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We present a conjecture for the massless sector of perturbative 4D N = 1 heterotic (0, 2) string 
vacua, including U (1)n gauge symmetries, one of them possibly anomalous (like in standard heterotic 
compactifications). Mathematically it states that the positive hull generated by the charges of the 
massless chiral multiplets spans a sublattice of the full charge lattice. We have tested this conjecture 
in many heterotic N = 1 compactifications in 4D. Our motivation for this conjecture is that it allows to 
understand a very old puzzle in (0, 2) N = 1 heterotic compactification with an anomalous U (1). The 
conjecture guarantees that there is always a D-flat direction cancelling the FI-term and restoring N = 1
SUSY in a nearby vacuum. This is something that has being verified in the past in a large number of cases, 
but whose origin has remained obscure for decades. We argue that the existence of a lattice generated by 
massless states guarantees the instability of heterotic non-BPS extremal blackholes, as required by Weak 
Gravity Conjecture arguments. Thus the pervasive existence of these nearby FI-cancelling vacua would be 
connected with WGC arguments.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Four dimensional string vacua often have a number of gauged 
U (1) symmetries. Some of them are sometimes anomalous with 
anomalies cancelled by the 4D version of the GS mechanism. In 
heterotic vacua obtained from CY with non-Abelian bundles or 
standard (0, 2) Abelian orbifolds at most one anomalous U (1)X is 
allowed, whose anomaly is cancelled by the shift transformation 
of the axionic partner of the axi-dilaton ImS . Supersymmetry then 
tells us that there is an associated FI-coupling [1] such that one 
has D-term of the form

V X = 1

S + S∗

[
ξX +

∑
i

qX,i|�i|2
]2

, (1.1)

with

ξX = T r Q X

48(2π)2κ2
4

1

S + S∗ . (1.2)

Here the sum runs over all scalars in the theory charged under the 
anomalous U (1), and T r Q X is the trace over all massless charged 
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chiral multiplets in the theory. Perturbatively the potential of the 
dilaton is flat and, for non-vanishing values a field-dependent FI-
term, ξX �= 0 appears to break SUSY. From the very early days of 
heterotic compactification it was found that, in any such (0, 2) 4D 
heterotic vacua, there is always a nearby SUSY vacuum in which 
some scalars �i with the correct charge get appropriate vevs to 
get a vanishing D-term in a new SUSY vacuum. However, the rea-
son why this is true was never fully understood in the literature. In 
the present paper we come back to this puzzle and take advantage 
of recent efforts [2–5] to sort out the set of theories which may be 
embedded into a consistent theory of quantum gravity from those 
which cannot and belong to the swampland [6–8] (see [9] for a re-
view). We argue that putative theories in which the FI-term is not 
cancelled would inconsistent or belong to the swampland.

It is well known that a description in terms of holomorphic 
scalar operators [10] provides a useful way to look for D-flat di-
rections for an arbitrary gauge group in N = 1 SUSY. Having a flat 
direction cancelling all the D-terms corresponds to the existence 
of an operator involving the scalar components of massless chiral 
scalar fields φi (but not the conjugates)

I = (φiφ j...φk) (1.3)

such that is has U (1)X charge opposite to T r Q X and zero charge 
with respect to any other charge or gauge interaction. Setting the 
vevs fulfilling
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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∂ I

∂φi
= cφ∗

i , (1.4)

all D-terms vanish (c is a constant). Note that the operators I are 
just a book-keeping device to see what fields may have simultane-
ously vevs with a vanishing D-term, they do not need to be present 
in the effective action. What experience tells us is that such oper-
ators with the required sign of the Q X always exist in any (0, 2)

heterotic model so far analyzed. This suggests that there could be 
some deeper principle why this is always the case. It could well 
be, in particular, that consistency with quantum gravity forces this 
to happen, for some reason still to be understood.

It is reasonable to ask whether the existence of scalars with the 
correct charge, opposite to the FI-term, is a direct consequence of 
anomaly cancellation and N = 1 SUSY. After all, the cancellation of 
the mixed U (1)-gravitational anomalies seems to require the pres-
ence of fermions with opposite charges. However this is not so 
when the U (1) is anomalous. In the class of theories under con-
sideration the coefficients of the cube and the mixed-gravitation 
anomalies of U (1)X are related by Green–Schwarz anomaly can-
cellation constraints (see e.g. [11] and references therein)

1

3kX

∑
i

q3
X,i = 1

24
T r Q X , (1.5)

where kX is the normalization of the U (1)X coupling. In princi-
ple this may be fulfilled with all scalars having the same sign, so 
that the FI-term would never cancel. For example one may have 
a model with two chiral multiplets with charge q1 = 1, q2 = 1/2. 
The reader may check that for kX = 6 Eq. (1.5) is fulfilled, and 
anomalies cancel through the GS mechanism. We intend to put 
forth that this cannot happen in N = 1 heterotic vacua and such 
model would be in the swampland. It seems that anomaly cancel-
lation is not strong enough to guarantee FI-term cancellation.

In Section 2 we formulate a conjecture concerning massless 
sector of N = 1 heterotic vacua and provide some examples. In 
Section 3 we discuss our conjecture and its possible connection to 
the Weak Gravity Conjecture (WGC) [7]. We conclude with some 
comments in Section 4

2. The positive cone conjecture

Consider a N = 1 D = 4 heterotic vacuum with gauge group 
G = H × U (1)N , where H is some semisimple group and where a 
combination U (1)X of the N U (1)’s may be anomalous. There are 
massless chiral multiplets with complex scalar components with a 
vector of charges

φi = (Ri;qi
1, ..,qi

N ), (2.1)

where i runs over all the massless chiral spectrum. Here Ri is 
some representation of the non-Abelian semisimple group H . By 
holomorphically multiplying these scalars it is possible to obtain 
operators �a which are singlets under the non-Abelian group

�a = (φi .....φk)
a (2.2)

each one with a vector of charges

qa = (qa
1, ..,qa

N ) . (2.3)

Consider now all the vectors of charges generated by:

�0 = {
∑

Maqa , Ma ∈ Z+} (2.4)

a

where a runs over all possible �a chiral operators. �0 is the posi-
tive hull generated by the charges of all massless chiral fields. The 
conjecture is then:

The positive hull �0 generated by the charges of all massless chiral 
fields is a sublattice of the full charge lattice �.

The important point here is that �0, being a sublattice, con-
tains a given vector and its opposite. Note that the statement is 
non-trivial, in principle it could had happened that �0 was not a 
lattice, but just a set of vectors, not including the opposite of each 
vector. In fact, the positive hull of the example given above with 
two charged particles is not a lattice.

If the conjecture was true, there should always be a flat di-
rection at which the FI-term would be cancelled. Indeed, to each 
member of the sublattice �0 (choice of integers Ma) corresponds 
an operator (φ1...φN ). In particular, �0 should contain an operator 
I X which is only charged under U (1)X and another operator I−X

with opposite charge. Either one or the other will be able to can-
cel the FI-term by assigning vevs as in eq. (1.4). So the existence of 
these sublattice would guarantee the existence of a D-flat direction 
cancelling the FI-term and preserving N = 1.

We now discuss examples of heterotic compactifications, show-
ing how sublattices always arise in the massless sector of the 
theory.

The reader uninterested in the details of these models may 
safely jump to Section 3.

2.1. Examples

We have tested this conjecture in many Abelian (0, 2) Z N orb-
ifolds of the heterotic E8 × E8 and S O (32) strings leading to chiral 
D = 4, N = 1 theories with or without an anomalous U (1). Here 
we show a couple of representative examples (see e.g. [11] for 
a review on heterotic orbifold constructions) and present further 
ones in the Appendix.

2.1.1. Z3 orbifold E8 × E8 examples
A simple example with a single anomalous U (1) is the Z3

orbifold with shift V = 1/3(11112000) × (20000000) acting on 
the E8 × E8 gauge lattice. This model has gauge group SU (9) ×
S O (14) × U (1)X and charged massless chiral spectrum given by

U : 3[(84,1)0 + (1,14)−1 + (1,64)1/2]; (2.5)

T : 27((9,1)2/3, (2.6)

where U and T denote untwisted and twisted spectrum and the 
subindex is the charge under the U (1) generator Q X = (1, 0, .., 0)

in the second E8. In this simple case the sublattice is generated by

�0 = (M(±2) , M ∈ Z) . (2.7)

The minimum charge for this lattice comes from operators like 
(1, 14)2−2, (1, 64)4

2, [(9, 1)3(84, 1)]2, etc. Here T r Q X = 24 × 9 and 
the FI could be cancelled with vevs corresponding to the operator 
(14)2−2, and S O (14) is broken to S O (12).

A simple model with two U (1)’s is provided by the Z3 orbifold 
with embedding V = 1/3(110..0) × (200..0) yielding gauge group 
E7 × U (1)X × S O (14) × U (1). The chiral spectrum is given by

U : 3[(56,1)1,0 + (1,1)−2,0] + 3[(1,14)0,−1 + (1,64)0,1/2] (2.8)

T : 27[(1,14)2/3,−1/3 + (1,1)2/3,2/3 + (1,1)−4/3,2/3] , (2.9)

and the first U (1)X is anomalous. A sublattice is given by:

�0 = {M × (4/3,−2/3) + N × (2/3,2/3) , M, N ∈ Z} . (2.10)
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In this case it is generated by single twisted fields but there is 
a smaller lattice generated from the untwisted fields with vector 
charges (±2, 0), (0, ±2). coming from the operators [(56, 1)]2

2,0, 
(1, 1)−2,0 and [[(1, 64)]4

0,2], [(1, 14)]2
0,−2 respectively. In this ex-

ample T r Q X = 18 × 24 so that the FI may be simply cancelled by 
the untwisted singlet (1, 1)−2,0 which is already in the massless 
sector. However cancellation can be also achieved by e.g. the op-
erator [(1, 14)2

0,−1(1, 1)3−4/3,2/3]3−2,0 which involves twisted states. 
The normalizations are kX = 4, k′ = 2 from Q X = (1, 1, 0 . . . 0), 
Q ′ = (1, 0, 0 . . . 0).

In the above examples the FI-term could be cancelled by us-
ing operators/fields making use only of untwisted fields. However 
there are plenty of examples in which the untwisted subsector 
does not generate a sublattice by itself, and a full sublattice only 
arises from the complete untwisted and twisted spectrum. The fol-
lowing example has this property.

2.1.2. An S O (32), Z7 example
Consider v = 1

7 (1, 2, −3) and a gauge shift with embedding 
V = 1

7 (3, . . . , 3, 0, 0) leading to gauge group SU (14) × U (1) ×
S O (4) with Q X = (1, 1, . . . 1; 0, 0). The untwisted sector massless 
field content is generated by left handed lattice momenta (under-
lining means all possible permutations) P = (−1,−1,0,0, . . .;0,0)

with P V ≡ 1
7 and (−1,0,0, . . .;±1,0) with P V ≡ − 3

7 and reads

U : (91,1)−2 + (14,4)(−1)

with no massless states in the 2
7 sector. The m twisted sector 

(m = 1, 2, 4) massless states can be read from the P states satisfy-
ing (P+mV )

2 + E0 + NL − 1 = 0 with E0 = 2
7 and NL = 0, 17 , 27 , 37 , 47

the left oscillator number with associated multiplicities 1, 1, 2, 3, 5
respectively. Then one finds the twisted chiral fields

T : 7[3(1,2)(−1) + (14,1)(0) +5(1,1)(−2) + (1,2)(3) + (1,1)(−4)]
(2.11)

Notice that 1
24 T r Q X = −14 = 1

28.3 T r Q 3
X . The singlets

[(1,2)2
(3)(1,1)(−4)](2); (1,1)(−2) (2.12)

generate the sublattice {2, −2}. The singlets [(1, 2)(3)]2
(6) or

[(1, 2)2
(3)

(1, 1)(−4)](2) constructed up from the only positive charge 
massless field (1, 2)(3) could be used to cancel FI term. In this ex-
ample only the twisted sector had fields with positive charge and 
hence the untwisted fields cannot generate a sublattice by them-
selves . Further examples are presented in the Appendix.

3. Blackholes, the WGC and FI-terms

We see that the existence of the above sublattice guarantees 
D-flat directions in which the FI-term in the potential is cancelled 
by the vev of opposite charge scalars. We will now argue that the 
WGC could be at the origin of the existence of this sublattice. We 
do not have any formal proof of this statement but we want to 
present in this section some circumstantial evidence in this direc-
tion.

In general terms, the Weak Gravity Conjecture [2,3,7] (see [9]
for a review) states that gravity is the weakest force. In the con-
text of a U (1) gauge theory, it states that any (non-BPS) extremal 
charged blackhole should be able to decay into a superextremal 
particle with mass m < Q in Planck units. This is required if we 
want to avoid a tower of remnant stable extremal blackholes which 
are problematic from different points of view. Interestingly, the 
toroidal compactifications of the heterotic strings down to 4D pro-
vide the prototypical example in which indeed the appropriate su-
perextremal particles exist with the appropriate characteristics. A. 
Sen first described in [12] the structure of extremal blackholes in 
heterotic toroidal compactifications. There are extremal BPS black-
holes with masses m2 = P 2

R/2 in Planck units and extremal non-
BPS blackholes with masses m2 = P 2

L/2. On the other hand the 
spectrum of masses of the heterotic string states is given by the 
expression

α′M2 = α′2M2
L = 4

(
P 2

L

2
+ NL − 1

)
= 4

(
P 2

R

2
+ NR

)
. (3.1)

Here P L and P R are the left- and right-handed momenta. They 
span lattices with signature (22, 6), with P L including the E8 × E8
or Spin(32) gauge degrees of freedom. For P 2

R > P 2
L one finds BPS 

states for NR = 0 and NL = 1
2 (P 2

R − P 2
L ) + 1. They have mass M2 =

P 2
R/2. In addition, for P 2

L > P 2
R and NL = 0, NR = (P 2

L − P 2
R)/2 − 1

one has non-BPS states with mass M2 = P 2
L/2 − 1. The masses of 

these non-BPS states tends to M2 = P 2
L/2 for large charges. This 

nicely fits with the spectrum of blackholes found in [12]. It also 
shows an explicit realization of the WGC bounds. Indeed, as we go 
to smaller values of the charge we find string states obeying the 
WGC with the inequality saturated for the BPS states with P 2

R >

P 2
L . For P 2

R < P 2
L however the extremal blackholes have m2 = P 2

L/2
whereas there is always a lighter string state with M2 = P 2

L/2 − 1. 
This canonical example of heterotic realization of the WGC was 
first presented in [7].

This example has N = 4 whereas the theories that we are 
studying have N = 1 and are chiral. However, in the case of 
toroidal orbifold compactifications we might expect that, at least 
in the untwisted sector of the theory, towers of non-BPS extremal 
blackholes with masses M2/4 = P 2

L/2 still remain in the spectrum. 
Interestingly, in some cases the wanted instability requires the ex-
istence of massless chiral fields in the spectrum, and these required 
massless fields have the correct charge to cancel a FI-term in the 
potential, giving a connection between BH instability and FI-term 
cancellation.

An example in which this happens is the simple Z3 orbifold 
with gauge group E7 × U (1)X × S O (14) × U (1) discussed above. 
Consider the E8 lattice vector P L = (−1, −1, 0, 0, 0, 0, 0, 0). Asso-
ciated to this there would be an extremal non-BPS blackhole with 
mass m2/4 = P 2

L/2 and charges (−2, 0) with respect to the U (1)’s. 
But precisely for this lattice vector there is a massless chiral field 
with the same charges 1−2,0, verifying WGC bounds. On the other 
hand, as explained in the previous section, this singlet can cancel 
the FI-term associated to the anomalous U (1). So this is an exam-
ple in which the massless singlet plays a double roll of insuring 
WGC constraints and FI-term cancellation. This is just an example, 
and there are many others. In many of them however there are 
no appropriate single field states in the untwisted massless sec-
tor that could play this role. In general multi-particle states both 
from the untwisted and twisted massless field sectors are needed 
to build the required sublattice. But at least these simplest exam-
ples show the possible connection between the need for states to 
verify the WGC and the presence of the required massless fields to 
cancel the FI term.

Another important point to take into account is the corrections 
to mass/charge ratio in non-BPS extremal blackholes. It has been 
shown that corrections involving 4-derivative interactions drive 
M2 < Q 2 [13]. In fact those authors find that for D = 4 the cor-
rected mass of extremal back holes in the heterotic string is
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M2

M2
p

= Q 2 − 3h
2
2

20

M2
p

M2
s

(3.2)

where 
2 = 2π3/2/�(3/2) and h is the dilaton. The correction is 
always negative and may become numerically important as the 
compact volume increases. Analogous corrections are expected to 
arise for the case here considered of N = 1 compactifications. If 
this was the case the risk of extremal blackholes becoming lighter 
than their prospective string states into which they could decay 
appears, rendering them stable. A cure to this possible disease 
would be that the massless chiral sector of the theory is suffi-
ciently rich so that all extremal blackholes can decay always at 
least to sets of massless (typically multiplarticle) states. The sublat-
tice structure of the states spanned by the massless sector would 
provide for the appropriate decay products. Note that in addition 
to the towers of extremal blackholes associated to the untwisted 
sector one would also expect extremal blackholes with a charge 
lattice generated by the shifted lattice (P + ni V i). These typically 
correspond to fractional charges. For these additional blackholes 
not to be stable (typically multiparticle) states constructed using 
twisted massless chiral fields would then exist. Summarizing, we 
conjecture that for any node in the sublattice generated by the 
massless chiral fields an extremal blackhole with the same charge 
should exist. The existence of the sublattice would then guaran-
tee both extremal BH instability and cancellation of the FI-term in 
D-flat directions.

4. Comments

The above conjecture for the existence of a lattice �0 is only 
a sufficient condition for the FI-term cancellation. In order for the 
new shifted vacuum to be supersymmetric the corresponding D-
flat direction should also be F-flat. It would be interesting to prove 
that the presence of the appropriate (multiparticle) decay chan-
nels of the blackholes would, in addition, force the cancellation of 
F-terms.

The sublattice of states discussed in this note is reminiscent of 
the sublattice of U (1)N charges discussed in [2]. In the third pa-
per in there it was conjectured that in a theory of quantum gravity 
with multiple U (1)’s a sublattice of the charge lattice with a su-
perextremal particle at every site must exist. As made clear in [14], 
this can only be true in more than 4D because there are plenty of 
examples in 4D in which only massless particles may be superex-
tremal. But then we would have an infinite number of massless 
particles. In our case this is not what happens. There are no infinite 
particles but rather a charge lattice generated by a finite number 
of massless fields. At each node there is a multiparticle state to 
which potential non-BPS extremal blackholes could decay into.

A natural question is whether the conjecture of the existence of 
the positive cone sublattice should apply to all N = 1 string vacua. 
It seems that the answer is no, and indeed it is easy to find e.g. 
Type I or Type IIA orientifolds with Dp-branes is which the con-
jecture does not work. There are a number of reasons for this to 
be the case. Consider for example the Type I duals of the Spin(32)

heterotic models.1 Unlike the heterotic case, in the perturbative 
Type I duals there are no towers of non-BPS blackholes and there 
are no spinorial states either. The duals of the Spin(32) lattice and 
the spinorials appear only at the non-perturbative level from the 
dynamics of D1-branes, which decouple in the perturbative regime. 
So an argument for a sublattice based on the stability of extremal 

1 See as an example the heterotic Z3, U (4)4 model in [15] and its Type I dual. 
The massless twisted states in the heterotic side do generate a sublattice. In the 
Type I side the massless chiral fields do not.
blackholes does not hold. This is also consistent with the different 
structure of anomalous U (1)’s in Type I orbifold vacua. Indeed in 
the latter class of models there can be more than one anomalous 
U (1) and the multiple FI-terms associated to those are related to 
the twisted blowing-up modes rather than to the overall dilaton 
[16]. These blowing up modes can be put to zero without generat-
ing a decoupling of the anomalous U (1) couplings whatsoever. The 
same is expected to happen in Heterotic compactifications with 
U (N) bundles (see [17] and references therein).
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Appendix A. (2, 2) compactifications of S O (32) heterotic on a CY

In any such compactification the gauge group is generically 
S O (26) × U (1)X , with a massless spectrum given by

b11(261 + 1−2) + b12(26−1 + 12) , (A.1)

where the subindex is the U (1)X charge in some integer normal-
ization. We see that T r Q X = 24(b11 −b12), which is in general non 
vanishing. But note that for any values of the Betti numbers, the 
sublattice generated is generated by

�0 = (2,−2) . (A.2)

In particular e.g. even if b12 = 0, �0 contains not only (−2), but 
also (+2) from the S O (26) singlet operator (261)

2. In this case 
the sublattice has index 2 with respect to the full charge lattice �
generated by (±1). In fact the index is larger since in the massive 
spectrum there will be spinorial states which will have semiinte-
ger charges. This case is relatively trivial since there is always the 
required singlet scalar 1±2 already in the massless sector of the 
theory, one does not need several scalars to cancel the FI. This is 
in general not the case, as the following examples show.

Appendix B. (2, 2) compactification of eterotic on Z3 orbifold

In this case there is a gauge shift embedding:

V = 1

3
(11200...0) , (B.1)

and the gauge group is S O (26) × SU (3) × U (1)X . The chiral spec-
trum contains from untwisted and twisted sectors:

U : P = (100; .. ± 1..) etc. → 3[(26,3)1 + (1,3)−2] (B.2)

T : (P + V ) = (1/3,1/3,−1/3.. ± 1..) → 27(26,1)1/3 (B.3)

Tosc : (P + V ) = (1/3,1/3,2/3,000..0) → 3 × 27(1,3)4/3 (B.4)

Here the anomalous U (1)X is generated by the charge vector Q X =
(1, 1, 1, 0, .., 0). Charges of fields are given by the scalar products 
e.g. Q X .(P + V ). In this case we have the sublattice:

�0 = (M(±2/3) , M ∈ Z) . (B.5)

The operators associated to the shortest charges in the lattice 
would be in this case [(26, 1)]2 and [(1, 3)(1, 3)]−2/3. There is a 
2/3
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variety of choices which can cancel the FI. One has T r Q X = 24 ×36
so one could cancel the FI with e.g. (1, 3)3

−2 or [(1, 3)(1, 3)]−2/3. 
Along these directions SU (3) is also broken. Note in this examples 
several scalar are required to cancel the FI, there is no singlet in 
the massless sector to do the job.

References

[1] M. Dine, N. Seiberg, E. Witten, Fayet–Iliopoulos terms in string theory, Nucl. 
Phys. B 289 (1987) 589;
J.J. Atick, L.J. Dixon, A. Sen, String calculation of Fayet–Iliopoulos d terms in 
arbitrary supersymmetric compactifications, Nucl. Phys. B 292 (1987) 109;
M. Dine, I. Ichinose, N. Seiberg, F terms and d terms in string theory, Nucl. 
Phys. B 293 (1987) 253.

[2] C. Cheung, G.N. Remmen, Naturalness and the weak gravity conjecture, Phys. 
Rev. Lett. 113 (2014) 051601, arXiv:1402 .2287 [hep -ph];
B. Heidenreich, M. Reece, T. Rudelius, Sharpening the weak gravity conjecture 
with dimensional reduction, J. High Energy Phys. 1602 (2016) 140, arXiv:1509 .
06374 [hep -th];
B. Heidenreich, M. Reece, T. Rudelius, Evidence for a sublattice weak gravity 
conjecture, J. High Energy Phys. 1708 (2017) 025, arXiv:1606 .08437 [hep -th];
M. Montero, G. Shiu, P. Soler, The weak gravity conjecture in three dimensions, 
J. High Energy Phys. 1610 (2016) 159, arXiv:1606 .08438 [hep -th].

[3] T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, J. 
Cosmol. Astropart. Phys. 1509 (09) (2015) 020, arXiv:1503 .00795 [hep -th];
M. Montero, A.M. Uranga, I. Valenzuela, Transplanckian axions!?, J. High Energy 
Phys. 1508 (2015) 032, arXiv:1503 .03886 [hep -th];
J. Brown, W. Cottrell, G. Shiu, P. Soler, Fencing in the swampland: quantum 
gravity constraints on large field inflation, J. High Energy Phys. 1510 (2015) 
023, arXiv:1503 .04783 [hep -th];
J. Brown, W. Cottrell, G. Shiu, P. Soler, On axionic field ranges, loopholes and 
the weak gravity conjecture, J. High Energy Phys. 1604 (2016) 017, arXiv:1504 .
00659 [hep -th];
B. Heidenreich, M. Reece, T. Rudelius, Weak gravity strongly constrains large-
field axion inflation, J. High Energy Phys. 1512 (2015) 108, arXiv:1506 .03447
[hep -th];
A. de la Fuente, P. Saraswat, R. Sundrum, Natural inflation and quantum gravity, 
Phys. Rev. Lett. 114 (15) (2015) 151303, arXiv:1412 .3457 [hep -th];
A. Hebecker, P. Mangat, F. Rompineve, L.T. Witkowski, Winding out of the 
swamp: evading the weak gravity conjecture with f-term winding inflation?, 
Phys. Lett. B 748 (2015) 455, arXiv:1503 .07912 [hep -th];
T.C. Bachlechner, C. Long, L. McAllister, Planckian axions and the weak gravity 
conjecture, J. High Energy Phys. 1601 (2016) 091, arXiv:1503 .07853 [hep -th];
T. Rudelius, On the possibility of large axion moduli spaces, J. Cosmol. As-
tropart. Phys. 1504 (04) (2015) 049, arXiv:1409 .5793 [hep -th];
D. Junghans, Large-field inflation with multiple axions and the weak gravity 
conjecture, J. High Energy Phys. 1602 (2016) 128, arXiv:1504 .03566 [hep -th];
K. Kooner, S. Parameswaran, I. Zavala, Warping the weak gravity conjecture, 
Phys. Lett. B 759 (2016) 402, arXiv:1509 .07049 [hep -th];
D. Harlow, Wormholes, emergent gauge fields, and the weak gravity conjecture, 
J. High Energy Phys. 1601 (2016) 122, arXiv:1510 .07911 [hep -th];
L.E. Ibáñez, M. Montero, A. Uranga, I. Valenzuela, Relaxion monodromy and 
the weak gravity conjecture, J. High Energy Phys. 1604 (2016) 020, arXiv:1512 .
00025 [hep -th];
A. Hebecker, F. Rompineve, A. Westphal, Axion monodromy and the weak 
gravity conjecture, J. High Energy Phys. 1604 (2016) 157, arXiv:1512 .03768
[hep -th].

[4] D. Klaewer, E. Palti, Super-planckian spatial field variations and quantum grav-
ity, J. High Energy Phys. 1701 (2017) 088, arXiv:1610 .00010 [hep -th];
L. McAllister, P. Schwaller, G. Servant, J. Stout, A. Westphal, Runaway relaxion 
monodromy, J. High Energy Phys. 1802 (2018) 124, arXiv:1610 .05320 [hep -th];
A. Herráez, L.E. Ibáñez, An axion-induced SM/MSSM Higgs landscape and the 
weak gravity conjecture, J. High Energy Phys. 1702 (2017) 109, arXiv:1610 .
08836 [hep -th];
M. Montero, Are tiny gauge couplings out of the swampland?, J. High Energy 
Phys. 1710 (2017) 208, arXiv:1708 .02249 [hep -th];
L.E. Ibáñez, M. Montero, A note on the WGC, effective field theory and clock-
work within string theory, J. High Energy Phys. 1802 (2018) 057, arXiv:1709 .
02392 [hep -th];
P. Saraswat, The weak gravity conjecture and effective field theory, Phys. Rev. 
D 95 (2) (2017) 025013, arXiv:1608 .06951 [hep -th].

[5] C. Cheung, J. Liu, G.N. Remmen, Proof of the weak gravity conjecture from black 
hole entropy, arXiv:1801.08546 [hep -th];
T.W. Grimm, E. Palti, I. Valenzuela, Infinite distances in field space and massless 
towers of states, arXiv:1802 .08264 [hep -th];
B. Heidenreich, M. Reece, T. Rudelius, Emergence and the swampland conjec-
tures, arXiv:1802 .08698 [hep -th];

S. Andriolo, D. Junghans, T. Noumi, G. Shiu, A tower weak gravity conjecture 
from infrared consistency, arXiv:1802 .04287 [hep -th];
R. Blumenhagen, D. Klaewer, L. Schlechter, F. Wolf, The refined swampland dis-
tance conjecture in Calabi–Yau moduli spaces, arXiv:1803 .04989 [hep -th].

[6] C. Vafa, The string landscape and the swampland, arXiv:hep -th /0509212.
[7] N. Arkani-Hamed, L. Motl, A. Nicolis, C. Vafa, The string landscape, black holes 

and gravity as the weakest force, J. High Energy Phys. 0706 (2007) 060, arXiv:
hep -th /0601001.

[8] H. Ooguri, C. Vafa, On the geometry of the string landscape and the swamp-
land, Nucl. Phys. B 766 (2007) 21, arXiv:hep -th /0605264;
H. Ooguri, C. Vafa, Non-supersymmetric AdS and the swampland, Adv. Theor. 
Math. Phys. 21 (2017) 1787, arXiv:1610 .01533 [hep -th].

[9] T.D. Brennan, F. Carta, C. Vafa, The string landscape, the swampland, and the 
missing corner, arXiv:1711.00864 [hep -th].

[10] F. Buccella, J.P. Derendinger, S. Ferrara, C.A. Savoy, Patterns of symmetry break-
ing in supersymmetric gauge theories, Phys. Lett. B 115 (1982) 375.

[11] L.E. Ibáñez, A. Uranga, String Theory and Particle Physics, Cambridge U. Press, 
2012.

[12] A. Sen, Black hole solutions in heterotic string theory on a torus, Nucl. Phys. B 
440 (1995) 421, arXiv:hep -th /9411187.

[13] Y. Kats, L. Motl, M. Padi, Higher-order corrections to mass-charge relation of 
extremal black holes, J. High Energy Phys. 0712 (2007) 068, arXiv:hep -th /
0606100.

[14] B. Heidenreich, M. Reece, T. Rudelius, The weak gravity conjecture and emer-
gence from an ultraviolet cutoff, arXiv:1712 .01868 [hep -th].

[15] L.E. Ibáñez, A chiral D = 4, N = 1 string vacuum with a finite low-energy effec-
tive field theory, J. High Energy Phys. 9807 (1998) 002, arXiv:hep -th /9802103.

[16] L.E. Ibáñez, R. Rabadán, A.M. Uranga, Anomalous U(1)’s in type I and type IIB 
D = 4, N = 1 string vacua, Nucl. Phys. B 542 (1999) 112, arXiv:hep -th /9808139.

[17] R. Blumenhagen, S. Moster, T. Weigand, Heterotic GUT and standard model 
vacua from simply connected Calabi–Yau manifolds, Nucl. Phys. B 751 (2006) 
186, arXiv:hep -th /0603015.

http://refhub.elsevier.com/S0370-2693(18)30425-8/bib46496F6C64s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib46496F6C64s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib46496F6C64s2
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib46496F6C64s2
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib46496F6C64s3
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib46496F6C64s3
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474331s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474331s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474331s2
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474331s2
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474331s2
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474331s3
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474331s3
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474331s4
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474331s4
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s2
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s2
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s3
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s3
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s3
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s4
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s4
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s4
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s5
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s5
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s5
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s6
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s6
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s7
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s7
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s7
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s8
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s8
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s9
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s9
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s10
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s10
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s11
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s11
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s12
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s12
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s13
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s13
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s13
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s14
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s14
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474332s14
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s2
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s2
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s3
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s3
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s3
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s4
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s4
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s5
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s5
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s5
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s6
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474333s6
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474334s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474334s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474334s2
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474334s2
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474334s3
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474334s3
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474334s4
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474334s4
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474334s5
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib57474334s5
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib7377616D706C616E64s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib574743s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib574743s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib574743s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib5747434Ds1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib5747434Ds1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib5747434Ds2
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib5747434Ds2
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib76616661666564657269636Fs1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib76616661666564657269636Fs1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib42756363656C6C61s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib42756363656C6C61s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib424F4F4Bs1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib424F4F4Bs1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib53656E3A313939346562s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib53656E3A313939346562s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib4B4D50s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib4B4D50s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib4B4D50s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib48656964656E72656963683A3230313773696Ds1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib48656964656E72656963683A3230313773696Ds1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib66696E697465s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib66696E697465s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib4962616E657A3A313939387170s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib4962616E657A3A313939387170s1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib626C756D656Es1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib626C756D656Es1
http://refhub.elsevier.com/S0370-2693(18)30425-8/bib626C756D656Es1

	A note on 4D heterotic string vacua, FI-terms and the swampland
	1 Introduction
	2 The positive cone conjecture
	2.1 Examples
	2.1.1 Z3 orbifold E8xE8 examples
	2.1.2 An SO(32),  Z7 example


	3 Blackholes, the WGC and FI-terms
	4 Comments
	Acknowledgements
	Appendix A (2,2) compactiﬁcations of SO(32) heterotic on a CY
	Appendix B (2,2) compactiﬁcation of eterotic on Z3 orbifold
	References


