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Lennard-Jones Viscosities in Wide Ranges
of Temperature and Density: Fast Calculations Using
a Steady–State Periodic Perturbation Method
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A method for fast calculation of viscosity from molecular dynamics
simulation is revisited. The method consists of using a steady-state periodic
perturbation. A methodology to choose the amplitude of the external pertur-
bation, which is one of the major practical issues in the original technique of
Gosling et al. [Mol. Phys. 26: 1475 (1973)] is proposed. The amplitude of the
perturbation required for fast caculations and the viscosity values for wide
ranges of temperature and density of the Lennard-Jones (LJ) model fluid
are reported. The viscosity results are in agreement with recent LJ viscos-
ity calculations. Additionally, the simulations demonstrate that the proposed
approach is suitable to efficiently generate viscosity data of good quality.

KEY WORDS: Lennard-Jones; molecular dynamics; periodic perturbation
methods; transport properties; viscosity.

1. INTRODUCTION

Rheological properties of hydrocarbons and other substances, viscosity in
particular, over wide ranges of temperature and pressure are used, e.g., in
petroleum reservoir simulation and in high pressure lubrication applica-
tions. Computational fluid dynamics (CFD) codes, which are used to solve
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the conservation equations in problems where heat, mass and momentum
transport occur simultaneously, rely on models for estimating the fluid vis-
cosities, among other physical properties [1]. Correlations for heat and
mass transfer coefficients also use fluid viscosities as input [2]. Analytical
models for viscosity as a function of temperature, pressure and compo-
sition, able to interpolate and extrapolate known experimental informa-
tion, are required to fulfill the need of having to compute reliable viscosity
values. Monnery et al. [3] reviewed the practical predictive and correla-
tive methods for viscosity. They concluded that the most promising new
viscosity modeling approaches appeared to be those based on statistical
mechanics. Models based on statistical mechanics are those that specify an
intermolecular potential function. Zabaloy et al. [4] assessed the potential
of using a modeling approach for viscosity based on the properties of the
Lennard-Jones (LJ) model fluid, computed through molecular simulation.
Zabaloy et al. [4] also described possible ways in which molecular simula-
tion data can be used, and showed that, despite the simplicity of the LJ
intermolecular potential function, it describes the same basic trends found
for the viscosity of real fluids in wide ranges of temperature and pressure.
Through the use of effective values for the intermolecular potential param-
eters, even the behavior of relatively complex fluids can be represented by
the LJ fluid [4].

Several molecular simulation methods can be found in the literature
to calculate viscosity and other transport properties. These are mainly cat-
egorized as equilibrium and nonequilibrium methods. In the equilibrium
methods, the viscosity is obtained from momemtum or pressure fluctua-
tions [5,6] using Green–Kubo relationships. In nonequilibrium methods,
the viscosity is computed from the response of applying a steady-state
shear [6]. Equilibrium methods are computationally expensive, and for fast
estimates of transport properties, they are usually not practical. On the
other hand, nonequilibrium methods are more convenient. Among these,
the SLLOD algorithm [7] (its name is in association with the DOLLS
algorithm of Evans and Morris [7]) is very popular. Here, the viscosity is
obtained by imposing a Couette flow, with modified equations of motion
and using sliding boundary conditions [7]. In the SLLOD algorithm, the
viscosity has to be calculated as a function of the shear rate and then
extrapolated to zero shear to obtain the Newtonian viscosity. The viscos-
ity calculations at low shear rate can be computationally time consuming
and the implementation of the method is not necessarily straightforward.
Another possibility is to apply a known external potential such that the
response of the system is analytically linked to the Newtonian viscosity.
The magnitude and form of the external potential is chosen such that its
effects are easy to measure. Gosling et al. [8] proposed a method where a
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simple acceleration, in a given direction, is set on every particle. Then the
viscosity is obtained from the developed drift–velocity profile. Gosling’s
method [8] turns out to be very efficient computationally.

In this work, we explore in detail the use of Gosling’s approach for
calculating viscosities of the LJ fluid (see details of the method in Sec-
tion 2). We find that the approach is very efficient computationally when
appropriate values of the magnitude of the external potential are used. We
propose a methodology to choose the amplitude of the external force and
suggest a series of these values in ranges of temperature and density wider
than in the available literature. The main advantage of Gosling’s approach
is that its implementation is straightforward and it can be incorporated
with ease within any standard molecular dynamics code. The results of
this work can be used as a guideline to choose the value of the ampli-
tude of the external force to quickly obtain viscosity values for model flu-
ids. The purpose of the present work is to evaluate the performance of
Gosling’s approach with regard to speed and quality of the computed vis-
cosity, for wide temperature and density ranges. We anticipate the use of
a similar approach for LJ mixtures. To our knowledge, viscosity data for
LJ mixtures are available only at a limited number of conditions (e.g.,
Murad [9]). On the other hand, Meier [10,20] has recently produced high
quality viscosity data for the pure LJ fluid through equilibrium molecular
dynamics.

In Section 2, we discuss Gosling’s approach including implementa-
tion details. Section 3 describes the approach we propose for the calcula-
tion of the amplitude of the external force. Section 4 discusses the details
of the simulation model used in this work. Section 5 contains the results
and a brief discussion of the main findings. Finally, Section 6 gives some
concluding remarks and suggestions for future work.

2. STEADY–STATE PERIODIC PERTURBATION METHOD

As mentioned in the introduction, many of the methods used in
molecular simulation to estimate transport properties require significant
computational time to obtain good statistics in the calculations. A way to
accelerate the calculation of these transport coefficients, viscosity in partic-
ular, is to monitor the response of the system to a known external poten-
tial field. Our description of the external field method used in this work
follows closely that of Gosling et al. [8]. LJ particles in the NVT ensem-
ble are subject to an external potential field such that a force F(r, t) is
imposed on each particle at coordinates r and time t . The hydrodynamics
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of the system is described by the Navier–Stokes equation [11]

ρ
∂u
∂t

+ρ(u ·∇)u = (ρ/m)F(r, t)−∇P +η∇2u, (1)

where P is the pressure, u is the fluid velocity field representing the num-
ber average of the molecular velocities at the point for which the Navier–
Stokes equation is written, m is the mass of an individual particle, ρ is
the mass density, and η is the shear viscosity. Equation (1) is a contin-
uum mechanics equation. It comes from combining the differential equa-
tions of continuity and motion for the Newtonian fluid case [2]. The forces
that must appear within the Navier–Stokes equation are those acting on
the continuum system i.e., forces exerted by the fluid surrounding the sys-
tem and body forces such as gravity or any other external field. Since the
concept of molecule is not defined in terms of a continuum picture [12],
contributions from intermolecular forces do not appear explicitly in the
Navier–Stokes equation.

The main idea of the method is to choose an external force or poten-
tial such that the analytical solution of the Navier–Stokes equation is rela-
tively easy to obtain. Such solution should link the developed velocity field
with the shear viscosity. The developed velocity field comes in turn as the
result of averaging molecular velocities obtained from a molecular dynam-
ics run. Additionally, the external force has to be consistent with the peri-
odic boundary conditions used in the simulation box. The choice made by
Gosling et al. [8] consists of a force F(r, t) directed along the x direction
with a magnitude varying with z and independent of x, y and time. Addi-
tionally, the component x of the force is zero at the cell boundaries in the
z direction. With these conditions for the external force and with no pres-
sure gradient in the x-direction, Eq. (1) becomes

ρ
∂ux(z, t)

∂t
= (ρ/m)Fx(z)+η

∂2ux(z, t)

∂z2
. (2)

A common choice for Fx(z) in Eq. (2) are periodic functions such as

Fx(z)=mγ sin(2πnz/Lz), (3)

where z= 0 and z=Lz represent the boundaries of the simulation box, n

is a dimensionless integer greater than zero, and γ is a constant, having
units of acceleration, proportional to the amplitude. Fx(z) has to be zero
at the cell boundaries in order to satisfy the periodic conditions.

Equation (2) can now be solved at steady-state conditions to give the
velocity profile

ux(z)= (ρL2
zγ /4π2n2η) sin(2πnz/Lz), (4)
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where the boundary conditions ux(0) = 0 and ux(Lz) = 0 are imposed.
The above solution was obtained assuming that the fluid density and fluid
viscosity are both constant. For a pure Newtonian fluid this is strictly
true if two variables such as pressure and temperature are held constant,
i.e., independent from position at steady state. From Eq. (4), the result-
ing steady-state velocity profile is also sinusoidal, in phase with Fx(z), and
the amplitude is directly proportional to γ and inversely proportional to η.
From Eq. (4) one can see that there is a direct relation between the veloc-
ity and the viscosity η. Therefore, in principle, all that one has to do is to
characterize the drift velocity profile to obtain the shear viscosity. More
specifically, the viscosity η is computed by curve fitting (using Eq. (4)) the
fluid velocity profile obtained from a molecular dynamics run. For conve-
nience, Eq. (4) is re-arranged further as

ux(z)=u0 sin(2πnz/Lz) (5)

from which the viscosity η is given by

η= ρL2
zγ

4π2n2u0
. (6)

2.1. General Implementation Issues

Although the implementation of this method is fairly simple, there are
some difficulties that have to be analyzed carefully. The first is that Eq. (5)
is only valid in the limit k →0, where

k =2πn/Lz. (7)

In other words, it is valid only in the long wave limit [8]. The reason is
that the Navier–Stokes equation is applicable only to a continuum, and
hence the wavelength of the external field has to be large in comparison to
the molecular dimensions. By looking at the definition of k, there are only
two ways to aproximate this: (a) choosing the smallest value n, which is
one, and (b) using large values of Lz, which is constrained by the compu-
tational cost. For this work, the approach used is discussed in Section 4.
Hess [6], in a comparison of different methods for computing the shear
viscosity of model liquids, discusses the issue of the dependence of the vis-
cosity with k for a perturbation method similar to the present one. His
findings indicate that at n=1 this dependency is small, but measurable.

The other issue is how to choose the input value of γ required by the
MD code to compute the fluid velocity field. There is no rigorous solu-
tion to this problem reported in the literature. γ has to be large enough
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to produce a well-defined drift velocity profile, but if it is too large it
can cause significant temperature drift in the system and it can produce
shear rates beyond the Newtonian range which would invalidate Eq. (4).
In other words, large values of γ can impact the model fluid in such a
way that the system is no longer representative of the original conditions,
e.g., low enough shear rate, at which one wants to measure the viscosity η.
Gosling et al. [8] suggests estimating γ by using a force of one-tenth of the
root-mean-square force that arises from the MD simulation. On the other
hand, Hess [6] proposes not exceeding the maximum shear rate

smax =max
z

∣∣∣∣∂ux(z)

∂z

∣∣∣∣=γ
ρ

ηk
(8)

to avoid the system moving too far from equilibrium. The value of smax
(required to compute γ from Eq. (8)) is estimated somewhat empirically.
For instance, one can use the temperature drift as a measure of how far
the system is from equilibrium and then use this as a tradeoff to estimate
smax. The other possibility is to use known values of viscosity [6].

Once a decision is made about k and γ , the use of the method con-
sists of adding an acceleration to each particle in the MD simulation
according to Eq. (3). Then, one has to allow a reasonable simulation
time for the drift-velocity profile to develop to steady-state conditions. The
unsteady-state solution of Eq. (2) is of the form [6]

ux(z)= (ρL2
zγ /4π2n2η)(1− e−t/τr )) sin(2πnz/Lz), (9)

where

τr = ρL2
z

4ηπ2n2
. (10)

From Eq. (9), one sees that t has to be large enough for the term e−t/τr

to be small. According to Hess [6], a value of t =5τr should be reasonable
for most purposes. Once the drift-velocity profile has developed, the z-side
of the simulation box (Lz) is divided into intervals or bins, where infor-
mation about the x-component of the particles velocity is recorded and
averaged. The computed averages are set to correspond to z-coordinates at
the midpoint of the bin. Then the drift velocity is fitted to Eq. (5) using
the method of least squares. The viscosity is calculated using Eq. (6) with
the value u0 obtained from the least squares regression. Statistics about
the viscosity are collected throughout the simulation. In other words, the
velocity profile is fitted throughout the simulation and then the viscosity
is calculated such that statistical information about the variation observed
is recorded. One can monitor this variation and estimate when there is



Lennard-Jones Viscosities in Wide Ranges of Temperature and Density 1805

10 150 5 20
-0.9

-0.6

-0.3

0

0.3

0.6

0.9
u+ x

(z
+
)

z+

Fig. 1. Typical steady-state drift–velocity profile observed during the simulations for vis-
cosity calculations (circles). The solid line corresponds to Eq. (5) after determining u0 by
least–squares minimization. The velocity profile corresponds to the simulation conditions
T + =1.3, ρ+ =0.5, and γ + =0.07783. The average viscosity associated with the predicted
velocity profile (solid line) is 〈η+〉=0.72.

no further improvement in the precision of the calculations. At that point
one could stop the simulation or a try different value of γ +. Figure 1
shows a typical drift–velocity profile obtained from MD simulation (cir-
cles) and the predicted velocity profile by Eq. (5), with u0 obtained from
least-squares regression (solid line).

3. PROPOSED SCHEME FOR THE ESTIMATION OF γ

The methods to estimate γ proposed by Gosling et al. [8] and
Hess [6] work well within the conditions of their simulations. We notice
that for wider ranges of temperature and density, those recipes do not
work well. In some cases, unstable drift velocity profiles develop and in
others the computed viscosity presents a significant shift with respect to
previously reported results. The method we propose here consists simply
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of the following steps: (a) set the temperature T and ρ conditions at which
the viscosity value needs to be computed, (b) perform a series of MD sim-
ulations at the set T and ρ values, in a wide enough range of values of
γ , (c) plot the computed viscosity as a function of γ , and (d) read the
value of viscosity and the value of γ from the region in the plot where
η is a fairly constant and stable function of γ . Figure 2 shows an exam-
ple of such a plot. At low values of γ , the computed viscosity values are
scattered. This is because the external force is too weak to develop a sta-
ble drift–velocity profile. A stable region is observed where the viscosity
value does not change significantly with changes in the value of γ . This
second region is the one that should be used to arrive at a value of vis-
cosity and to choose an appropriate range of values for the amplitude of
the force, i.e., for γ . If, as we did in this work, the viscosity is directly
read at some γ value within this second region, then, the read viscosity

0 0.2 0.4 0.6 0.8 1
3

3.5

4

4.5

5

This work
Meier’s upper and lower limits
Meier

h+

g+

Fig. 2. Viscosity η+ (Eq. (17)) as a function of the external amplitude γ + (Eq. (16)) for
the LJ fluid at T + = 0.7 (Eq. (13)) and ρ+ = 0.85 (Eq. (15)). The central solid horizontal
line corresponds to the viscosity reported by Meier et al. [10, 20] using equilibrium molec-
ular dynamics methods. The dashed lines correspond to the upper and lower uncertainty
limits of Meier’s calculations.
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should be regarded as a first approximation to the Newtonian viscosity.
The second region is also the region of choice to read a set of viscosity
values to be extrapolated to zero shear rate if a viscosity value in princi-
ple closer to the Newtonian limit is desired. Finally, in the third region,
the value of viscosity becomes a noticeable function of the amplitude fac-
tor γ . In this case, the external force is strong enough to cause the sys-
tem to move away from equilibrium significantly. In other words, the inter-
nal stresses are strong enough to move the system into the non-Newtonian
regime, within which our basic working equation, Eq. (5), for computing
the viscosity is no longer valid.

4. SIMULATION MODEL

To test Gosling’s approach in wide ranges of temperature and density,
we use the LJ intermolecular potential,

φ(r)=4ε

[(σ

r

)12 −
(σ

r

)6
]

, (11)

where φ(r) is the potential energy at separation distance r, ε is the LJ well
depth and σ is the separation distance at zero potential energy.

The fluid is modeled as a set of spherical molecules that interact with
the cut and shifted LJ potential:

φcs(r) =
{

φ(r)−φ(rc) for r <rc,

0 for r >rc,
(12)

where rc is the cutoff radius of the potential.
The parameters and results of the simulations are specified using the

reduced units

T + = kBT

ε
, (13)

P + = Pσ 3

ε
, (14)

ρ+ = N

V
σ 3, (15)

γ + = γ
mσ

ε
, (16)

η+ = η
σ 2

√
mε

, (17)

t+ = (ε/mσ 2)1/2t, (18)
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z+ = z

σ
, (19)

u+
x = ux

√
m

ε
, (20)

where kB is the Boltzmann constant, T is the temperature, and V is the
total volume.

All the simulations are performed in the NVT ensemble with N =
1000 LJ particles. The LJ potential cutoff radious is 5.0σ . A rectangu-
lar simulation box of dimensions Lx = (N/2ρN)1/3, Ly = Lx , and Lz =
2Lx is used, where ρN is the number density. The velocity Verlet algo-
rithm [13–15] is used for the integration of the equations of motion with a
dimensionless time step of δt+ =0.005 and using standard periodic bound-
ary conditions [13]. The absolute temperature is controlled with the Nosé–
Hoover thermostat [13,14,16,17] using a coupling constant of Q=10.0.

5. RESULTS AND DISCUSSION

The distribution of the simulated state points in the T +-ρ+ plane is
presented in Fig. 3. There are two types of points in this figure: the cir-
cles indicate points where the value of γ + is estimated using the proce-
dure described in Section 3, and the stars are points where γ + is estimated
by interpolating the information represented by the circles. Figure 3 shows
that we covered all possible fluid states (liquid, vapor, high and low den-
sity supercritical fluid).

Before calculating the viscosities, we validated our LJ MD code, with-
out the influence of any external field, by comparing the calculated PVT
behavior against the values computed from the accurate Kolafa–Nezbe-
da LJ equation of state [18]. The working PVT equations of the Kolafa–
Nezbeda equation of state are summarized concisely by Zabaloy et al. [4].
Figure 4 shows some of the validation results, and we can see that the
agreement is excellent. Long range corrections were used in the pressure
calculations according to [19]

P +
lrc = 32

9
π(ρ+)2

[(
σ

rc

)9

− 3
2

(
σ

rc

)3
]

, (21)

where P +
lrc is the correction term added to the P + value computed by the

MD code. Figure 2 shows a typical plot of the η+ versus γ +. Here we can
see the three regions described in Section 3. As Figs. 5 and 6 illustrate, not
all of the plots are alike. In some, the third region is not as pronounced,
and in others, the second region is better defined. Usually, preliminary
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Fig. 3. Distribution of the simulated state points in the T +–ρ+ plane. The circles are
the points where the value of γ + is obtained according to the methodology of Section 3
and the stars are the points where γ + is obtained by interpolation using the circle points.
The solid line represents the LJ fluid density–temperature locus at solid–fluid equilibrium
and the dashed–line the LJ saturated fluid vapor–liquid equilibrium locus (see Ref. [4] for
details).

runs have to be performed to determine an appropriate range for γ +, and
then refined runs are performed for final estimation of γ + and η+. The
number of required preliminary runs increases with the user’s desired level
of accuracy in the identification of the stable noise-free region.

Figure 7 presents a typical plot of the calculated viscosity as a func-
tion of the simulation time. We can see that the average value of viscos-
ity in the simulation stabilizes fairly quickly. Figure 7 also shows that the
temperature is properly controlled by the chosen thermostat. For most of
the points in the T +-ρ+ plane, the calculations are fast, but the computa-
tional cost increases with the density. In general, the computational time
required when using equilibrium methods varies between 1.5 and 2.0 mil-
lion steps in the production phase [5,10,20], which is far larger than the
time required using the method described in this work. This is true even if
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Fig. 4. Comparison of the PTρ behavior of the LJ fluid for the simulated state points.
The lines correspond to the Kolafa–Nezbeda LJ equation of state [18] and the simulated
results are represented by triangles up and circles.

one has to carry out a number of runs to determine an appropriate value
of γ + (thus following the methodology of Section 3).

The viscosity results obtained for the LJ fluid and the values of γ +
suggested for the conditions of Fig. 3 are presented in Table I. Addi-
tionally, information about the statistical uncertainty associated with the
calculations is presented for T + and η+. We also show in Table I the vis-
cosity value computed by Meier et al. [10,20] and the relative difference
between the viscosity computed here and the Meier et al. [10,20] result,
when available. The ranges we suggest for γ + arise from visual observa-
tion of plots such as Figs. 2, 5, 6. They do not represent optimal ranges.
Therefore a deeper analysis, such as that of Ref. [21], would be required to
refine further the viscosity calculations and their uncertainty estimates. To
fix ideas, the first line in Table I shows that in a single run, using as input
ρ+ =0.05, T + =1.300, and an external field of γ + =0.079883, we estimate
an average viscosity of η+ = 0.1420 with an error bar of ση+ = ±0.0008.
The error bar of the measured temperature for this case is σT + =±0.006.
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Fig. 5. Illustration of how the shape of the viscosity versus external field amplitude
curve varies with the temperature and the density (see conditions in the graph). The error
bars have been removed to avoid overloading the figure.

The number ±�γ + = 0.028467 means that we expect to obtain accurate
values of the viscosity within the range γ + =0.079883±0.028467. The first
line in Table I also shows that the value Meier et al. [10,20] computed is
η+

M =0.1499. Our value is hence around 5% less than Meier et al. [10,20]
value. Hence D% = −5. The number D% is formally defined as the per-
cent difference between our result and Meier et al. [10,20] result at the
same conditions. The reported ση+ values are statistical uncertainties in
viscosity and reflect the variability for the computed viscosity at the set
value of γ +. The values of the average viscosity reported in Table I
are a direct output of the simulations. In other words, no extrapolating
scheme at zero shear rate is used. Such schemes are still a matter of
considerable debate [21]. The values of the average viscosity reported in
Table I do not correspond either to averaging η+ values computed at a
number of γ + values within the accepted γ + range. The availability of
Meier et al. [10,20] accurate viscosity data, which, we regard here as stan-
dard reference data, allowed us to make fast independent estimates of
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Fig. 6. Illustration of how the shape of the viscosity versus external field amplitude
curve varies with the temperature and the density (see conditions in the graph). The error
bars have been removed to avoid overloading the figure.

the overall uncertainty of our calculated viscosities by direct comparison
with Meier et al. [10,20] results, as shown in the last column of Table I.
When no standard reference data are available, the user should, for every
studied thermodynamic state, carry out a careful analysis of the type of
the one described by Yang et al. [21] and, if possible, compare at least
some of the results with those obtained using a different molecular sim-
ulation technique. A detailed analysis of results as in Ref. [21] is beyond
our goals in the present exploratory work. Such an analysis, if carried out,
should reduce the discrepancies reported in Table I, between our and Me-
ier et al. [10,20] data.

Figure 8 shows a comparison of viscosity values obtained from this
work with the standard reference data of Meier [10,20]. We can observe
that, in general, the agreement is very reasonable, which suggests that the
approach discussed in this work is a good alternative for fast viscosity cal-
culations of model fluids such as LJ.
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Fig. 7. Viscosity and temperature as a function of the simulation time (number of time
steps) for the LJ fluid at T + = 1.5, ρ+ = 0.95, and γ + = 0.45. Notice that the average for
both viscosity and temperature stabilizes early on in the simulation.

6. CONCLUSIONS

We show that reliable LJ viscosities, in wide ranges of temperature
and density, can be obtained relatively quickly from MD simulations using
a modified steady-state periodic perturbation method introduced by Gos-
ling et al. [8]. Additionally, we propose a methodology to choose the
amplitude of the perturbation, which is one of the major practical prob-
lems in the original technique of Gosling et al. [8]. For the LJ fluid, we
report both amplitude and viscosity values for wide ranges of tempera-
ture and density. The results show satisfactory agreement with recent LJ
viscosity calculations obtained using more traditional approaches based
on equilibrium pressure fluctuations and the Green–Kubo formula or Ein-
stein methods. The simulation results demonstrate that the approach pro-
posed is suitable to generate viscosity data of enough quality to support,
for instance, the development of semi–empirical models for real fluids with
a stronger fundamental basis. Additionally, the method is very efficient



1814 Vasquez, Macedo, and Zabaloy

Table I. Simulation Results for η+ of the LJ Model Fluid

ρ+ T + σT + η+ ση+ γ + ±�γ + η+
M D (%)

0.05 1.300 0.006 0.1420 0.0008 0.079883 0.028467 0.14990 −5
0.05 1.200 0.006 0.1364 0.0005 0.079883 0.028467 0.14180 −4
0.05 1.100 0.005 0.1318 0.0006 0.079883 0.028467 0.12760 3
0.10 6.000 0.036 0.4354 0.0226 0.079881 0.028470 0.51080 −15
0.10 5.000 0.030 0.4410 0.0247 0.079881 0.028470 N/A N/A
0.10 4.000 0.024 0.3696 0.0095 0.079881 0.028470 0.40370 −8
0.10 3.000 0.018 0.2994 0.0082 0.079881 0.028470 0.32430 −8
0.10 2.100 0.012 0.2378 0.0042 0.079881 0.028470 0.25670 −7
0.10 1.500 0.008 0.2043 0.0019 0.079881 0.028470 0.19890 3
0.10 1.300 0.007 0.1946 0.0012 0.079881 0.028470 0.16860 15
0.15 1.300 0.006 0.2309 0.0016 0.079863 0.028484 0.18040 28
0.30 6.000 0.033 0.6166 0.0264 0.079416 0.028840 0.64650 −5
0.30 5.000 0.029 0.5861 0.0266 0.079416 0.028840 N/A N/A
0.30 4.000 0.023 0.5126 0.0168 0.079416 0.028840 0.50140 2
0.30 3.000 0.017 0.4668 0.0100 0.079416 0.028840 0.43480 7
0.30 2.100 0.012 0.4046 0.0087 0.079416 0.028840 0.37830 7
0.30 1.500 0.008 0.3693 0.0034 0.079416 0.028840 0.32750 13
0.50 6.002 0.035 0.9131 0.0457 0.077827 0.031140 0.92720 −2
0.50 5.001 0.028 0.9582 0.0794 0.077827 0.031140 N/A N/A
0.50 4.000 0.023 0.8072 0.0287 0.077827 0.031140 0.77350 4
0.50 3.000 0.016 0.7390 0.0139 0.077827 0.031140 0.72030 3
0.50 2.100 0.012 0.7578 0.0145 0.077827 0.031140 0.62510 21
0.50 1.500 0.008 0.6975 0.0123 0.077827 0.031140 0.58180 20
0.50 1.300 0.007 0.7392 0.0111 0.077827 0.031140 0.55450 33
0.60 6.001 0.036 1.2965 0.0875 0.080668 0.033461 1.14600 13
0.60 5.000 0.029 1.1403 0.0692 0.080668 0.033461 N/A N/A
0.60 4.000 0.023 1.0296 0.0562 0.080668 0.033461 0.99280 4
0.60 3.000 0.017 0.9736 0.0385 0.080668 0.033461 0.94010 4
0.60 2.100 0.012 0.9272 0.0212 0.080668 0.033461 0.88740 4
0.60 1.500 0.008 0.9325 0.0242 0.080668 0.033461 0.84190 11
0.60 1.300 0.007 0.9370 0.0226 0.080668 0.033461 0.82820 13
0.60 1.200 0.007 0.9531 0.0190 0.080668 0.033461 0.80700 18
0.70 6.000 0.034 1.8731 0.2128 0.095753 0.037095 1.45800 28
0.70 5.000 0.030 1.6263 0.1280 0.095753 0.037095 N/A N/A
0.70 4.000 0.023 1.3389 0.0461 0.095753 0.037095 1.35300 −1
0.70 3.000 0.017 1.3519 0.0487 0.095753 0.037095 1.30700 3
0.70 2.100 0.012 1.2713 0.0327 0.095753 0.037095 1.26100 1
0.70 1.500 0.009 1.2505 0.0240 0.095753 0.037095 1.18900 5
0.70 1.300 0.007 1.3185 0.0315 0.095753 0.037095 1.22300 8
0.70 1.200 0.007 1.3251 0.0253 0.095753 0.037095 1.19000 11
0.70 1.100 0.006 1.3111 0.0240 0.095753 0.037095 1.20100 9
0.80 6.001 0.033 2.1213 0.1125 0.141221 0.043831 1.94000 9
0.80 4.999 0.029 2.1025 0.1506 0.141221 0.043831 N/A N/A
0.80 4.000 0.023 1.8157 0.0573 0.141221 0.043831 1.84900 −2
0.80 3.000 0.017 1.8378 0.0655 0.141221 0.043831 1.83200 0
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Table I. (Continued)

ρ+ T + σT + η+ ση+ γ + ±�γ + η+
M D (%)

0.80 2.100 0.012 1.9821 0.0503 0.141221 0.043831 1.86300 6
0.80 1.500 0.008 1.9274 0.0475 0.141221 0.043831 1.91200 1
0.80 1.300 0.008 2.1221 0.0490 0.141221 0.043831 1.97100 8
0.80 1.200 0.007 2.1256 0.0374 0.141221 0.043831 1.96700 8
0.80 1.100 0.006 2.0538 0.0374 0.141221 0.043831 2.01900 2
0.80 1.000 0.006 2.1310 0.0445 0.141221 0.043831 2.05300 4
0.85 6.000 0.035 2.3221 0.1024 0.184924 0.049688 2.23900 4
0.85 5.001 0.028 2.2054 0.0643 0.184924 0.049688 N/A N/A
0.85 4.000 0.023 2.2726 0.0759 0.184924 0.049688 2.15600 5
0.85 3.000 0.017 2.2837 0.0660 0.184924 0.049688 2.25800 1
0.85 2.100 0.012 2.4819 0.0685 0.184924 0.049688 2.31500 7
0.85 1.500 0.009 2.6863 0.0695 0.184924 0.049688 2.43900 10
0.85 1.300 0.007 2.7526 0.0661 0.184924 0.049688 2.52900 9
0.85 1.200 0.007 2.7598 0.0617 0.184924 0.049688 2.65800 4
0.85 1.100 0.006 2.9004 0.0670 0.184924 0.049688 2.62300 11
0.85 1.000 0.006 3.0157 0.0680 0.184924 0.049688 2.83300 6
0.85 0.800 0.004 3.3257 0.0674 0.184924 0.049688 3.24600 2
0.85 0.750 0.004 3.3150 0.0682 0.184924 0.049688 N/A N/A
0.85 0.700 0.004 3.4909 0.0726 0.184924 0.049688 3.51500 −1
0.90 5.998 0.034 2.6838 0.0941 0.250175 0.058508 2.65400 1
0.90 5.001 0.028 2.5971 0.0681 0.250175 0.058508 N/A N/A
0.90 4.000 0.023 2.7607 0.0717 0.250175 0.058508 2.65900 4
0.90 3.000 0.017 2.7906 0.0736 0.250175 0.058508 2.75100 1
0.90 2.100 0.012 3.1435 0.0652 0.250175 0.058508 2.94200 7
0.90 1.500 0.009 3.3071 0.0607 0.250175 0.058508 3.28700 1
0.90 1.300 0.007 3.5943 0.0790 0.250175 0.058508 3.53900 2
0.90 1.200 0.007 3.6930 0.0823 0.250175 0.058508 3.62700 2
0.90 1.100 0.006 3.8793 0.0759 0.250175 0.058508 3.81400 2
0.90 1.000 0.006 3.9771 0.0712 0.250175 0.058508 3.96900 0
0.95 6.000 0.035 3.1033 0.0650 0.344637 0.071824 3.15100 −2
0.95 5.000 0.029 3.2178 0.0916 0.344637 0.071824 N/A N/A
0.95 4.000 0.022 3.3246 0.0875 0.344637 0.071824 3.26600 2
0.95 3.000 0.017 3.4760 0.0760 0.344637 0.071824 3.36900 3
0.95 2.100 0.012 3.8561 0.0751 0.344637 0.071824 3.74700 3
0.95 1.500 0.009 4.5366 0.1111 0.344637 0.071824 4.35400 4
0.95 1.300 0.007 4.8259 0.0899 0.344637 0.071824 4.89700 −1
1.00 6.001 0.034 3.7958 0.0990 0.477914 0.091768 3.62600 5
1.00 4.999 0.028 3.7927 0.0845 0.477914 0.091768 N/A N/A
1.00 3.999 0.023 4.0959 0.0776 0.477914 0.091768 3.86600 6
1.00 3.000 0.017 4.3710 0.0791 0.477914 0.091768 4.25300 3
1.00 2.100 0.012 5.0321 0.0918 0.477914 0.091768 4.97200 1
1.05 5.999 0.034 4.4261 0.0898 0.661887 0.121224 4.47000 −1
1.05 4.999 0.029 4.6162 0.0786 0.661887 0.121224 N/A N/A
1.05 4.000 0.023 5.0832 0.1097 0.661887 0.121224 4.69900 8
1.05 3.000 0.017 5.6246 0.1006 0.661887 0.121224 5.50000 2
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Table I. (Continued)

ρ+ T + σT + η+ ση+ γ + ±�γ + η+
M D (%)

1.05 2.100 0.012 6.5839 0.1071 0.661887 0.121224 N/A N/A
1.10 6.002 0.034 5.3455 0.0876 0.911081 0.164014 5.28500 1
1.10 5.000 0.028 5.6708 0.0776 0.911081 0.164014 N/A N/A
1.10 4.000 0.022 6.2673 0.0903 0.911081 0.164014 6.00800 4
1.10 3.001 0.017 7.1515 0.1036 0.911081 0.164014 7.03700 2
1.15 6.002 0.033 6.6647 0.0881 1.243073 0.225096 6.40200 4
1.15 5.000 0.028 7.0971 0.0709 1.243073 0.225096 N/A N/A
1.15 4.000 0.023 7.8831 0.1033 1.243073 0.225096 7.81900 1
1.20 6.001 0.035 8.1744 0.1014 1.678934 0.310801 7.73000 6
1.20 4.998 0.028 8.8461 0.1017 1.678934 0.310801 N/A N/A
1.20 4.000 0.022 9.9536 0.1264 1.678934 0.310801 N/A N/A
1.25 6.000 0.033 9.9142 0.0873 2.243713 0.429095 9.75600 2
1.25 5.001 0.027 10.8679 0.1093 2.243713 0.429095 N/A N/A
1.30 6.003 0.034 12.1865 0.1119 2.966961 0.589865 N/A N/A

Suggested values of γ + and range are given for the conditions indicated of ρ+ and T +. These
were obtained following the methodology of Section 3 without extrapolating to zero shear rate.
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Fig. 8. Viscosity as a function of density for the LJ fluid at T + =6.0. The results of this
work (circles) are compared with the results reported by Meier et al. [10,20] (triangles).
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computationally speaking when compared to equilibrium approaches. For
example, there is no need for parallelization of the calculations and the
results can be obtained reasonably fast with conventional computing facili-
ties. To our knowledge, a fundamental study of the viscosity of mixtures of
simple LJ fluids in wide enough ranges of composition, temperature and
density, for pairs of LJ fluids with different enough values of the inter-
molecular potential parameters, is still lacking. We plan to address such a
problem by extending the method described in this article to LJ mixtures.
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