & Santos, 2014,
O. mullusi Gürkanlı, Okkay, Çiftçi, Yurakhno & Özer, 2018
and O. labracis Rangel, Rocha, Casal, Castro, Severino,
Azevedo, Cavaleiro & Santos, 2017 (see Table 3). The new
species could not be separated by morphology to O. auratae
and O. mullusi, with only differences in spore thickness (7.7–
9.0 vs 6.3–8.4 and 7.5–7.9). In contrast, O. labracis clearly
differs from the new species by being smaller (6.8–8.7 × 6.7–
7.7 vs 8.2–11.0 × 7.9–11.0) and thinner (5.8–7.7 vs 7.7–9.0).
Additionally, O. labracis differs O. concentrica n. sp. in the
number of coils of polar tubules (4 to 5 vs 3 to 4) (see Ben-
David et al. 2016 for polar tubule term). While morphologi-
cally similar, the molecular data (see below), as well as the

different geographic location and host, support the distinct
species status of O. concentrica n. sp.

The new species can be differentiated from O. saudii
Abdel-Baki, Soliman, Saleh, Al-Quraishy & El-Matbouli,
2015 in having narrower spores (7.9–11.0 vs 11.0–13.0), in
the shape of the polar capsule (subspherical vs spherical), the
maximum number of coils of polar tubule (4 vs 3) and the
presence of ornamented shell valves in O. concentrica n. sp.

Spores of O. orientalis (Shulman & Shulman-Albova,
1953) have been described from several clupeids and gadids
fishes (Shulman and Shulman-Albova 1953; Aseeva 2000,
2002; Karlsbakk and Køie 2011). The new species differ from
O. orientalis ex Clupea harengus Linnaeus, 1758 (type host)

Fig. 1 Ortholinea concentrica n. sp. spores and plasmodia (LM) from the
urinary bladder of Acanthistius patachonicus. a–b Three myxospores in
valvular view at different depths. c Myxospore sutural view. d–f
Myxospores showing overlapped polar capsules. e Apical view of a

myxospore. g Plasmodia developing four spores. h Pyriform plasmodia
with two spores. i Large plasmodia, with one main lobe and three smaller
buds, one of them developing two spores. Scale bar a–b, 5μm, c–f, 2μm,
g–i, 10 μm

Table 2 Ortholinea concentrica n. sp. prevalence, as revealed by light microscopy and by PCR of urinary system of Acanthistius patachonicus,
number of sequences, sequence length and GenBank accession number

Tissue Prevalence-
microscopy

Prevalence-
PCR

Number of
sequences

Sequences length and GenBank Acc. Number

Kidney 0/10 4/10 (40%) 3 1623 bp (MH793344), 1606 bp (MH793349),
1608 bp (MH793351)

Ureter 0/1 1/1 1 1094 bp (MH793345)

Urinary bladder 3/10 (30%) 6/8 (75%) 7 853 bp (MH793343), 1616 bp (MH793346), 1622 bp
(MH793348), 938 bp (MH793347), 1623 bp (MH793350),
1099 bp (MH793353), 1627 bp (type - MH793352)

Parasitol Res (2018) 117:3953–3963 3957
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in the size (8.2–11.0 × 7.9–11.0 vs 7.5–8.5 × 7.5–7.6) and
thickness (7.7–9.0 vs 5.1) of the myxospores. O. concentrica
n. sp. can be differentiated from O. orientalis ex Eleginus
navaga (Walbaum, 1792) by having thicker myxospore
(7.7–9.0 vs 6.6–8.0). Measurements of the myxospores of
O. orientalis from other fish hosts and descriptions (see
Table 2 in Karlsbakk and Køie 2011) appear overlapped with
those of O. concentrica n. sp. However, both species can be
distinguished by their disparate geographical distribution
(Denmark and Bering Sea vs Patagonia). No ornamentation

of the shell valve was reported for O. orientalis by Shulman
and Shulman-Albova (1953) and Aseeva (2000, 2002), al-
though ridges were later observed by Karlsbakk and Køie
(2011).

Previous to our description,O. basma was the only species
of Ortholinea reported in South Atlantic. This species was
described from the urinary bladder of Clinus agilis Smith,
1931 from tide pools in the Atlantic coast of South Africa
(Ali 2000). O. basma can be distinguished from
O. concentrica n. sp. in its distinctly larger spores (12.0–

Fig. 3 Scanning electron
micrographs of Ortholinea
concentrica n. sp. spores from the
urinary bladder of Acanthistius
patachonicus. a–d External
ornamentation showing different
ridge arrangements on the shell
valves. a Spiraling center near
shell valve margin. b Spiraling
center at mid-level of shell valve.
c Spore with two spiraling
centers. Arrow points the polar
capsule opening. Scale bar 1 μm

a bFig. 2 Drawing of Ortholinea
concentrica n. sp. spore from
Acanthistius patachonicus. a
Valvular view. b Sutural view.
Surface ridges are schematically
represented. Scale bar 2 μm
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15.0 × 11.8–13.0 vs 8.2–11.0 × 7.9–11.0), the shape of the
polar capsules (pyriform vs subspherical), and in the number
of ridges on the surface of the valves (12–13 vs 17–20).

Currently, most Ortholinea spp. have been described with
ornamented shell valves, including both marine and freshwa-
ter species (Thélohan 1895; Davis 1917; Shulman and
Shulman-Albova 1953; Naidenova 1968; Meglitsch 1970;
Wierzbicka 1986; Lom et al. 1992; Kovalyova et al. 1993;
Padma and Kalavati 1993; Su and White 1994; Lom and
Dyková 1995; Ali 2000; Moshu and Trombitsky 2006;
Abdel-Ghaffar et al. 2008; Rangel et al. 2014, 2017;
Gürkanlı et al. 2018). However, only in O. auratae,
O. australis Lom, Rohde & Dyková, 1992, O. basma and
O. concentrica n. sp. the valve ornamentation was described
in detail using SEM photomicrographs. Lom and Dyková
(1995) provided diagrammatic schemes for the ridges arrange-
ment ofO. fluviatilis Lom&Dyková, 1995, which are similar
to the patterns observed in O. concentrica n. sp. The new
species has a similar number of surface ridges (i.e., between
17 to 20) to O. auratae, O. undulans (Meglitsch, 1970) and
O. striateculus Su & White, 1994. Other species of
Ortholinea, such as O. africanus Abdel-Ghaffar, El-Toukhy,
Al-Quraishy, Al-Rasheid, Abdel-Baki, Hegazy & Bashtar,
2008, O. australis and O. basma differs from the new species
in having fewer surface ridges (between 10 to 16). In
O. australis, surface ridges were described as 1 to 3 circular
ridges + either smooth rest of the shell valve or 5 to 9 longi-
tudinal ridges, evidencing different ornamentations patterns
(see Lom et al. 1992).

Molecular results

Partial SSU rDNA sequences obtained in this study are listed
in Table 2. Eleven isolates were obtained fromO. concentrica
n. sp. from different parts of the urinary system from six hosts.
All sequences were identical except for two urinary bladder
isolates (ME3UB GenBank Acc. Numb. MH793343 - 853 bp
and ME7UB GenBank Acc. Numb. MH793350 - 1623 bp)
that showed an intraspecific variability of 0.3–0.5% (2 bp of a
837 bp alignment).

Interspecific SSU rDNA identity to other members of the
urinary freshwater clade (715 bp alignment) revealed high
variability. O. concentrica n. sp. showed the lowest sequence
divergence toO. labracis (17.2%), Acauda hoffmaniWhipps,
2011 (17.5%) and Myxobilatus gasterostei (Parisi, 1912)
(17.9%), followed by O. mullusi (18.1%), O. auratae
(18.2%) and Ortholinea sp. ex Aequidens plagiozonatus
Kullander, 1984 (18.3%).

All the phylogenetic analyses placed the new species in a
clade containing other marine species of Ortholinea (i.e.,
O. labracis, O. auratae and O. mullusi), and A. hoffmani,
M. gasterostei and the freshwater Ortholinea sp. ex

A. plagiozonatus (see Fig. 4). The relationship between
O. concentrica n. sp. and Ortholinea sp. ex A. plagiozonatus
was not stable and was not observed in all tree topologies or
had < 50% support.

The analysis of interspecific SSU sequence distances
(Fig. 5) revealed large differences in the minimum se-
quence dissimilarity between Ortholinea spp. and other
members of the freshwater urinary bladder clade. Three
different groups were observed: (i) high minimum inter-
specific distance (> 30%), O. saudii and Ortholinea sp.
ex Siganus rivulatus Forsskål & Niebuhr, 1775; (ii) medi-
um min imum in te r spec i f i c d i s t ance (10–20%) ,
O. conc e n t r i c a n . s p . a nd Or t ho l i n ea s p . e x
A. plagiozonatus; (iii) low minimum interspecific distance
(< 10%), O. auratae, O. labracis, O. mullusi, O. orientalis
and Ortholinea sp. ex Alosa alosa (Linnaeus, 1758).

Discussion

To date, all Ortholinea spp. with molecular data available are
marine taxa, except for two undescribed species: Ortholinea
sp. ex A. alosa, from an anadromous fish, and Ortholinea sp.
ex A. plagiozonatus, from a freshwater fish. Interestingly, all
sequenced taxa morphologically identified as belonging to
Ortholinea clustered in the oligochaete-freshwater urinary
tract clade. This situation is not uncommon: almost one quar-
ter of species in the freshwater lineage were obtained from
marine hosts and habitats (Holzer et al. 2018).

Different genera cluster in the oligochaete-freshwater uri-
nary tract clade and Ortholinea is not the only polyphyletic
genera in the clade (Fig. 4). One of its representatives, the
genus Hoferellus Berg, 1898 was divided in two: Hoferellus,
sensu stricto, containing the type species H. cyprini (Doflein,
1898), and Hoferellus sensu lato, which contains all other
Hoferellus species that show phylogenetic affinities to other
genera in the clade (see Alama-Bermejo et al. 2016;
Wünnemann et al. 2016; Matos et al. 2018). Unfortunately,
O. divergens (Thélohan, 1895), the type species of
Ortholinea, has not been sequenced yet, so no further divi-
sions can be defined at the present time.

The SSU rDNA distances revealed a slightly different
grouping than the one observed in the phylogenetic analysis,
probably influenced by the high divergence (long branch at-
traction) of the clade formed by Ortholinea spp. infecting
S. rivulatus. The analysis of the distances seemed to support
some relationship between O. concentrica n. sp. and
Ortholinea sp. ex A. plagiozonatus. A possible affinity could
be due to some relative geographical proximity, since both
taxa were collected in South America (Videira 2015).

The traditional spore-based taxonomy and SSU rDNA
phylogeny have limitations on defining the relationships
within members in this heterogenous clade (Fiala et al.
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2015a), that contains both marine and freshwater species,
in fish and amphibians vertebrate hosts (i.e., H. anurae
Mutschmann, 2004) and up to seven different myxospore
morphologies/genera (Fiala 2006; Karlsbakk and Køie
2011; Whipps 2011). The only unifying criteria to date
for this clade are oligochaete as invertebrate host
(Groβheider & Körting 1992; El-Matbouli et al. 1992;
Benajiba & Marques 1993; Yokoyama et al. 1993;
Trouillier et al. 1996; Holzer et al. 2006; Atkinson &
Bartholomew 2009; Rangel et al. 2015, 2017) and tissue

tropism, urinary tract. Future studies on O. concentrica n.
sp. should focus on identifying the invertebrate host, prob-
ably a marine oligochaete in the intertidal zone.

Using a combination of morphological and molecular data,
we reported a new species Ortholinea concentrica n. sp. from
the urinary system of Patagonian seabass. To the best of our
knowledge, there are no previous records of a myxozoan par-
asite infecting the Patagonian seabass. O. concentrica n. sp. is
the first species of Ortholinea described in Argentina and the
second Ortholinea species in the South Atlantic.

Ortholinea labracis KU363830

Ortholinea mullusi MF539825 

Ortholinea auratae KR025868 

Acauda hoffmani HQ913566

Myxobilatus gasterostei EU861210 

Ortholinea sp. ex A. plagiozonatus KP637274

Ortholinea concentrica n. sp. MH793352

Ortholinea saudii JX456461

Ortholinea sp. ex S. rivulatus DQ333433

Ortholinea orientalis  HM770871

Ortholinea sp. ex A. alosa KU301053

Hoferellus alosae KU301052

Hoferellus gilsoni AJ582062

Hoferellus gnathonemi KU141398

Hoferellus anurae KU141397
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Myxidium lieberkuehni X76639
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Fig. 4 Bayesian inference (BI)
tree showing the phylogenetic
position of Ortholinea
concentrica n. sp. within the
freshwater urinary bladder clade
as defined by Fiala (2006).
Myxidium lieberkuehni was used
as outgroup. Numbers at nodes
represent Bayesian posterior
probability and bootstrap values
(BI/ML/MP). Dashes at nodes
represent nodal support BI < 0.5
and MP/ML < 50 or node not
present in the maximum
parsimony or maximum
likelihood trees. The newly
generated sequence is indicated in
bold. Asterisk indicates a node
with maximum nodal supports
(BI = 1, MP/ML = 100)
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