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ABSTRACT

The presence of fractures in a reservoir can have a significant
impact on its effective mechanical and hydraulic properties.
Many researchers have explored the seismic response of
fluid-saturated porous rocks containing aligned planar fractures
through the use of analytical models. However, these ap-
proaches are limited to the extreme cases of regular and uniform
random distributions of fractures. The purpose of this work is to
consider more realistic distributions of fractures and to analyze
whether and how the frequency-dependent anisotropic seismic
properties of the medium can provide information on the char-
acteristics of the fracture network. Particular focus is given to
fracture clustering effects resulting from commonly observed
fracture distributions. To do so, we have developed a novel hy-
brid methodology combining the advantages of 1D numerical
oscillatory tests, which allows us to consider arbitrary distribu-
tions of fractures, and an analytical solution that permits

extending these results to account for the effective anisotropy of
the medium. A corresponding numerical analysis indicates that
the presence of clusters of fractures produces an additional at-
tenuation and velocity dispersion regime compared with that
predicted by analytical models. The reason for this is that a frac-
ture cluster behaves as an effective layer and the contrast with
respect to the unfractured background produces an additional
fluid pressure diffusion length scale. The characteristic fre-
quency of these effects depends on the size and spacing between
clusters, the latter being much larger than the typical spacing
between individual fractures. Moreover, we find that the effects
of fracture clustering are more pronounced in attenuation
anisotropy than velocity anisotropy data. Our results indicate
that fracture clustering effects on fluid pressure diffusion can
be described by two-layer models. This, in turn, provides the
basis for extending current analytical models to account for
these effects in inversion schemes designed to characterize frac-
tured reservoirs from seismic data.

INTRODUCTION

Most reservoirs are assumed to contain a set of subvertical frac-
tures (Liu and Martinez, 2013) because open fractures tend to be
oriented normal to the direction of minimum in situ compressive
stress (Schoenberg and Sayers, 1995), which in the considered
depth range is usually quasihorizontal. Thus, understanding the
impact of the presence of subvertical fractures on the seismic
properties of a reservoir is a topic of great interest in the field of
exploration geophysics. Probably the most remarkable seismic
manifestation of the presence of a set of aligned vertical fractures

in an otherwise isotropic background rock is the effective transverse
isotropy with a horizontal axis of symmetry (HTI). Bakulin et al.
(2000) provide a detailed review of the two classic approaches to the
study of such media, that is, elastic effective models based on par-
allel infinite fractures represented as linear slip boundary conditions
(Schoenberg, 1980) and penny-shaped-crack models (e.g., Hudson,
1980; Thomsen, 1995; Hudson et al., 2001). Based on these models,
it is possible to retrieve some key parameters of fractured formations
from seismic recordings such as, for example, fracture density, azi-
muthal fracture orientation, and type of saturating pore fluid. In all
these works, the effective medium is represented by an elastic solid,
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which in turn implies that the effective stiffness tensor of the
medium is frequency independent and real valued.
However, the presence of fluids in the pore space of rocks causes

seismic attenuation and velocity dispersion due to a mechanism
broadly known as wave-induced fluid flow (WIFF). In particular,
mesoscopic WIFF, which occurs due to spatial variations in rock
compliance on a scale much larger than the pore size but much
smaller than the wavelength, is considered to be a significant source
of seismic energy dissipation and velocity dispersion in the seismic
frequency band (Müller et al., 2010; Krzikalla and Müller, 2011).
In rocks containing mesoscopic fractures, the large mechanical
contrast between the compliant fractures and the stiff background
favors the development of particularly strong fluid pressure gra-
dients between these regions in response to the propagation of a
seismic wave. Consequently, fluid flows accompanied with internal
friction until the fluid pressure equilibrates. This phenomenon re-
sults in frequency-dependent and complex-valued effective stiffness
components representing the anisotropic medium (e.g., Rubino
et al., 2016).
White et al. (1975) study mesoscopic WIFF effects on the propa-

gation of normally incident P-waves in fluid-saturated periodically
layered porous media. Brajanovski et al. (2005) use the results from
White et al. (1975) to explore the case of a regular distribution of
parallel fractures that are represented as a limiting case of very thin
and highly porous layers in a less porous background. Furthermore,
this model assumes that fractures have infinite extent and that the
spacing between fractures is much larger than the fracture aperture.
The latter represents a strong limitation of these types of models
because they are strictly valid only for low fracture densities. Using
numerical simulations, Lambert et al. (2006) demonstrate the val-
idity of this analytical model for periodic distributions of fractures
with a constant aperture. Recently, Kong et al. (2013) and Guo et al.
(2017) generalize the model of Brajanovski et al. (2005) to account
for different fluids saturating the fractures and the background and
to the case of finite fracture thickness, respectively.
In the case of thinly layered porous media, Krzikalla and Müller

(2011) show that the full effective stiffness tensor can be computed
from the effective P-wave modulus normal to the fractures. This is
due to the fact that because the slow P-wave velocity is much lower
than that of classic elastic waves, the fluid pressure diffusion
between the thin layers and the background is mainly normal to
the surface of the layers for any direction of propagation of the
incident wave. Hence, the frequency dependence of the five inde-
pendent complex-valued stiffness elements can be represented by a
single relaxation function connecting their relaxed and unrelaxed
regimes. Several authors have used this idea to study the
frequency-dependent anisotropy of transversely isotropic media.
For example, Carcione et al. (2013) use the effective P-wave moduli
given by the models of White et al. (1975) and Brajanovski et al.
(2005), whereas Galvin and Gurevich (2015) use the penny-shaped
crack model of Gurevich et al. (2009). However, these works are
based on analytical solutions that have limitations with regard to
the distribution, thickness, and/or density of fractures or assume
extremely high contrasts of the elastic and hydraulic properties
between the fractures and the background. A methodology that
has proven to be useful to overcome these issues to compute the
effective properties of arbitrarily heterogeneous porous rocks is
numerical upscaling (Masson and Pride, 2007; Rubino et al.,
2009; Wenzlau et al., 2010).

In real reservoirs, fractures often exhibit complex distributions
and, hence, quantitative characterizations of realistic spatial distri-
butions of fractures are needed for a correct interpretation of seismic
measurements. Several authors have measured and studied fracture
spacing distributions, ranging from nonfractal to fractal, from 1D
fracture distributions (e.g., Huang and Angelier, 1989; Gillespie
et al., 1993). Fang et al. (2016) show that in the presence of irregu-
larly distributed fractures, clusters of fractures can occur, that is,
groups of closely spaced fractures separated by relatively unfrac-
tured rock. Although this is a rather common scenario in fractured
rocks (Liu and Martinez, 2013), the analysis of the impact of frac-
ture clustering on the WIFF effects with regard to seismic wave
anisotropy remains largely unexplored. This is likely to be a con-
sequence of the limitations of analytical models on the one hand and
the high computational cost of the currently available numerical
methodologies for complex fracture distributions on the other hand.
In this work, we analyze the seismic properties of fluid-saturated

rocks containing random distributions of aligned planar fractures,
with particular emphasis on fracture clustering effects. To do so,
we propose a novel hybrid methodology to determine the effective
anisotropic behavior of the elastic-wave modes propagating through
a fluid-saturated porous rock containing an arbitrary distribution of
aligned fractures. We compute the effective P-wave modulus nor-
mal to the fractures through the application of a numerical upscaling
procedure based on a 1D oscillatory relaxation test. Once the effec-
tive P-wave modulus is obtained, we make use of the unidimen-
sional nature of fluid pressure diffusion processes in layered
media (Krzikalla and Müller, 2011) to obtain the full stiffness tensor
of the effective TI medium representing the fractured rock. The stiff-
ness tensor allows us to study the frequency-dependent anisotropic
seismic signatures of the probed fractured reservoir. By doing so,
we significantly reduce the computational cost with respect to
performing several 3D numerical relaxation tests such as those
presented by Wenzlau et al. (2010). For the analysis of fracture clus-
tering effects on the effective seismic properties of the medium, we
estimate the effective physical properties and the apertures of the
considered planar fractures from the ultrasonic velocities measured
in a synthetic sample containing penny-shaped cracks by Rathore
et al. (1995). We start the analysis of fracture clustering effects with
the effective P-wave modulus at normal incidence to understand the
general characteristics of the fluid pressure relaxation process.
Then, we continue by analyzing the effects on the effective seismic
anisotropy of the medium.

METHODOLOGY

In this section, we present the methodology to determine the
complex-valued frequency-dependent effective stiffness tensor of
poroelastic rocks containing aligned planar fractures. It has been
shown that when an otherwise isotropic rock contains a distribution
of fluid-saturated fractures that have preferred orientations, the re-
sulting material will exhibit an effective frequency-dependent seis-
mic anisotropy (Liu and Martinez, 2013). Indeed, the effective
seismic response of such a medium is transversely isotropic. To
compute the phase velocity and inverse quality factor as functions
of frequency and direction of wave propagation, it is necessary to
determine the effective stiffness tensor of the medium. To do so, we
propose a hybrid approach that consists of (1) computing the effec-
tive frequency-dependent P-wave modulus in the direction normal
to the fractures through the application of a 1D numerical upscaling
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procedure (Figure 1) and (2) analytically obtaining all the
frequency-dependent stiffness elements from their corresponding
low- and high-frequency limits and the relaxation behavior of
the effective P-wave modulus at normal-to-fracture incidence (Krzi-
kalla and Müller, 2011).
Analogous to the previous works on fluid-saturated fractured

media (e.g., Gurevich, 2003; Brajanovski et al., 2005; Carcione et al.,
2013; Rubino et al., 2013), we model the response of fractured rocks
in the framework of Biot’s (1962) theory of poroelasticity by repre-
senting the fractures as highly compliant and permeable thin layers
embedded in a stiffer and less permeable matrix. Because planar frac-
tures are assumed to have infinite lateral extension, this fracture
model is strictly valid when the fractures’ radii are much larger than
the prevailing wavelengths and the spacing between consecutive frac-
tures (Gurevich et al., 2009).

Effective P-wave modulus at normal-to-fracture
incidence

The effective P-wave modulus in the direction normal to the frac-
tures is obtained by applying time-harmonic solid displacements to
the boundaries of a representative elementary volume of the fractured
medium of interest (Figure 1). The resulting stress and strain fields in
the sample are computed based on a numerical solution of the qua-
sistatic approximation of Biot’s (1962) isotropic equations. The rea-
soning behind this is that, for frequencies much smaller than Biot’s
critical frequency, the physical process is controlled by fluid-pressure
diffusion and thus inertial effects can be neglected. Hence, the stress
equilibrium and Darcy’s law are to be fulfilled simultaneously. More-
over, for the considered case of a deformation applied normally to a
set of planar fractures, plane-strain conditions are satisfied. Hence, in
the space-frequency domain and assuming that the fractures are nor-
mal to the x-axis, the problem reduces in solving the 1D equations:

dτxx
dx

¼ 0; −
dpf

dx
¼ iω

η

κ
wx; (1)

where τxx,wx, and pf are the 1D total stress, the average relative fluid
displacement, and the fluid pressure, respectively; η is the fluid vis-
cosity; κ is the permeability; and ω is the angular frequency. These
equations are coupled through the 1D constitutive relations for τxx
and pf , which for an isotropic porous medium are given by

τxx ¼ ð2μþ λÞεxx − αMζ; pf ¼ −αMεxx þMζ; (2)

where ux and εxx ¼ dux∕dx are the 1D displacement and strain of the
solid phase, respectively, and ζ ¼ −dwx∕dx is a measure of local
change in the fluid content. The material parameters as well as the
displacements ux and wx are functions of a single coordinate x. In
equation 2, μ is the shear modulus of the saturated material, which
is equal to that of the dry frame μm. Following Gassmann (1951), the
so-called Biot-Willis effective stress coefficient α, the Biot’s fluid-
storage modulus M, and the undrained Lamé constant λ can be
obtained as

α ¼ 1 − Km∕Ks;

M ¼
�
α − ϕ

Ks
þ ϕ

Kf

�
−1
;

λ ¼ Km −
2

3
μþ α2M; (3)

where ϕ is the porosity and Kf , Ks, and Km are the bulk moduli of
the fluid phase, the solid grains, and the dry matrix, respectively.
Let Ω ¼ ð−H∕2; H∕2Þ be a domain that represents the probed

sample. Thus, we impose a homogeneous time-harmonic solid
displacement at the hydraulically sealed boundaries of the sample;
that is,

ux ¼ Δu; at x ¼ −
H
2
;

ux ¼ −Δu; at x ¼ H
2
;

wx ¼ 0; at x ¼ −
H
2
;
H
2
: (4)

By using a finite-element procedure to solve equations 1 and 2
under the imposed boundary conditions (equation 4), we obtain
the solid and relative fluid displacement fields in the sample as func-
tions of frequency. From these fields, we compute the stress field
using equation 2 and the strain field as the spatial derivative of the
solid displacement. Under the dynamic-equivalent viscoelastic
medium assumption (e.g., Solazzi et al., 2016), the effective P-wave
modulus in the direction normal to the fractures is thus obtained from

C11ðωÞ ¼ hτxxðωÞi
hϵxxðωÞi ; (5)

where the spatial averages of the local stress and strain fields over the
total length H of the sample are

hτxxðωÞi ¼
1

H

Z
Ω
τxxðω; x 0Þdx 0;

hεxxðωÞi ¼
1

H

Z
Ω
εxxðω; x 0Þdx 0 ¼ −2Δu

H
; (6)

respectively. The effective modulus computed in equation 5 quanti-
fies the response of the fractured porous rock of interest to a P-wave
propagating normal to the fractures. It is important to remark that the
concept of an effective medium assumes that the prevailing wave-
lengths are much larger than the correlation length of the considered
random distribution of fractures.

Figure 1. Schematic illustration of the oscillatory relaxation test
used for determining the effective P-wave modulus in the direction
normal to the fractures. The gray and white regions represent the
background and fractures, respectively.
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Effective stiffness tensor

Because most of the reservoirs are assumed to contain a set of
subvertical fractures (Maultzsch et al., 2003; Liu and Martinez,
2013; Gale et al., 2014), we study the case of a horizontal symmetry
axis and, thus, the medium has effective horizontal transverse isot-
ropy. Following Figure 1, the symmetry axis, normal to the fracture
planes, is parallel to the x-axis and, hence, the effective constitutive
relations can be written as
2
6666664

τxx
τyy
τzz
τyz
τxz
τxy

3
7777775
¼

2
6666664

C11 C12 C12 0 0 0

C12 C33 C23 0 0 0

C12 C23 C33 0 0 0

0 0 0 ðC33−C23Þ∕2 0 0

0 0 0 0 C66 0

0 0 0 0 0 C66

3
7777775
·

2
6666664

εxx
εyy
εzz
2εyz
2εxz
2εxy

3
7777775
;

(7)

where the Cij stiffness coefficients can be complex valued and fre-
quency dependent. Using that, in this kind of scenario, the fluid pres-
sure diffusion is approximately normal to the surface of the fractures,
Krzikalla and Müller (2011) find that the frequency dependence of
the Cij coefficients is given by a single scalar relaxation function
RðωÞ, such that the effective stiffness tensor has the form

CijðωÞ ¼ Cu
ij − RðωÞ · ½Cu

ij − Cr
ij�: (8)

That is, the anisotropy of the effective stiffness is determined by the
unrelaxed and relaxed limits of the stiffness coefficients, Cu

ij and C
r
ij,

respectively, and a complex valued function RðωÞ describing the
transition between both regimes. Gelinsky and Shapiro (1997)
obtain the effective stiffness tensor for layered media for the unre-
laxed and relaxed limits in a Backus-type formulation. In Appen-
dix A, we provide the expressions for the relaxed and unrelaxed
limits of the stiffness elements for this kind of medium. To obtain
the relaxation function of an arbitrary distribution of aligned frac-
tures, we use equation 8, the numerically computed effective
P-wave modulus of the medium C11ðωÞ (equation 5), and its low-
and high-frequency limits as follows:

RðωÞ ¼ C11ðωÞ−Cu
11

Cr
11
−Cu

11

: (9)

Using equations 8, 9, and Appendix A, the CijðωÞ coefficients
representing the medium of interest are determined. We then com-
pute the phase velocity and seismic attenuation of the P- and S-
waves as functions of frequency and direction of wave propagation
(Appendix B).
Krzikalla and Müller (2011) demonstrate the unidimensionality

of the fluid pressure diffusion between the background and aligned
layers, and hence, the validity of equation 8 considering two- and
three-layer models. To do so, they compute the relaxation functions
of the effective stiffness elements following the numerical method-
ology presented by Wenzlau et al. (2010). By comparing the relax-
ation functions, they find that they were the same for all the stiffness
elements, which confirms the validity of equation 8. Given that our
methodology allows us to consider more complex scenarios, we fur-
ther generalize the validity of equation 8 for the case of a medium
containing clusters of fractures (Appendix C). In that case, four
characteristic lengths are present, namely, the fracture thickness,

the separation between adjacent fractures, the effective thickness
of the cluster, and the distance between consecutive clusters of frac-
tures. The validation is carried out by comparison with the effective
stiffness tensor elements obtained from 3D relaxation tests.
It is important to remark that the main advantage of this hybrid

approach with respect to available analytical models is that it allows
us to handle arbitrary fracture sets without the limitations commonly
associated with analytical solutions, such as, for example, low frac-
ture density. Furthermore, it is valid for generic horizontally stratified
poroelastic systems, which, in turn, allow us to consider hydraulically
and elastically heterogeneous backgrounds as well as arbitrary prop-
erty contrasts between the fractures and the background.

FRACTURE PHYSICAL PROPERTIES IN A
POROELASTIC CONTEXT

As mentioned before, we conceptualize fractures as very thin
fluid-saturated porous layers. Given that the fluid pressure diffusion
process between the fractures and the background strongly depends
on their mechanical contrast, the elastic properties of the fractures’
dry frame are key parameters for the numerical analysis. For sim-
plicity, many authors (e.g., Rubino et al., 2013; Quintal et al., 2015;
Guo et al., 2017) have used the values published by Nakagawa and
Schoenberg (2007) for the shear and dry normal fracture compli-
ances as a reference to determine the fractures’ elastic properties.
In this work, we chose fracture and background properties based on
velocities experimentally measured by Rathore et al. (1995) for a
synthetic sandstone containing aligned penny-shaped cracks. Given
that a model of aligned infinite fractures and a model of aligned
penny-shaped cracks yield the same structure for the effective stiff-
ness tensor (Wenzlau et al., 2010), we can define medium param-
eters to obtain identical phase velocities under dry conditions for
both models (Schoenberg and Douma, 1988). However, the fre-
quency dependence of attenuation and velocity under fluid-
saturated conditions will be different for a penny-shaped-crack
model and a planar fracture model. This is due to the fact that for
planar fractures, the pattern of conversion to diffusive waves is 1D,
whereas finite fractures act essentially as 3D features and, hence,
fluid pressure can diffuse in all directions (Wenzlau et al., 2010).
The samples used by Rathore et al. (1995) were manufactured by

embedding thin metal discs into a sand-epoxy matrix, which were
chemically leached out later on, thus leaving penny-shaped voids.
These voids have thicknesses of 0.02 mm and are aligned and regu-
larly spaced every 2 mm. The P- and S-wave velocities were mea-
sured as a function of angle from the direction normal to the cracks
at a frequency of 100 kHz.
First, we determine the background properties from the P- and

S-wave velocities for the unfractured dry rock given by Rathore et al.
(1995), VP ¼ 2.529 km∕s and VS ¼ 1.558 km∕s at f ¼ 100 kHz.
Some parameters of interest were measured for the water-
saturated sample such as ρb ¼ 1.712 kg∕m3, ϕ ¼ 0.346, and
KfðwaterÞ ¼ 2.16 GPa. Assuming that, under dry conditions, we
can approximate KfðairÞ¼0.0001GPa and ρfðairÞ¼0.01kg∕m3,
and using the definitions of the elastic velocities

VP ¼
ffiffiffiffi
L
ρb

q
;

VS ¼
ffiffiffiffi
μ
ρb

q
;

(10)
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where L ¼ Km þ ð4μ∕3Þ is the dry P-wave modulus and

ρb ¼ ρfϕþ ρsð1 − ϕÞ (11)

is the bulk density of the rock, and we obtained background param-
eters. The corresponding dry elastic moduli for the unfractured
background turned out to be Km ¼ 4.324 GPa, μm ¼ 3.326 GPa

and from equation 11 the effective solid grain density of the
quartz-epoxy matrix is ρs ¼ 2.088 kg∕m3.
Next, the fracture parameters are computed from the measured

P- and S-wave velocities at incidence angles of 11.25° and
101.25° with respect to the normal to the crack planes. The velocities
are Vdry

P ð11.25°Þ ¼ 1.78 km∕s, Vdry
P ð101.25°Þ ¼ 2.472 km∕s,

Vdry
sh ð11.25°Þ ¼ 1.26 km∕s, and Vdry

sh ð101.25°Þ ¼ 1.5 km∕s. For
the fractures, we assume a very high porosity (ϕf ¼ 0.9) and the
same properties at the grain scale, that is, ρs and Ks, as the back-
ground. Following the estimations of Brown and Gurevich (2004),
the bulk modulus of the grain material is fixed to 30 GPa because
it is reasonable for a sand-epoxy matrix. The planar fractures are sep-
arated by 2 mm, which are equal to the separation between crack
planes considered by Rathore et al. (1995). However, due to the
differences in the geometry of the fractures between the synthetic
sample and the model, we allow the aperture of the planar fractures
Hf of the model to be different to that of the penny-shaped cracks of
the synthetic sample.
Using these parameters, we follow a minimization process to ob-

tain the rest of the fracture properties, that is, μm,Km, andHf . To do
so, we compute the effective Cij coefficients in dry conditions using
the Backus averaging technique. It is important to note that, without
loss of generality and because the measurements were made in a
way that the medium has effective vertical TI (VTI), we have to
rotate the coordinate system to get a correct interpretation of the
determined velocities and stiffness components. Finally, the phase
velocity curves as functions of angles of incidence that need to be
compared with the measurements can be computed using equa-
tions B-3–B-5.
By performing the optimization procedure using the package

fminsearchcon developed for MATLAB (D’Errico, 2006), the
elastic moduli for the planar fractures turned out to be
μm ¼ 0.0617 GPa and Km ¼ 0.00548 GPa, and the fractures aper-
ture Hf ¼ 0.022 mm. We have verified the convergence of the op-
timization procedure by considering multiple initial estimates.
Notice that the obtained aperture is remarkably similar to the aper-
ture of the penny-shaped cracks in the synthetic sample (Rathore
et al., 1995). Given that fracture apertures tend to vary from very
thin (0.001–0.01 mm) to relatively wide (0.1–0.5 mm) (Bakulin
et al., 2000), this aperture can be thought of as a representa-
tive value.
The experimental and numerical phase velocities as functions of

the incidence angle under dry conditions are shown in Figure 2a.
The agreement between the numerical velocities and the experimen-
tal data is very good, which implies that the dry fracture and back-
ground parameters obtained are reasonable and that, as expected,
the two models are comparable for dry conditions. These results
further validate the conjecture that a plane distribution of small
cracks can be replaced by an equivalent planar fracture of constant
aperture with appropriate infill material (Hudson and Liu, 1999). In
the case of fluid-saturated samples, it is necessary to define the per-
meabilities of the fractures and of the background. For the fractures,
we assume a high permeability (100 D), whereas the background

permeability is known and equal to 11.4 D (Brown and Gurevich,
2004), which is representative of a synthetic high-porosity sand-
stone composed of clean, coarse-grained, and well-sorted sand.
Moreover, the relatively high permeability reported by Brown
and Gurevich (2004) is in qualitative agreement with Maultzsch
et al. (2003), who find that the frequency of the measurements
is in the low-frequency regime with respect to the characteristic
frequency of the effects of WIFF between the cracks and the back-
ground. Figure 2b shows the P- and S-wave velocities for the water-
saturated sample. The overall agreement between the numerical and
the experimental velocities is reasonably good. However, there are
some differences in the magnitude of the anisotropy. These are ex-
pected for several reasons such as (1) the fact that we compute the
model parameters from the measurements under dry conditions
without any input from the velocities in the saturated sample,
(2) the fluid pressure diffusion patterns of a fluid-saturated rock
containing infinite fractures and finite-size cracks are different

Figure 2. Comparison of the data from Rathore et al., 1995 (sym-
bols) for (a) dry and (b) water-saturated fractured sandstone with the
corresponding best-fitting planar fractures model (the dashed lines).
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(Wenzlau et al., 2010; Guo et al., 2017), (3) we assume that the
frequency of the measurements is lower than the frequency at which
scattering and Biot’s global flow effects arise, and (4) low intrinsic
background anisotropy as a consequence of the manufacturing
process (Tillotson et al., 2011) is neglected.
Finally, from the set of parameters obtained, it is possible to com-

pute the dry normal ZN and tangential ZT compliances of the sam-
ple. The compliances are defined as (Schoenberg and Sayers, 1995)

ZN ¼ 1

H

XNf

i¼1

Hi
f

Li
f

; ZT ¼ 1

H

XNf

i¼1

Hi
f

μif
; (12)

where Li
f and μif are the dry P-wave modulus and shear modulus

of the ith fracture and Nf is the number of fractures in the sample.
As fractures are assumed to have the same filling material and
aperture, the corresponding normal and tangential compliances
of the sample are ZN ¼ ðHf∕HLfÞ ¼ 1.25 × 10−10 1∕Pa and
ZT ¼ ðHf∕HμfÞ ¼ 1.78 × 10−10 1∕Pa, respectively. In terms of
the individual compliances of the fractures, the dry normal
(ηN ¼ Hf∕Lf) and tangential (ηT ¼ Hf∕μf) compliances are
2.5 × 10−13 and 3.56 × 10−13 m∕Pa, respectively, which fall into
the range of realistic values compiled from laboratory and field data
estimations by Worthington and Lubbe (2007).

FRACTURE CLUSTERING EFFECTS ON WIFF

The frequency dependence of the anisotropic seismic response in
the limiting cases of regular and randomly distributed fractures in an
infinite medium has been exhaustively studied (e.g., Brajanovski
et al., 2005; Gurevich et al., 2009). However, current analytical
models cannot account for the seismic effects of the clustering of
fractures as a result of nonuniform fracture distributions. In this sec-
tion, we numerically analyze how the presence of an effective addi-
tional length scale given by the clustering of fractures affects the
effective frequency-dependent seismic anisotropy of the medium.
We initially focus on the P-wave modulus normal to the fractures
because it presents the largest variability of the seismic response due
to the presence of fractures and associated WIFF effects.
It is well-known that the frequency range at which the effects of

WIFF between the fractures and background (FB-WIFF) are maxi-
mal is related to the background permeability (Brajanovski et al.,

2006). Given that reservoirs typically have permeabilities much
lower than that of the synthetic sample of Rathore et al. (1995), we
chose a relatively low background permeability of 2 × 10−5 D for
the numerical analysis. This in turn shifts the FB-WIFF character-
istic frequency to the seismic frequency range (approximately
100 Hz). Unless indicated otherwise, we use in the following the
elastic and hydraulic parameters given in Table 1 for the analysis
of WIFF effects on the anisotropic seismic properties of a rock con-
taining vertically aligned fractures.

General characteristics of the seismic signatures of
fracture clusters

To analyze the most general aspects of the effects of fracture clus-
tering on seismic wave propagation, we first consider the arguably
simplest representation of a cluster of fractures given by a periodic
alternation of regions characterized by a large number of parallel
fractures and unfractured background material. The total thickness
of such a cluster is typically much larger than that of the individual
fractures. For simplicity, we assume that the fractures have a con-
stant aperture and compliance, and that they are regularly distrib-
uted inside the cluster.
The elastic and hydraulic material properties are those given in

Table 1, and we assume that each cluster contains 10 regularly dis-
tributed fractures with a distance of Hb ¼ 2 mm between consecu-
tive fractures. The distance between consecutive clusters of
fractures is chosen to be 10 ×Hb ¼ 2 cm. Figure 3 shows C11ðωÞ
and the corresponding attenuation as functions of frequency. This
corresponds to the case of a P-wave propagating normal to the frac-
tures. We observe the presence of three regimes for which the real
component of C11ðωÞ is virtually constant separated by two regimes
of maximal dispersion. Correspondingly, the attenuation, which can
be quantified by I½C11ðωÞ�∕R½C11ðωÞ�, exhibits two peaks.
To better understand the frequency dependence of C11ðωÞ, we

include in Figure 3 the effective P-wave modulus of two other me-
dia. First, we consider a medium with the same background material
and the same number of fractures per unit length but assuming a
regular distribution of fractures. In Figure 3, we refer to this model
as FB-WIFF, that is, fracture to background WIFF. The second
model that we consider is composed by an alternation of two rel-
atively thick layers. A background layer whose thickness is equal to
the distance between fracture clusters and another layer whose
properties are equivalent to those of the cluster. The effective po-
roelastic properties of the layer representing the cluster of aligned
fractures are computed following Milani et al. (2016), who give
general expressions for layered media. In Figure 3, we refer to this
model as CB-WIFF, that is, cluster to background WIFF. For the
two above-mentioned models, the effective P-wave modulus can
be computed using the two-layer model of White et al. (1975)

1
C11ðωÞ¼

D
1
Lu

E
þ 2ffiffiffiffiffi

iωη
p

H

�
α1M1
Lu
1

−α2M2
Lu
2

�
2

ffiffiffiffiffiffiffi
L1M1
Lu
1
κ1

q
cot

� ffiffiffiffiffiffiffiffiffiffi
iωηLu

1
κ1M1L1

q
H1
2

�
þ

ffiffiffiffiffiffiffi
L2M2
Lu
2
κ2

q
cot

� ffiffiffiffiffiffiffiffiffiffi
iωηLu

2
κ2M2L2

q
H2
2

�; (13)

where Lu ¼ λþ 2μ is the undrained P-wave modulus,
H ¼ H1 þH2, and the subscripts 1 and 2 refer to the different
layers.
Let us start by comparing the response of the numerical model

with the model containing regularly distributed fractures. In Fig-
ure 3, we observe that the FB-WIFF model perfectly explains

Table 1. Physical properties of the materials used in the
numerical analysis.

Property Background Fracture

Porosity ϕ 0.346 0.9

Permeability κ 20 μD 100 D

Solid grain bulk modulus Ks 30 GPa 30 GPa

Frame bulk modulus Km 4.324 GPa 0.00548 GPa

Frame shear modulus μm 3.326 GPa 0.0617 GPa

Solid grain density ρs 2088 kg∕m3 2088 kg∕m3

Fluid density ρf 1090 kg∕m3 1090 kg∕m3

Fluid shear viscosity ηf 0.01 Poise 0.01 Poise

Fluid bulk modulus Kf 2.16 GPa 2.16 GPa

MR300 Barbosa et al.
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the intermediate- and high-frequency regimes of the numerically
computed C11ðωÞ. This implies that the attenuation peak observed
at higher frequencies is related to WIFF between the fractures and
the background inside the clusters. It is important to mention that to
have the same magnitude and frequency dependence as the
FB-WIFF model, we have used H1 ¼ 2 mm in equation 13. This
corresponds to the separation of the fractures inside the cluster,
whereas H was given by the inverse of the fracture intensity in
the whole sample. The agreement between the low-frequency limit
of the FB-WIFF model and the intermediate regime of the numeri-
cal model implies that defining H1 in equation 13 as the distance
between fractures in the cluster is equivalent to allowing the fluid
pressure of the fractures to equilibrate inside the cluster but not with
respect to the rest of the background. This comparison suggests that
the fracture density and fracture spacing variations affect the effec-
tive properties in this regime.
The modulus dispersion and attenuation observed at low frequen-

cies can be perfectly described by the CB-WIFF model (Figure 3).
This, in turn, implies that the modulus dispersion and attenuation in
this regime mainly depend on the contrast be-
tween the unfractured background and the effec-
tive layer representing the cluster of fractures. We
have named this regime the CB-WIFF regime be-
cause it is related to the fluid pressure diffusion
between the clusters of fractures and the back-
ground. Figure 3 shows that the low-frequency
limit of the fractured medium coincides with that
of the CB-WIFF model. At these frequencies,
regardless of the fracture distributions, the whole
rock is in fluid pressure equilibrium and its
response can be described by the poroelastic
Backus average under relaxed conditions. The
high-frequency limit of the CB-WIFF model,
on the other hand, coincides with the intermedi-
ate regime of the model with clusters of fractures.
At these intermediate frequencies, there is no
time for fluid pressure equilibration between the
cluster as a whole and the background but the
fractures remain in pressure equilibrium inside
the cluster. Correspondingly, this limit coincides
with the low-frequency limit of the FB-WIFF
model. Notice that the second dispersion regime
cannot be accounted for by the CB-WIFF model
because the stiffening effect of the fracture fluid
with frequency is missing when representing a
cluster of fractures with an effective poroelastic
layer.
It is possible to further explore the regions

where FB- and CB-WIFF are occurring through
the plot of the local contribution to the inverse
quality factor per unit area (Solazzi et al.,
2016). Following Rubino et al. (2016), we refer
to this characteristic as the inverse quality factor
density. Figure 4 shows the inverse quality factor
density along the sample for frequencies between
1 × 10−4 and 1 × 106 Hz. For a given frequency,
the regions where energy dissipation due to
WIFF takes place are characterized by a larger
inverse quality factor density. We observe that

at low frequencies, the attenuation is negligible. The same scenario
prevails in the high-frequency limit, in which the fluid has no time
to move between pores in the background and the fractures during a
half-wave cycle and, hence, fluid flow effects become negligible.
This is illustrated by the decreasing distance of fluid diffusion into
the background toward higher frequencies. The quality factor den-
sity shows that the energy dissipation in the background is maximal
at the two frequencies in which the attenuation in Figure 3 reaches
its maximum values. At fCB ¼ ωCB∕2π ∼ 0.3 Hz, fluid flow occurs
mainly from the cluster of fractures to the unfractured region
between clusters. Conversely, at fFB ¼ ωFB∕2π ∼ 100 Hz, fluid
flow prevails in the vicinity of the fractures inside the clusters.
Finally, in Figure 5, we illustrate the impact of the geometry and

distribution of the clusters on the WIFF effects observed in the
effective P-wave modulus of the sample. We consider different sizes
of clusters (10 and 100 fractures) and different distances between
clusters (Hc ¼ 10 ×Hb and Hc ¼ 100 ×Hb). In all cases, the dis-
tance between fractures inside the cluster is equal to Hb ¼ 2 mm

(Table 2).

Figure 3. (a) Real part and (b) ratio between imaginary and real parts of C11ðωÞ as
functions of frequency for a medium containing regularly distributed clusters of frac-
tures (the solid line). For comparison, we include the cases of regularly distributed frac-
tures (the dashed-dotted line), and regularly distributed layers with effective properties
similar to those of the clusters (the dashed line).

Figure 4. Inverse quality factor density along the sample for frequencies between 1 ×
10−4 and 1 × 106 Hz. The left and right panels correspond to the frequency ranges at
which (a) CB- and (b) FB-WIFF dominate. The two red vertical lines correspond to the
frequencies in which the attenuation of P-waves propagating normal to the fractures has
a local maximum.
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We observe that the FB-WIFF characteristic frequency coincides
for the three scenarios, that is, regardless of the intensity of the frac-
tures. This is an unexpected result because analytical models predict
a direct dependence of this frequency with the intensity of the frac-
tures. Gurevich et al. (2009) show that the characteristic frequency
ωFB is the inverse of the characteristic time of the fluid pressure
diffusion process between the fractures and the background. The
model of Guo et al. (2017), which accounts for the finite thickness
of fractures, allows estimation of this characteristic time τFB in the
case of aligned fractures

τFB ¼
�
Cu
11
−Cr

11

Cr
11
G

�
2
; (14)

with Cr
11 and Cu

11 being the low- and high-frequency limits of
C11ðωÞ and

G ¼
2
HC

u
11

�
α1M1
Lu
1

−α2M2
Lu
2

�
2

ffiffiffiffiffiffiffiffi
M1L1η
Lu
1
κ1

q
þ

ffiffiffiffiffiffiffiffi
M2L2η
Lu
2
κ2

q : (15)

In equation 15, subscripts 1 and 2 refer to the background and frac-
ture properties, respectively. Notice that, according to equation 15,
the only information regarding the fracture distribution involved in
the computation of ωFB is the mean spacing between fractures
which, in turn, defines H. This is a consequence of the assumption
of the low-fracture density in the model of Guo et al. (2017), which

implies that Hb ≫ Hf . According to equations 14 and 15, the char-
acteristic frequency fFB ¼ ωFB∕2π for the three scenarios is
f1FB ∼ 90 Hz, f2FB ∼ 117 Hz, and f3FB ∼ 63 Hz. The discrepancies
of the analytical prediction with the numerical results imply that
the FB-WIFF frequency is mainly controlled by the spacing of
the fractures inside the cluster, which in the three cases remains un-
changed. The fracture intensity, that is, 1∕H (Bakulin et al., 2000),
controls the magnitude of the FB-WIFF effects, which decrease
with lower fracture densities.
Furthermore, we observe that the geometric characteristics of the

fracture clusters strongly affect the amount of attenuation and
dispersion as well as the characteristic frequency due to CB-WIFF.
For clusters containing the same intensity of fractures, the corre-
sponding characteristic frequency shifts toward lower values when
the distance between clusters increases (the blue and green lines in
Figure 5). As mentioned before, at these relatively low frequencies,
a cluster of fractures effectively behaves as a layer. Given that in
both models the thickness of the effective layer is the same, the
CB-WIFF characteristic frequency depends on the distance between
consecutive layers. As this distance increases, the interference of the
fluid pressure diffusion in the unfractured background occurs at
lower frequencies (Brajanovski et al., 2006). In addition, as the den-
sity of clusters per unit length decreases, the level of attenuation
decreases as well. Finally, when the number of fractures in the clus-
ter increases, while keeping the distance between clusters constant,
the size of the cluster of fractures gets much larger than the distance
between consecutive clusters and the model approaches the limiting
case of a regular distribution of fractures. Correspondingly, the ef-
fects related to the fracture cluster become negligible, as illustrated
by the comparison between the blue and red curves in Figure 5.

Fracture clustering effects as a consequence of realistic
spacing distributions

Given that the previous analysis was based on a simplistic rep-
resentation of fracture clustering, in this section, we aim at analyz-
ing the corresponding impact of CB-WIFF effects when dealing
with realistic fracture distributions. In agreement with the previous
findings (Gillespie et al., 1993; Bonnet et al., 2001), Fang et al.

(2016) argue that natural fractures often exhibit
a distribution of fracture spacings following a
power-law function and that this kind of distribu-
tion leads to the formation of clusters of
fractures.
Hence, to explore the effects of clusters in the

case of realistic distributions of fracture spacing,
we generate random fracture models following a
power-law function. That is, we assume that the
variable fracture spacing Hb is given by (Fang
et al., 2016)

Hb ¼ ½Hn
min þm · ðHn

max −Hn
minÞ�1∕n;

(16)

where n is the power-law exponent governing the
distribution,m is a random number between zero
and one, and Hmin and Hmax are the minimum
and maximum values for fracture spacing, re-
spectively.

Table 2. Geometric characteristics of the fracture clusters.

Parameters Case 1 Case 2 Case 3

Nf 10 100 10

Hb 2 mm 2 mm 2 mm

Hc 2 cm 2 cm 20 cm

H 3.8 mm 2.2 mm 21.8 mm

Figure 5. (a) Real part and (b) ratio between imaginary and real parts of C11ðωÞ for
clusters of 100 fractures separated 2 cm (the red lines), clusters of 10 fractures separated
2 cm (the blue lines), and clusters of 10 fractures separated 20 cm (the green lines). In all
cases, the distance between adjacent fractures is 2 mm.

MR302 Barbosa et al.
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Figure 6 shows the effective P-wave modulus dispersion and
attenuation normal to the fractures for 100 samples containing a
random distribution of fractures whose parameters correspond to
case 1 in Table 3. For comparison, we include the analytical model
of Guo et al. (2017) for the P-wave modulus normal to a uniform
random distribution of planar fractures. We observe that for samples
containing fractures distributed according to equation 16, the effec-
tive P-wave modulus presents two attenuation and dispersion re-
gimes. As expected, the real component of the effective P-wave
modulus shows that, at the low- and high-frequency limits, the frac-
ture distribution does not play any role and, hence, the numerical
and analytical models coincide in these limits. However, its fre-
quency dependence is affected by the presence of fracture cluster-
ing, producing a deviation from the analytical solution. Regarding
the CB-WIFF manifestation in the seismic attenuation, we can iden-
tify different low-frequency asymptotes for the numerical and
analytical solutions. The former presents an asymptote that is pro-
portional to f, whereas for the latter it is proportional to

ffiffiffi
f

p
.

Figure 7 shows the effective properties of 100 samples consid-
ering cases 2 and 3 of Table 3. In the case of a higher exponent n
(case 2), the number of small spacings between fractures compared
with large ones increases. This produces a steeper dispersion
and, correspondingly, a narrower seismic attenuation related to
FB-WIFF effects compared with the random analytical solution.
As shown in the analysis of Figure 5, when a given fracture spacing
dominates the distribution, the effective properties in the FB-WIFF
regime tend to those of a regular distribution of fractures. Corre-
spondingly, the magnitude of the CB-WIFF effects become less
significant than those associated with FB-WIFF.
Regarding case 3, the effective response is closer to that of a

two-layer model. As mentioned before, the manifestation of the
CB-WIFF and its amplitude is related to the thickness of the sec-
tions of the sample with closely packed fractures and to the thick-
ness of the adjacent unfractured background. Because in this case
we decrease the range of possible values for the power law, the spac-
ing between fractures is more homogeneous and the manifestation
of CB-WIFF is less significant. Hence, although there are some
discrepancies at low frequencies, the effective P-wave modulus
is well-described by the analytical model.
For the analysis of each of the scenarios shown in Figures 6 and 7,

we have fixed the number of fractures and the total length of the sam-
ples. By doing so, we have minimized the dispersion of the realiza-
tions with respect to the mean response and focused on the variations
due to clustering effects. Although not shown here for brevity, we
have performed numerical simulations without restrictions on the to-
tal length of the samples, thus allowing for different fracture densities
in each realization. The results show that the changes in CB- and FB-
WIFF effects coincide with those shown in this section.

Seismic anisotropy analysis

As mentioned before, our methodology not only allows us to
compute the effective P-wave modulus normal to an arbitrary
distribution of aligned fractures, but it also provides the effective
anisotropic stiffness matrix of the medium. Because the current con-
sensus is that the orientation, density, scale, and spacing of fractures
as well as the fluid properties can be extracted from frequency-
dependent seismic anisotropy (Bakulin et al., 2000; Tillotson et al.,
2011; Liu and Martinez, 2013), we proceed to explore the WIFF
effects on seismic anisotropy. Although there exist several seismic

attributes quantifying seismic anisotropy, for brevity, we focus the
analysis on Thomsen’s (1986) parameters to quantify the velocity
anisotropy and on the formulas of Collet and Gurevich (2016) to
quantify the corresponding attenuation parameters. In the particular
case of an HTI medium whose effective stiffness matrix is given by
equation 7, the set of anisotropic parameters quantifying the veloc-
ity anisotropy is (Bakulin et al., 2000)

ϵ ¼ ðC11 − C33Þ
2C33

;

δ ¼ ðC13 þ C66Þ2 − ðC33 − C66Þ2
2C33ðC33 − C66Þ

;

γ ¼ ðC66 − C44Þ
2C44

: (17)

The parameters ε and γ are often called the P- and S-wave velocity
anisotropy because in the elastic case they are close to the fractional
difference between the horizontal and vertical P- and Sk-wave
velocities. The subscript k indicates that we refer to the S-wave
polarized parallel to the fractures plane. The parameter δ, on the
other hand, quantifies the second derivative of the P-wave phase
velocity at vertical incidence. Bakulin et al. (2000) show that, in
the case of a rock containing vertical fractures, the parameters in
equation 17 are negative.
In the case of weak attenuation, the attenuation anisotropy

parameters are given by (Collet and Gurevich, 2016)

ϵQ ¼ 1þ 2ϵ

2

�
1

Q11

−
1

Q33

�
;

δQ ¼ ð1þ δÞ
Q13

þ 2
C66

C11

�
1

Q66

−
1

Q13

�
−

1

Q11

; (18)

where QijðωÞ ¼ R½CijðωÞ�∕I½CijðωÞ�. The parameters εQ and δQ
reduce to zero for nondissipative media or if the attenuation is
isotropic. Given that the stiffness coefficients CijðωÞ are complex
valued, the attenuation anisotropy parameters are complex valued as
well. In the limit of weak attenuation, we can compute the real part
of the complex anisotropy parameters given in equation 18 to obtain
a measure of the attenuation anisotropy as a function of frequency
(Collet and Gurevich, 2016). For brevity and given the fact that the
behavior of the velocity and attenuation anisotropy parameters for
randomly and regularly distributed aligned fractures or cracks has
been thoroughly described before (e. g., Collet and Gurevich, 2016;
Guo et al., 2017), we focus on the sensitivity of such parameters to
fracture clustering.

Table 3. Power-law function parameters for the numerical
analysis.

Parameters Case 1 Case 2 Case 3

Hmin 0.001 m 0.001 m 0.005 m

Hmax 0.1 m 0.1 m 0.05 m

n −1 −2 −1
Total length 0.5 m 0.3 m 0.5 m

Nf 50 100 50

Fracture clustering effects on WIFF MR303
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Figure 8 shows the velocity and attenuation anisotropy parame-
ters as functions of frequency for case 1 in Table 3. We include the
solution for the analytical model of a random distribution of aligned

planar fractures. First, we observe in Figure 8 that γ does not change
with frequency. The reason for this is that the difference between the
velocity of an Sk-wave propagating in the direction normal or par-

allel to the fractures is controlled by the tangen-
tial compliance, which in this case is frequency
independent. Hence, there is no evidence of the
distribution of the fractures in this parameter.
The parameters ϵ and δ are frequency depen-

dent but only the former reflects the fracture clus-
tering effects. From the definition of ε in
equation 17, it is clear that the behavior of this
parameter is controlled by the behavior of
C11ðωÞ, which is strongly affected by CB-WIFF
effects. The parameter δ, on the other hand, is
almost unaffected by the fracture distribution,
which means that the latter has little impact on
the shape of the angle dependence of the P-
and S-waves.
Regarding the attenuation anisotropy parame-

ters, we observe that they follow the same behav-
ior as the attenuation shown in the previous
section. They tend to zero in the low- and
high-frequency limits and reach their local
maxima at the CB- and FB-WIFF characteristic
frequencies. The strong frequency dependence of

Figure 7. (a and c) Real part and (b and d) ratio
between imaginary and real parts of C11ðωÞ as
functions of frequency for 100 samples containing
randomly distributed fractures (the gray lines).
The top and bottom panels correspond to cases
2 and 3 of Table 3, respectively. The red curves
correspond to the mean values of the realizations.
For comparison, we include the analytical solution
for a uniform random distribution of fractures with
the same fracture intensity (the black lines).

Figure 6. (a) Real part and (b) ratio between imaginary and real parts of C11ðωÞ as
functions of frequency for 100 samples containing randomly distributed fractures ac-
cording to case 1 in Table 3 (the gray lines). The red curves correspond to the mean
values of the realizations. For comparison, we include the analytical solution for a uni-
form random distribution of fractures with the same fracture intensity (the black line).
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ϵQ and δQ as well as the difference with respect to the random ana-
lytical solution indicate that attenuation anisotropy data may be
more useful than velocity anisotropy data for characterizing fracture
distributions.

CONCLUSION

We have investigated the effects of fracture clustering on the ef-
fective seismic properties of porous rocks containing aligned planar
fractures. To this end, we developed a hybrid methodology that per-
mits circumvention of the computational challenges associated with
performing 3D numerical relaxation tests and allows us to consider
arbitrary distributions of aligned planar fractures. This means that,
in addition to variable fracture spacing, which was the main attrib-
ute investigated in this work, it also allows us to consider arbitrary
fracture apertures and elastic and hydraulic contrasts between frac-
tures and background as well as varying fluid properties.
To determine the mechanical properties of fractures represented

as part of the poroelastic continuum, we used experimental veloc-
ities measured on a dry synthetic sandstone containing penny-
shaped cracks of known geometry and orientation. We showed that
the estimated parameters allow us to reasonably approximate the
corresponding velocity anisotropy measurements under fluid-satu-
rated conditions. Using the estimated fracture mechanical character-
istics, a corresponding numerical analysis demonstrated that the
presence of fracture clustering results in two frequency regimes
of seismic attenuation and velocity dispersion. The regime at
low frequencies is related to WIFF between the clusters and the
background, and its characteristic frequency depends on the size
and spacing between clusters. The second dispersion and attenua-
tion regime is associated with WIFF between fractures and back-
ground inside clusters. Its characteristic frequency is mainly
controlled by the fracture intensity inside the cluster rather than
by the total fracture intensity. Moreover, we showed that it is pos-
sible to quantify the FB- and CB-WIFF effects using pertinent two-
layer poroelastic models. This suggests that it is possible to extend

current analytical models to account for fracture
clustering by allowing for an additional length
scale in the sample.
Analyses of anisotropic parameters allowed us

to verify that the velocity anisotropy parameters
show little sensitivity to fracture clustering effects.
In this case, analytical models of random distribu-
tions of planar fractures managed to reproduce
most of the frequency-dependent effects on the
velocity anisotropy parameters. Attenuation
anisotropy, on the other hand, turned out to be
much more sensitive to fractures distributions.
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APPENDIX A

RELAXED AND UNRELAXED LIMITS OF THE
STIFFNESS TENSOR

Analogous with the expressions given by Krzikalla and Müller
(2011) for the relaxed and unrelaxed limits of the stiffness tensor
for VTI media, we give the corresponding expressions for an HTI
medium. The Backus formulas for the relaxed limit are

Cr
11 ¼

�
1

L

�
−1

þ Y2

Z
;

Cr
12 ¼

�
1

L

�
−1
�
λd
L

�
þ XY

Z
;

Cr
22 ¼

�
4μðλd þ μÞ

L

�
þ
�
1

L

�
−1
�
λd
L

�
2

þ X2

Z
;

Cr
23 ¼

�
2μλd
L

�
þ
�
1

L

�
−1
�
λd
L

�
2

þ X2

Z
;

Cr
55 ¼

�
1

μ

�
−1
; (A-1)

where hψi ¼ ð1∕HÞ∫ ψðxÞdx is the poroelastic Backus average,
λd ¼ Km − 2μ∕3 is the Lamé constant in dry conditions, and the
expressions X, Y, and Z are given by

X ¼ −Z
��

2αμ

L

�
þ
�
α

L

��
λd
L

��
1

L

�
−1
�
;

Y ¼ −Z
�
α

L

��
1

L

�
−1
;

Z ¼
��

1

M

�
þ
�
α2

L

�
−
�
α

L

�
2
�
1

L

�
−1
�

−1
: (A-2)

Figure 8. Real components of (a) the Thomsen’s parameters for velocity and (b) the
parameters after Collet and Gurevich (2016) for the attenuation as functions of fre-
quency for 100 samples containing randomly distributed fractures according to case
1 in Table 3 (the gray lines). The heavy lines correspond to the mean values of the
realizations. For comparison, we also include the analytical solution for a uniform ran-
dom distribution of fractures with the same fracture intensity (the black lines).
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On the other hand, the Backus formulas for the unrelaxed limit are

Cu
11 ¼

�
1

Lu

�
−1
;

Cu
12 ¼

�
1

Lu

�
−1
�
λu
Lu

�
;

Cu
22 ¼

�
4μðλu þ μÞ

Lu

�
þ
�

1

Lu

�
−1
�
λu
Lu

�
2

;

Cu
23 ¼

�
2μλud
Lu

�
þ
�

1

Lu

�
−1
�
λu
Lu

�
2

;

Cu
55 ¼

�
1

μ

�
−1
; (A-3)

where λu ¼ Km − 2μ∕3þ α2M is the Lamé constant in undrained
conditions.

APPENDIX B

PHASE VELOCITY AND INVERSE QUALITY
FACTOR

We consider a plane-wave propagating through a homogeneous
anisotropic viscoelastic medium. The general plane-wave solution
for the displacement vector u ¼ ðux; uy; uzÞ has the form

u ¼ Ae−ik·r; (B-1)

where k ¼ ðk1; k2; k3Þ is the wave vector, A ¼ ½A; B; C� is the am-
plitudes of the components of the displacement, and r ¼ ðx; y; zÞ is
the position vector. Substituting the plane-wave solution into the
equations of motion in the space-frequency domain

−ω2ρu − ∇ · τ ¼ 0; (B-2)

where ρ is the density of the rock and τ is the stress tensor, and
considering the relations between the stress and strain tensors

given in equation 7, we obtain the Kelvin-Christoffel equation
(e.g., Carcione, 2007):�

Γ − ω2ρ
k2 I3

�
· uT ¼ 0: (B-3)

In this equation, Γ ¼ K · C · KT is the symmetric Kelvin-Christof-
fel matrix with C given in equation 7, k is the wavenumber, and

K ¼
2
4 k1 0 0 0 k3 k2

0 k2 0 k3 0 k1
0 0 k3 k2 k1 0

3
5: (B-4)

For homogeneous waves, we can write k1 ¼ k sinðθÞ cosðϕÞ,
k2 ¼ k sinðθÞ sinðϕÞ, and k3 ¼ k cosðθÞ with θ and ϕ being the in-
cidence angle with respect to the x3-direction and the azimuth angle
of the seismic wave, respectively. The solution of the eigenvalue
problem of equation B-3, whose characteristic equation is
detðΓ − ðω2ρ∕k2ÞI3Þ ¼ 0, provides the complex wavenumbers
for all the possible wave modes.
In an anisotropic medium, three distinct body waves propagate

and form an orthogonal polarized set. A P-wave that travels
quasiparallel to the propagation direction and two S-waves that
are mutually orthogonal and polarized in the plane perpendicular
to the P-wave polarization direction. For practical applications,
the S-waves are often distinguished by referring to the faster and
slower S-waves, which are denoted by S1 and S2.
The three physically meaningful solutions having negative imagi-

nary parts, kPðω; θ;ϕÞ, kS1ðω; θ;ϕÞ, and kS2ðω; θ;ϕÞ correspond to
the wavenumbers of the P-, S1-, and S2-waves, respectively. The
corresponding phase velocities and inverse quality factors can then
be evaluated as

Vjðω; θ;ϕÞ ¼
ω

Rðkjðω; θ;ϕÞÞ
;

Q−1
j ðω; θ;ϕÞ ¼ −

Iðk2jðω; θ;ϕÞÞ
Rðk2jðω; θ;ϕÞÞ

for j ¼ P; S1; S2: (B-5)

Figure C-1. (a and b) Real and (c) imaginary parts of the effective stiffness coefficients as functions of frequency computed using the hybrid
methodology (the solid lines) and 3D numerical relaxation tests (the dots).
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APPENDIX C

SINGLE RELAXATION FUNCTION FOR
FRACTURE CLUSTERS

Krzikalla and Müller (2011) demonstrate the correctness of the
relation given in equation 8 for a medium containing regularly
distributed fractures. In addition, they consider two rather simple
cases: (1) a homogeneous background and (2) a background
composed by two layers with different permeabilities. With our
methodology, we can further generalize the validation of the single
relaxation function assumption that leads to equation 8 by consid-
ering a rock containing clusters of fractures. As shown in the
“Numerical analysis” section, when a rock contains clusters of frac-
tures, there is an additional characteristic length in the sample that,
in turn, produces an additional characteristic frequency of the relax-
ation function. That is, in addition to the relaxed and unrelaxed
regimes, there is an intermediate regime in which the medium
essentially behaves as a two-layer medium composed by the back-
ground and an effective layer representing the cluster of fractures.
For the validation, we implement 3D relaxation tests extending

the methodology developed by Rubino et al. (2016) and originally
proposed for 2D samples. We refer the reader to this work for details
on the methodology to obtain the effective stiffness tensor of a po-
roelastic heterogeneous sample. For the numerical comparison, we
use the fracture and background properties in Table 1. Each cluster
of fractures contains three fractures of 0.02 mm thickness, separated
by 2 mm. The distance between clusters is 20 mm.
Once theCij coefficients are computed for the 3D sample, we can

compare them with those obtained by following the approach pre-
sented in this work (equations 5–8). Figure C-1 shows the compari-
son between the stiffness coefficients as functions of frequency. The
agreement between the two approaches is excellent. Interestingly,
this means that the presence of an intermediate regime does not
change the relation given in equation 8, and we only need to know
the relaxed and unrelaxed limits and the scalar function RðωÞ to
describe the frequency-dependent Cij coefficients.
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