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A B S T R A C T

The refractive index of blends of soybean biodiesel with low sulfur diesel and also with ultra-low sulfur diesel
was determined in the full composition range. Measurements were carried out acording to ASTM D1218/12
standard at 589 nm with an uncertainty of 2.10−4. The temperature ranges were from 288 K to 328 K for blends
with low sulfur diesel and from 293 K to 323 K for blends with ultra-low sulfur diesel.

The experimental results of refractive index as a function of temperature and composition were satisfactorily
fitted to linear models with an uncertainty lower than 5.10−4 for blends with low sulfur diesel and 4.10−4 for
ultra-low sulfur diesel blends.

The density of the blends was measured according to the ASTM D1298/12 standard in the same temperature
range and the agreement with models available in the literature was satisfactorily checked. The effective po-
larizability of the blends was defined from the Lorentz-Lorenz equation using refractive index and density values.
The effective polarizability for low sulfur diesel and ultra-low sulfur diesel were (0.3307 ± 0.0005) cm3/g and
(0.3327 ± 0.0005) cm3/g respectively, and independent of temperature. These results are in good agreement
with the published values for pure hydrocarbons and crude oils. For soybean biodiesel, a value of
(0.3110 ± 0.0002) cm3/g was obtained. It was also found that the effective polarizability of soybean biodiesel-
diesel blends follows a linear dependence with composition. From our results, it also follows that the effective
polarizability is independent of temperature, within the studied range.

From the values of effective polarizability of the pure fuels, together with the blend density at each tem-
perature, it is then possible to estimate the refractive index of biodiesel-diesel blends in the full range of com-
position and studied temperatures, with an RMS difference below 6.10−4.

1. Introduction

World energy consumption has increased in recent years due to
motorization and industrialization processes, and fossil fuels are used
by most countries to satisfy this growing demand. These energy re-
sources are finite, non renewable, their reserves are found only in
certain regions and their combustion releases large quantities of con-
taminants to the enviroment [1]. Diesel fuel is particularly important,
since it is used for automotive and railway transport of industrial and
agricultural goods.

Due to these concerns and in order to perserve the environment, it is
urgent to search for alternative, economically viable and carbon-neutral
fuels that can be obtained from a large variety of renewable sources.

Biodiesel (BD) is an alternative fuel obtained from the transesterifica-
tion of vegetable oils or animal fats [2]; it is non-toxic, biodegradable,
with lower carbon dioxide and particulate emissions than fossil fuels
[3]. BD is used in internal combustion engines, usually blended with
diesel fuel. In many countries the use of biodiesel-diesel blends is
regulated.

The characterization of líquid biofuels, fossil fuels and their blends
is made according to international standards (ASTM D6751/15 [4], EN
14214/13 [5], etc.) where several properties are included, together
with their acceptable ranges.

There are also alternative properties that are useful for biodiesel and
blends characterization, such as permittivity, conductivity and speed of
sound [6–8]. In the literature, dielectric properties at low frequencies
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were successful used to characterize feedstocks [9], biodiesel and its
blends with diesel [10–12], and to detect contaminants [13]. However,
measurements of dielectric properties at optical frequencies (i.e. re-
fractive index) offer several advantages for characterization [14]. Par-
ticularly in the visible range, the technique is fast, accurate, simple, non
destructive, and requires small sample volume. At present, there are
several manufactures [15] that supply a wide variety of automatic re-
fractometers, both for laboratory and inline control applications. Re-
fractometry is widely used in many industries for concentration mon-
itoring, dosage and quality control [15–16] including chemical,
pharmaceutical, food/ beverage, sugar/bioethanol production, pulp,
paper and textile, lubricant agents, and semiconductors, particulary for
“inline” process control applications. In recent years [14], this tech-
nique has also been applied in biodiesel technology [17–23], for in-
stance, to monitor the transesterification reaction [24–26], and to es-
timate the viscosity [27] and density of biodiesel-diesel blends [28].
The refractive index of biodiesel-diesel blends was studied for biodiesel
of different origin: rapeseed biodiesel at temperatures between 298 and
323 K [23], for soybean biodiesel at 298 K [29] and Canola oil at 293 K
[22].

As usual, in this work the volumetric percentage of the biofuel in the
blend is indicated as Bx. For instance, B10 corresponds to 10% (v/v)
biodiesel in the blend.

2. Materials and methods

2.1. Samples

The blends of soybean BD with diesel fossil fuel were prepared from
two types of commercial diesel fossil fuel: low sulfur diesel (LSD) and
ultra-low sulfur diesel (ULSD). The pure fuel samples were provided by
a local refinery and complied with the ASTM D975/16 standard [30].
The same refinery provided the soybean biodiesel, according to ASTM
D6751/15 specifications [4], that they use to prepare the commercial
blend. Two series of samples were prepared: soybean BD-LSD blends in
5% steps, called Series 1, and soybean BD-ULSD blends in 10% steps
called Series 2, in the full range of compositions (from B0 to B100).

2.2. Equipment

The refractive index of all samples was determined using an Abbe-
type refractometer (Warkzawa Model RL-3) with an accuracy of
2.10−4, according to the ASTM D1218/12 standard [31]. A 589 nm
sodium arc lamp was used as a light source, and the sample cell tem-
perature was kept constant within± 0.1 K by a termostatic bath. The
refractometer was calibrated using deionized water and toluene.

Density measurements of the samples were made with hydrometers
according to ASTM D1298/12 standard [32] for the different density
ranges, in a thermostatic bath, LAUDA, stabilized within± 0.1 K. The
measurement uncertainty was 10−3 g/cm3.

2.3. Measurements

Refractive index measurements were made on both Series, ac-
cording to the ASTM D1218/12 standard [31]. For Series 1, the tem-
perature range was from 293 K to 328 K in 5 K steps, while for Series 2
the temperature range was from 298 K to 328 K, also in 5 K steps.

Density measurements were made in the temperature range be-
tween 303 K and 323 K in 5 K steps. The studied samples were LSD and
ULSD pure diesel (B0), B30 and B70 from both series and pure biodiesel
(B100). Measurements were carried out according to ASTM D1298/12
standard [32].

3. Theory

At optical frequencies, permittivity is generally controlled by

electronic polarization processes and refractive index measurements are
commonly used to determine it [14]. In biodiesel, diesel fuel and their
blends, the optical attenuation is small and the magnetic permittivity is
practically equal to the vacuum value; therefore, the refractive index in
the visible range can be written as:

= ′n ω ε ω( ) ( ) (1)

where n ω( ) is the refractive index and ε′(ω) is the permittivity. Usually
the refractive index is measured at the frequency, ω, corresponding to
the sodium NaD emission line (vacuum wavelength of 589 nm), in-
dicated as nD [14].

At optical frequencies, the Lorentz-Lorenz equation (Eq. (2)) is ap-
plied to estimate the polarizability, α, of pure substances as a function
of refractive index, n, density, ρ, and molar mass, MW [33].
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where α is in cm3, density in g/cm3, molar mass in mol/g and NA is the
Avogadro constant, in mol−1. Therefore, Eq. (2) may be written as:

=α A Rm* (3)
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Fig. 1. Refractive index as a function of temperature and BD content (Series 1).
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Fig. 2. Refractive index as a function of temperature and BD content (Series 2).
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where A is a constant given by
πN
3

4 A
in mol and Rm is the molar re-

fractivity, in cm3/mol. To extend this definition to include mixtures of
pure substances, we introduce the effective polarizability, α, given by:

= −
+

n
n ρ

α 1
2

* 12

2 (4)

where α is in cm3/g. It is interesting to mention that Bykov [34] in 1984
and then Vargas et al. [35–36] in 2009, experimentally found that the
effective polarizability given by Eq. (4), for a wide variety of pure hy-
drocarbons and also for crude oils, is a constant practically equal to 1/3,
and independent of temperature and pressure (“One-Third Rule”).

4. Results and discussion

4.1. Refractive index

Figs. 1and 2 show the tridimensional plot of the experimental values
of the refractive index as a function of temperature and composition, for
Series 1 (biodiesel-LSD) and Series 2 (biodiesel-ULSD), respectively. It
may be seen that both surfaces are smooth and regular.

In order to analyze the dependence of refractive index with bio-
diesel content, the surface n(Bx,T) can be projected onto the (n,Bx)
plane. Figs. 3 and 4 show the projections for Series 1 and Series 2,
respectively. The refractive index at each temperature decreases line-
arly with increasing biodiesel content in the blend.

The dashed lines in Figs. 3 and 4 correspond to the fitting of the
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Fig. 3. Refractive index of Series 1 as a function of biodiesel
content. The symbols indicate the experimental values at
each temperature, and the lines correspond to the fitting to
Eq. (5).
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Fig. 4. Refractive index of Series 2 as a function of biodiesel
content. The symbols indicate the experimental values at
each temperature, and the lines correspond to the fitting to
Eq. (5).
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experimental data to a linear model at each temperature, according to
Eq. (5):

= + −n Bx T n Br T dn
dBx

Bx Br( , ) ( , ) ( )D D
D

T (5)

where nD(Bx,T) is the refractive index as a function of composition, Bx,
n Br T( , )D is the refractive index of the reference blend Br (50% bio-
diesel), and dn

dBx T
D is the slope, all measured at each temperature T.

The fitting parameters of Eq. (5), dn
dBx T

D and nD(Br,T), together with

their uncertainties Δ dn
dBx T

D and ΔnD(Br,T), the determination coefficient
R2 and the RMS uncertainty ΔnD(Bx,T) for Series 1 and Series 2 are
shown in Table 1.

At all the measured temperatures, the refractive index of LSD is
significantly different from ULSD. From Table 1 it can be seen that at
each temperature, the refractive index decreases with increasing bio-
diesel content in the blend; the slope is higher for Series 1. Eq. (5) fits

satisfactorily the experimental data of both series at all temperatures,
with a determination coefficient higher than 0.983. The RMS un-
certainty for both series was lower than 4.10−4.

In order to analyze the dependence of refractive index on tem-
perature, the surface nD(Bx,T) for both series may be projected onto the
(nD,T) plane. Figs. 5 and 6 show the experimental data (symbols) of
refractive index for Series 1 and Series 2 respectively, as a function of
temperature, for each composition. For the sake of clarity, in Fig. 5 only
the compositions that correspond to 10% steps are shown. It can be seen
that the refractive index of both series decreases linearly with in-
creasing temperature at all the studied compositions.

Dashed lines in Figs. 5 and 6 correspond to the fitting of a linear
model at each composition, according to Eq. (6).

= + −n Bx T n Bx T dn
dT

T T( , ) ( , ) ( )D D r
D

Bx
r

(6)

where nD(Bx,T) is the refractive index as a function of temperature, T,

Table 1
Fitting parameters of Eq. (5) with their uncertainties for each temperature (Series 1 and Series 2).

Temperature dnD/dBx ΔdnD/dBx nD(Br,T) ΔnD(Br,T) R2 ΔnD(Bx,T)
[K] [%−1] [%−1]

Series 1
288.1 −0.00015 <0.000003 1.4667 <0.00007 0.996 < 0.0004
293.1 −0.00015 <0.000003 1.4650 <0.00005 0.998 < 0.0003
298.1 −0.00015 <0.000003 1.4633 <0.00006 0.997 < 0.0003
303.1 −0.00014 <0.000003 1.4610 <0.00007 0.996 < 0.0003
308.1 −0.00015 <0.000003 1.4592 <0.00006 0.997 < 0.0003
313.1 −0.00015 <0.000003 1.4574 <0.00007 0.996 < 0.0004
318.1 −0.00015 <0.000003 1.4554 <0.00006 0.997 < 0.0003
323.1 −0.00015 <0.000003 1.4534 <0.00008 0.994 < 0.0004
328.1 −0.00014 <0.000003 1.4512 <0.00006 0.996 < 0.0003

Series 2
293.1 −0.00006 <0.000003 1.4604 <0.00008 0.9839 <0.0003
298.1 −0.00006 <0.000003 1.4584 <0.00008 0.9842 <0.0003
303.1 −0.00006 <0.000003 1.4567 <0.00007 0.9880 <0.0003
308.1 −0.00005 <0.000001 1.4546 <0.00003 0.9981 <0.0001
313.1 −0.00006 <0.000002 1.4527 <0.00006 0.9911 <0.0002
318.1 −0.00006 <0.000002 1.4507 <0.00005 0.9937 <0.0002
323.1 −0.00005 <0.000002 1.4480 <0.00006 0.9897 <0.0002
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Fig. 5. Refractive index as a function of temperature. The
symbols correspond to each composition and the dashed
lines to the fitting of Eq. (6) (Series 1).
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n Bx T( , )D r is the refractive index at the reference temperature Tr (313 K),
and dn

dT Bx
D is the slope, all measured at each composition Bx.

The Table 2 presents the fitting parameters of Eq. (6) for Series 1
and Series 2, dn

dT Bx
D and n Bx T( , )D r , together with their uncertainties

Δ dn
dT Bx

D and n Bx TΔ ( , )D r , the determination coefficient R2 and the RMS

uncertainty n Bx TΔ ( , )D for each composition.
From Table 2, it can be seen that the refractive index decreases with

increasing temperature with a constant slope in the two series. Eq. (6)
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Fig. 6. Refractive index as a function of temperature. The
symbols correspond to each composition and the dashed
lines to the fitting of Eq. (6) (Series 2).

Table 2
Fitting parameters of Eq. (6) and their uncertainties for each composition (Series 1 and Series 2).

Sample dnD/dT ΔdnD/dT nD(Bx,Tr) ΔnD(Bx,Tr) R2 ΔnD(Bx,T)
[K−1] [K−1]

Series 1
B0 −0.000391 <0.000002 1.4647 <0.0002 0.9941 <0.0005
B5 −0.000399 <0.000001 1.4638 <0.0002 0.9940 <0.0005
B10 −0.000398 <0.000001 1.4631 <0.0002 0.9952 <0.0005
B15 −0.000396 <0.000007 1.4624 <0.0002 0.9983 <0.0003
B20 −0.000394 <0.000007 1.4616 <0.0001 0.9979 <0.0003
B25 −0.000386 <0.000006 1.4610 <0.0001 0.9985 <0.0003
B30 −0.000393 <0.000007 1.4602 <0.0001 0.9987 <0.0003
B35 −0.000396 <0.000008 1.4594 <0.0001 0.9977 <0.0003
B40 −0.000387 <0.000007 1.4586 <0.0001 0.9981 <0.0003
B45 −0.000397 <0.000008 1.4580 <0.0001 0.9977 <0.0003
B50 −0.000383 <0.000009 1.4573 <0.0002 0.9969 <0.0004
B55 −0.000379 <0.000009 1.4566 <0.0002 0.9963 <0.0004
B60 −0.000370 <0.000001 1.4559 <0.0002 0.9925 <0.0005
B65 −0.000381 <0.000008 1.4550 <0.0001 0.9975 <0.0003
B70 −0.000368 <0.000001 1.4542 <0.0002 0.9925 <0.0005
B75 −0.000383 <0.000001 1.4535 <0.0002 0.9926 <0.0005
B80 −0.000381 <0.000006 1.4528 <0.0001 0.9983 <0.0003
B85 −0.000388 <0.000007 1.4521 <0.0001 0.9982 <0.0003
B90 −0.000389 <0.000009 1.4515 <0.0002 0.9969 <0.0004
B95 −0.000392 <0.000009 1.4507 <0.0002 0.9970 <0.0004
B100 −0.000383 <0.000009 1.4500 <0.0002 0.9968 <0.0004

Series 2
B0 −0.000399 <0.000009 1.4556 <0.0001 0.9976 <0.0003
B10 −0.000411 <0.000009 1.4549 <0.0001 0.9979 <0.0003
B20 −0.000396 <0.000001 1.4542 <0.0001 0.9952 <0.0003
B30 −0.000392 <0.000008 1.4537 <0.0002 0.9980 <0.0003
B40 −0.000401 <0.000008 1.4531 <0.0001 0.9985 <0.0002
B50 −0.000396 <0.000005 1.4525 <0.0001 0.9993 <0.0002
B60 −0.000391 <0.000009 1.4519 <0.0001 0.9978 <0.0003
B70 −0.000382 <0.000007 1.4514 <0.0001 0.9987 <0.0002
B80 −0.000381 <0.000007 1.4510 <0.0001 0.9987 <0.0002
B90 −0.000391 <0.000006 1.4504 <0.0001 0.9990 <0.0002
B100 −0.000386 <0.000001 1.4499 <0.0002 0.9932 <0.0004
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fits satisfactorily to the experimental data, and the determination
coefficient for all the studied samples was higher than 0.993. The RMS
uncertainty was lower than 5.10−4 for both series. Furthermore, the
refractive index of soybean biodiesel, LSD and ULSD at 298 K agree well
with the values reported by Dunn [29].

4.2. Density

The dependence of density with temperature and composition of
biodiesel-diesel blends is well known and several authors have pro-
posed mathematical models that fit very satisfactorily to the experi-
mental data [37–49]. In this work, it was found that our experimental
data fit very well the empirical equation proposed by Yoon et al. [37]
(Eq. (7)).

= + + +ρ Bx T a bBx cT dTBx( , ) (7)

In Eq. (7), ρ Bx T( , ) is the density in kg/m3 as a function of

temperature and composition, Bx is the biodiesel percentage in the
sample in %, T is the temperature in °C and a, b, c and d are fitting
parameters. Density measurements were carried out in Series 1 and
Series 2, at temperatures between 303 K and 323 K.. In our samples, the
coefficient d is statistically non-significant.

It is interesting to note that the substances studied by Yoon et al.
correspond to the Series 2 in this work. The maximum RMS difference
between our measured values and those calculated from Eq. (7) with
Yoon’s parameters is 0.002 g/cm3.

4.3. Effective polarizability

According to Eq. (4), the effective polarizability of each sample, α, is
calculated as the ratio between the refractive index factor, (n2 − 1/
n2 + 2), and the density, ρ. Since both the density and the low – fre-
quency permittivity of biodiesel-diesel blends show an ideal behavior, it
may be expected that the effective polarizability of these blends also
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Fig. 7. Effective polarizability vs. biodiesel content. The symbols re-
present each temperature (Series 1).
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shows the same trend. This is reasonable given the similarities at the
molecular level between diesel fossil fuel and biodiesel.

The effective polarizability as a function of biodiesel content for
both series is shown in Figs. 7 and 8. It can be seen that, in fact, α
decreases linearly with increasing biodiesel content in the sample. The
symbols represent the values at each temperature.

The calculated values of α from both series were fitted to a linear
model according to Eq. (8).

= + −Bx T Br T d
dBx

Bx Brα( , ) α( , ) α ( )
T (8)

where α Bx T( , ) is the effective polarizability, in cm3/g, as a function of
biodiesel content at temperature, T, in K, Br Tα( , ) is the effective po-
larizability, in cm3/g, at the reference composition Br (50% of bio-
diesel), d

dBx T

α is the slope, in %−1, and Bx is the biodiesel content in the
sample, in %.

The fitting parameters of Eq. (8) for Series 1 and Series 2 are shown
in Table 3, Br Tα( , ) and d

dBx T

α , together with their uncertainties

Br TΔα( , ) and Δ d
dBx T

α , the determination coefficient R2 and the RMS

uncertainty of the estimation α BxΔ ( ).
From Table 3 it may be seen that the determination coefficients are

higher than those shown in Table 1 for the refractive index. In all cases
they were higher than 0.9988.

The calculated values of α as a function of temperature for both
series are shown in Figs. 9 and 10 (symbols). For the sake of clarity, in
Fig. 9 only the compositions that corresponds to 10% steps are shown.

From Figs. 9 and 10 it can be seen that the effective polarizability, in
the studied range of temperatures, depends only on composition and it
is independent of temperature. This is easy to see also in Figs. 7 and 8,
since at each composition, the symbols corresponding to all the tem-
peratures practically overlap. As a check, the average value of effective
polarizability at each composition was calculated from the values at all
the studied temperatures, together with its coefficient of variation. The
results for Series 1 and Series 2 are given in Table 4.

The effective polarizability of LSD and ULSD, in the studied range of
temperatures, is very close to 0.33, in good agreement with the “One-

Table 3
Fitting parameters of Eq. (8) with their uncertainties for each temperature (Series 1 and Series 2).

Series 1
Temperature dα dBx/ dα dBxΔ / α Br T( , ) α Br TΔ ( , ) R2 α Bx TΔ ( , )
[K] [cm3/g%] [cm3/g%] [cm3/g] [cm3/g] [ cm3/g]
288.1 −0.000191 <0.0002 0.32021 <0.00005 0.9989 <0.0002
293.1 −0.000192 <0.0002 0.32049 <0.00004 0.9994 <0.0002
298.1 −0.000194 <0.0002 0.32068 <0.00004 0.9991 <0.0002
303.1 −0.000192 <0.0002 0.32056 <0.00005 0.9990 <0.0002
308.1 −0.000198 <0.0002 0.32074 <0.00004 0.9992 <0.0002
313.1 −0.000197 <0.0002 0.3209 <0.00005 0.9988 <0.0003
318.1 −0.000199 <0.0002 0.32091 <0.00004 0.9992 <0.0002
323.1 −0.000199 <0.0002 0.32099 <0.00005 0.9990 <0.0003
328.1 −0.000202 <0.0002 0.32086 <0.00004 0.9993 <0.0002

Series 2
Temperature dα/dBx Δdα/dBx α (Br) Δα (Br) R2 Δα (Bx)
[K] [cm3/g%] [cm3/g%] [cm3/g] [cm3/g] [cm3/g]
293.1 −0.000214 <0.000003 0.33168 <0.0002 0.9988 <0.0003
298.1 −0.000214 <0.000003 0.33187 <0.0002 0.9989 <0.0003
303.1 −0.000216 <0.000003 0.33231 <0.0002 0.9990 <0.0003
308.1 −0.000216 <0.000002 0.33239 <0.0001 0.9997 <0.0002
313.1 −0.000218 <0.000003 0.33268 <0.0002 0.9990 <0.0003
318.1 −0.000219 <0.000002 0.33287 <0.0002 0.9993 <0.0003
323.1 −0.000216 <0.000003 0.33276 <0.0002 0.9990 <0.0003
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Fig. 9. Effective polarizability as a function of temperature
for each sample (Series 1).

M. Colman et al. Fuel 211 (2018) 130–139

136



Third rule” proposed by Bykov [34] and Vargas et al. [35,36] for crude
oils and pure hydrocarbons.

For soybean biodiesel, the value of effective polarizability, in the
studied range of temperatures, was (0.3110 ± 0.0002) cm3/g.
Effective polarizability values were also calculated, from published
experimental data of refractive index and density, for biodiesel from
sunflower [50], lard [50] and rapeseed [28] feedstocks. Interestingly, it
was found that the average value of the effective polarizability of these
substances was (0.310 ± 0.002) cm3/g.

Given that the effective polarizability follows a linear dependence
with biodiesel content and it is independent of temperature, its value
for blends of any composition, in the studied range of temperature, can
be easily estimated from the effective polarizability of the pure fuels
(B0 and B100) (Eq. (9)).

= − −Bx B x B Bα( ) α( 0)
100%

[α( 0) α( 100)]
(9)

where Bxα( ) is the effective polarizability of the blend of composition
Bx, Bα( 0) is the effective polarizability of diesel fossil fuel, Bα( 100) is
the effective polarizability of biodiesel, all in cm3/g, and x is the bio-
diesel percentage in the sample, in %.

From the above, Eq. (9) was used to estimate the effective polariz-
ability of each sample from Series 1 and Series 2 using the values of

Bα( 0) and Bα( 100) from Table 4. The estimated values were compared
with the effective polarizability calculated from the experimental va-
lues of refractive index (Fig. 3 and Fig. 4) and the density values from
Eq. (7). The RMS difference for Series 1 and Series 2 was 3.10−4 cm3/g
and 5.10−4 cm3/g, respectively.

The refractive index of each blend, as a function of temperature and
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Fig. 10. Effective polarizability as a function of tempera-
ture for each sample (Series 2).

Table 4
Average values of α for each composition (Series 1 and Series 2).

Sample Average α [cm3/g] Coefficient of variation [%]

Series 1
B0 0.3307 0.16
B5 0.3296 0.13
B10 0.3286 0.12
B15 0.3276 0.11
B20 0.3266 0.11
B25 0.3257 0.12
B30 0.3246 0.09
B35 0.3236 0.08
B40 0.3225 0.09
B45 0.3216 0.07
B50 0.3207 0.10
B55 0.3197 0.10
B60 0.3187 0.13
B65 0.3177 0.08
B70 0.3166 0.12
B75 0.3157 0.10
B80 0.3148 0.06
B85 0.3138 0.05
B90 0.3130 0.06
B95 0.3120 0.06
B100 0.3110 0.06

Series 2
B0 0.3327 0.14
B10 0.3304 0.11
B20 0.3279 0.14
B30 0.3258 0.14
B40 0.3236 0.11
B50 0.3214 0.11
B60 0.3192 0.12
B70 0.3171 0.13
B80 0.3150 0.12
B90 0.3130 0.10
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Fig. 11. Experimental (black symbols) and estimated (white symbols) values of refractive
index as a function of temperature and composition for Series 1.
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composition, was estimated using Eq. (4), from the effective polariz-
ability of B0 and B100 (Eq. (9)) and the density given by Eq. (7). Figs.
11 and 12 show the experimental and estimated values of refractive
index as a function of temperature and composition for both series. The
RMS difference in both cases was lower than 6.10−4.

5. Conclusion

The refractive index of blends of soybean biodiesel with diesel fuel
(low sulfur and ultra-low sulfur) was measured according to ASTM
D1218/12 standard, at 589 nm, with an uncertainty of 2.10−4. The full
range of composition was studied at a temperature range between
288 K and 328 K for low sulfur diesel blends and 293 K and 323 K for
ultra-low sulfur diesel blends. It was verified that the refractive index
can be fitted to a linear dependence both on temperature and compo-
sition. The determination coefficient was higher than 0.983 in all the
studied samples.

The density of all samples was measured and the results were very
satisfactorilt fitted by the model published by Yoon et al. The maximum
RMS difference was 2.10−3g/cm3, at all temperatures and composi-
tions. Using the refractive index and density values in the Lorentz-
Lorenz equation, the effective polarizability is defined in this work for
the pure fuels and for the biodiesel-diesel blends.

The effective polarizability for low sulfur and ultra-low sulfur diesel
fossil fuels was found to be independent of temperature, with values of
(0.3307 ± 0.0005) cm3/g and (0.3327 ± 0.0005)cm3/g respectively.
This is in good agreement with the “One-Third rule” proposed by Bykov
and Vargas for pure hydrocarbons and crude oils. The effective polar-
izability for biodiesel was also independent of temperature, with a
value of (0.310 ± 0.002) cm3/g. Interestingly, the effective polariz-
ability of the biodiesel-diesel blends was found to be linearly depending
on composition and independent of temperature, in the full studied
range. The ideal behaviour of the effective polarizability with compo-
sition could be expected from the the dependence on composition of
both density and permittivity at low frequencies, in diesel fossil fuel and
biodiesel blends.

In conclusion, the effective polarizability of the blends can be cal-
culated from the effective polarizability of the pure fuels. This makes
possible, together with the density values of the samples, to estimate
the refractive index of biodiesel-diesel blends. The difference between
the the estimations and the experimental values of the refractive index
was lower than 6.10−4 (RMS) in the full range of composition and at all

the studied temperatures.
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