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Abstract

We present a mathematical model that may predict average molecular weights and weight fraction of solubles for polymer chains

subjected to irradiation, where both scission and crosslinking are present. Two types of crosslinks are allowed: four-armed or H crosslinks,

and three-armed or Y crosslinks. This is a departure from the more traditional models for irradiation, where only H crosslinks are allowed.

The model is valid both in the pregel and postgel regions, and may be applied to chains with any known distribution of molecular weights. We

compare predictions from the model with experimental data on polydimethylsiloxane treated with electron beams at different doses, and

show that the introduction of Y crosslinks leads to a marked improvement in the quality of the predictions as compared with a more

traditional model where only H type crosslinks are allowed.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Even though the irradiation of polymers is a relatively

old process, interest has not decayed. Irradiation of several

different polymers have been studied in the past [1–12] and

continue to be studied. By now it has been established that

the net effect of irradiation on any polymer is a combination

of chain scission and chain crosslinking. Which one of the

two reactions predominates depends on the polymer and the

operating conditions. For example, if polyethylene is

irradiated with g-rays under vacuum crosslinking predomi-

nates, but if the process is carried out with polypropylene

then the predominant reaction is scission. Polydimethylsi-

loxane (PDMS) mainly crosslinks under those same

conditions.

Irradiation may be performed by g-rays or by electron

beam attack. The latter delivers more energy per unit time,

and has smaller penetration than the former. In thin films,

the mechanism is assumed to be the same for both methods.

The presence of oxygen makes a difference in g-ray

irradiation, but not as much in electron beam attack due to

its velocity.

From the very beginning of the studies of the effects of

irradiation on polymers, mathematical models of the process

have been developed. Saito [13] reviewed them in 1972.

That review already contained works that considered the

simultaneous crosslinking and scission of polymer chains.

Later works have continued to deal with this problem using

either a kinetic or a probabilistic approach [6,14–20].

Several variations of the simultaneous crosslinking and

scission problem were considered: monodisperse or poly-

disperse starting chains where crosslinking is defined as the

joining of two chains, forming a four-functional crosslink

[6,14–20]; crosslinking due to scission [14], where the only

crosslinks allowed are those formed by newly cut chains

that attack a monomer on a different chain, and other

variations that involve adaptations to specific polymers or

different mathematical methods used to solve the problem.

A few years ago we published a mathematical model that

was very successful in calculating average molecular

weights and postgel parameters (sol and gel fraction,

molecular weights of the soluble fraction, fraction of

trapped entanglements, etc.) for practically monodisperse

low density polyethylene irradiated by g-rays under vacuum

[19,20]. It was relatively easy to extend the model so that it

could handle both monodisperse and polydisperse polymers.

When we applied this mathematical model to polydisperse

PDMS irradiated with electron beam, we could not

reproduce the molecular weights of the soluble fraction in
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the postgel. Polydispersity itself was not to blame: if we

decomposed the polydisperse distribution into 10 mono-

disperse fractions that would add up to the original

distribution, applied the ‘monodisperse’ model to each of

the monodisperse fractions, and combined the results, we

obtained essentially the same molecular weights as with the

model that accounted for polydispersity.

A recent work by Hill et al. [10] suggests that the

crosslinks in irradiated PDMS could be of both the H-type

(with four arms) and the Y-type (with three arms). Our

mathematical model only considered H-type crosslinks.

Therefore we modified it to include both types of crosslinks.

In what follows, we show the new model and the

improvements in prediction of postgel sol fraction molecu-

lar weights that may be achieved with it.

2. Mathematical model

As in our previous models, we assume that crosslinking

and scission are independent reactions. Since they are

independent, they do not influence each other in any way,

and that gives us the freedom of achieving given degrees of

crosslinking and scission following any path we wish.

Taking advantage of this, we model crosslinking and

scission as sequential steps, even though in practice they

are simultaneous. The end result is the same, but the

mathematics are much simpler following this path. The

starting polymer chains are polydisperse.

In order to be able to model H and Y crosslinks, we

picture the starting chains as containing only one type of

reactive site, named A. All bonds in a chain are considered

reactive A-sites. All A-sites are equally likely to be subject

to scission. Now, the scission reaction generates sites at the

split ends that have a different reactivity, and we name them

B. The process is schematically illustrated in Fig. 1. Notice

that any chain may have at most two B-sites.

When the crosslinking step is considered, we propose

that the only possible reactions are A–A and A–B. The A–

A reaction gives H-crosslinks, while A–B reaction results in

Y-crosslinks. We do not consider B–B reactions since they

do not generate new crosslinking points, and also because

the probability of that occurrence is much lower than for the

other two reactions. Fig. 2 shows an example of a branched

molecule formed in this type of process. Both crosslinking

reactions are random: all A–A pairs are equally likely, as

are all A–B pairs. However, the A–A and A–B reactions

have a different likelihood, and the relative proportion of

each is one of the parameters of the model. We also assume

that all groups react independently of one another (no

substitution effect) and that there is no intramolecular

reaction in finite species. In short, we adhere to the ideal

crosslinking assumptions as defined by Flory and Stock-

mayer, except two different crosslinking reactions are

present.

Our model uses the recursive formalism developed by

Miller and Macosko in their 1987 and 1988 papers on

crosslinking of chains with length and site distribution [21,

22]. It requires us to describe in detail the statistical

characteristics of the long chains that will be processed.

Each chain is composed of a discrete number of repeat units.

The number of repeat units in the chain is the random

variable L. All units are considered to be reactive, in the

sense that all of them may be subject to scission and

crosslinking. Therefore, each repeat unit contains one A-

site, and the functionality of the chain in A-sites is the

random variable FA: It is obvious that L ¼ FA; but the

notation is useful in the derivation of the model. The

complete set of starting chains may be described by the

probability distribution of L. This is indicated as PðL ¼ lÞ;

l ¼ 1; 2; 3;…1; and it is the probability that a randomly

chosen chain will have l repeat units.

The crosslinking and scission reactions occur at random,

and while calculating molecular weights we will need to

choose chains randomly. This ‘randomness’ may mean

different things depending on what characteristic of the

chain is being weighted. If all chains are equally likely to be

chosen, the number distribution results, PnðL ¼ lÞ: If all

units of mass are equally likely to be chosen, then the

resulting distribution is the mass distribution PmðL ¼ lÞ: We

may also choose using other criteria. For example, if we

choose by reactive site of type A, we get a site A

distribution, PSAðL ¼ lÞ: In the particular case we describe

here, where all bonds are reactive, PSAðL ¼ lÞ ¼ PmðL ¼ lÞ:

Fig. 1. Schematic representation of the result of the scission step on the collection of chains.
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For each of these distributions, an expected chain length

may be calculated. EmðLÞ is the mass-average length, EnðLÞ

is the number average length, ESAðLÞ is the site A average

length. Those quantities may be calculated as:

EiðLÞ ¼
X1
l¼0

lPiðL ¼ lÞ i ¼ n;m;SA ð1Þ

Since PSAðL ¼ lÞ ¼ PmðL ¼ lÞ; then EmðLÞ ¼ ESAðLÞ:

With the same reasoning we may calculate number,

weight, or A-site averages of any quantity we need.

The weight of each chain is represented by the random

variable M ¼ m0L; where m0 is the weight of each repeat

unit. Average weights are calculated as

EiðMÞ ¼ m0EiðLÞ ð2Þ

since all repeat units weigh the same.

As explained above, we simulate the simultaneous

process of crosslinking and scission as a two-step process

that starts with scission. We now have to take the number of

B-sites, the ‘split ends’, into consideration. The random

variable FB is introduced for that purpose. After the original

set of chains has been subjected to a degree of scission b, the

chain length distributions change. Let Lb denote the length

of a randomly chosen chain after undergoing scission. The

description of the chains after the scission step now requires

knowledge of the probabilities PnðL
b ¼ lÞ; PmðL

b ¼ lÞ;

PSAðL
b ¼ lÞ; PSBðL

b ¼ lÞ; l ¼ 1…1: It is possible to

establish the distribution of Lb from that of L. Montroll

[23] and Miller and Macosko [22] give the equations for

PnðL
b ¼ lÞ; PmðL

b ¼ lÞ; l ¼ 1…1; and their corresponding

expectations. Other distributions may be calculated from

them. Details are given in Appendix A.

The complete set of chains could in principle be

described by the joint probability distribution of Lb and

FB: This is indicated as PðLb ¼ l; FB ¼ fBÞ; fB ¼ 0; 1; 2;

l ¼ 1; 2; 3;…1; and it is the probability that a randomly

chosen chain will have l repeat units and fB B-sites. Since

scission occurs randomly, however, the length of a chain

and the number of B-sites it contains are independent

variables, and so the joint probability distribution just

mentioned may be expressed as a product,

PðLb ¼ l; FB ¼ fBÞ ¼ PðLb ¼ lÞ £ PðFB ¼ fBÞ; fB ¼

0; 1; 2; l ¼ 1; 2; 3;…1:

If we want to calculate the average molecular weight of a

polymer that has reached a degree of crosslinking a and a

degree of scission b, we pick a unit of mass at random and

evaluate what is the expected weight attached to it. The unit

of mass will be on a chain with a random mass M; a random

number FA ¼ M of A-sites and a random number FB of B-

sites. The weight attached to an A-site, such as the one

indicated with an arrow in Fig. 2, will be zero if the site is

unreacted. The chance of that happening is 1 2 a. If the A-

site reacted, it may have done so with either an A or a B-site.

If the site reacted with another A-site, the weight attached

will be the weight looking into an A-site, W in
A . If it reacted

with a B-site, the weight will be that looking into a B-site,

W in
B . The probabilities of those two events are að1 2 gÞ and

ag; respectively, where g is the probability that an A-site

reacted with a B-site rather than with another A-site. This

can be expressed in a compact form as:

g ¼
# A-sites involved in A–B reactions

# A-sites involved

in A–A reactions

 !
þ

# A-sites involved

in A–B reactions

 ! ð3Þ

Wout
A ¼

0 A unreacted P ¼ 1 2 a

W in
A A reacted with A P ¼ að1 2 gÞ

W in
B A reacted with B P ¼ ag

8>><
>>: ð4Þ

where P is the probability of each event. Similarly, the

weight to be found looking out of a B-site may be expressed

as

Wout
B ¼

0 B unreacted P ¼ 1 2 d

W in
A B reacted P ¼ d

(
ð5Þ

It is more convenient to express the B-site conversion, d;

in terms of a; b and g: In order to do that, one must recall

that by definition,

d ¼
# sites involved in A–B reaction

total # of B-sites
ð6Þ

a ¼

# sites involved

in A–B reaction

 !
þ

# sites involved

in A–A reaction

 !

total # of A-sites
ð7Þ

If the stoichiometric imbalance is defined as

r ¼
total # of A-sites

total # of B-sites
ð8Þ

Fig. 2. A molecule formed during the scission-crosslinking process.
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then one may easily show that

a

d
¼

1

r

#A-sites involved in

A–A reactions

 !
þ

#A-sites involved in

A–B reactions

 !

#B-sites involved in A–B reactions

¼
1

r

1

g
ð9Þ

where the second equality arises from the definition of g in

Eq. (3) and the fact that the same number of A-sites and B-

sites is involved in A–B reactions. In this system, the

stoichiometric imbalance r is not constant, since the number

of B-sites increases with time while the number of A-sites

decreases. Since each bond in a chain is an A-site, and each

scission reaction destroys one A-site and generates two B-

sites, we may express r as

r ¼
EmðLÞ2 EmðLÞb

2EmðLÞb
¼

1 2 b

2b
ð10Þ

With this expression, we find that

d ¼
agð1 2 bÞ

2b
ð11Þ

If we take expectations of the random events indicated in

Eqs. (4) and (5), and substituting Eq. (11) into the result, we

find

EðWout
A Þ ¼ 0ð1 2 aÞ þ ESAðW

in
A Það1 2 gÞ þ ESBðW

in
B Þag

ð12Þ

EðWout
B Þ ¼ 0 1 2

agð1 2 bÞ

2b

� �
þ ESAðW

in
A Þ

agð1 2 bÞ

2b
ð13Þ

The expectations looking into various sites are taken by

A site or by B site depending on the type of site that has

reacted with the starting one. We now turn to the calculation

of ESAðW
in
A Þ and ESBðW

in
A Þ. The weight looking into an A site

is the expected weight of the chain plus the weights that are

attached to the remaining A sites and all the B sites.

Mathematically this is expressed as

ESAðW
in
A Þ ¼ ESAðMÞ þ ðESAðFAÞ2 1ÞEðWout

A Þ

þ ESAðFBÞEðW
out
B Þ ð14Þ

Similarly we find that

ESBðW
in
B Þ ¼ ESBðMÞ þ ðESBðFBÞ2 1ÞEðWout

B Þ

þ ESBðFAÞEðW
out
A Þ ð15Þ

Eq. (12) through (15) may be solved for EðWout
A Þ and

EðWout
B Þ. Considering that in our particular case expectations

by A-site are the same as expectations by mass, and that

M ¼ m0L
b; the result is

EðWout
A Þ ¼ 2am0

n
2b½EmðL

bÞðg2 1Þ2 gESBðL
bÞ�

þ ag2½EmðL
bÞð1 2 ESBðFBÞÞ

þESBðL
bÞEmðFBÞ þ bðEmðL

bÞðESBðFBÞ2 1Þ

2EmðFBÞESBðL
bÞÞ�

o
=D ð16Þ

EðWout
B Þ ¼ agm0ðb2 1Þ½agESBðL

bÞ2 EmðL
bÞ�=D ð17Þ

D ¼ 2bþ 2abð1 2 EmðL
bÞÞ2 agEmðFBÞ

þ 2abgðEmðL
bÞ2 ESBðL

bÞ2 1Þ þ abgEmðFBÞ

þ a2b2g½1 2 ESBðFBÞ þ EmðL
bÞðESBðFBÞ2 1Þ

2 EmðFBÞESBðL
bÞ� þ a2g2½EmðL

bÞ2 1

þ EmðFBÞESBðL
bÞ þ ESBðFBÞð1 2 EmðL

bÞÞ� ð18Þ

The weight average molecular weight is then

Mw ¼ m0EmðL
bÞ þ EmðFAÞEðW

out
A Þ þ EmðFBÞEðW

out
B Þ ð19Þ

The evaluation of the different expectations is shown in

Appendix A. They may all be expressed in terms of the

moments of the distribution of the untreated chains, the

degree of scission b and the degree of crosslinking a; all of

which are knowable quantities. The starting chains may be

either monodisperse or polydisperse.

Eq. (19) is only valid in the pregel region, where a , ac:

The gel point ac may be found by making D ¼ 0 in Eq. (18),

a condition that causes the theoretical Mw in Eq. (19) to

become infinite. Beyond this conversion we may still

calculate several parameters, including the weight average

molecular weight of the soluble fraction, but for that it is

necessary to be able to distinguish the sol from the gel. That

requires looking out of a reactive site and evaluating the

probability that all paths in that direction are finite. Since

there are two different types of reactive sites, two such

probabilities must be evaluated: the probability that the path

will be finite looking out of an A or a B site, PðFout
A Þ and

PðFout
B Þ. These probabilities may be calculated by con-

ditioning:

PðFout
A Þ ¼ ð1 2 aÞPðFout

A lA unreactedÞ

þaPðFout
A lA reactedÞ

¼ 1 2 aþ aPðFout
A lA reactedÞ

ð20Þ

Since the A site may react either with another A site or
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with a B site,

PðFout
A lA reactedÞ

¼ ð1 2 gÞPðFout
A lA reacted with AÞ þ gPðFout

A lA

reacted with BÞ

¼ ð1 2 gÞPSAðF
in
A Þ þ gPSBðF

in
B Þ ð21Þ

PSAðF
in
A Þ ¼ PmðF

in
A Þ ¼

X1
l¼1

X2

fB¼0

PmðF
in
A lLb ¼ l;

FB ¼ fBÞPmðL
b ¼ lÞPmðFB ¼ fBÞ

¼
X1
l¼1

X2

fB¼0

PðFout
A Þl21PðFout

B ÞfB

PmðL
b ¼ lÞPmðFB ¼ fBÞ

ð22Þ

where the probabilities of the different functionalities may

be expressed as a product because Lb and FB are

independent. Because of that independence the summations

may be rearranged as

PmðF
in
A Þ ¼

X1
l¼1

PðFout
A Þl21

PmðL
b ¼ lÞ

X2

fB¼0

PðFout
B ÞfBPmðFB ¼ fBÞ

ð23Þ

The summations in Eq. (23) may be expressed in terms of

probability generating functions (pgfs). By definition, the

pgf fA;bðzÞ is

fA;bðzÞ ¼
X1
a¼0

zaPbðA ¼ aÞ ð24Þ

where z is the dummy variable of the transformation, A is a

random variable and b specifies the type of probability

distribution of A that is used. Using this definition, Eq. (23)

may be expressed as

PmðF
in
A Þ ¼

fLb;mðPðF
out
A ÞÞ

PðFout
A Þ

fFB;m
ðPðFout

B ÞÞ ð25Þ

Since according to Eq. (A4) in Appendix A PmðFB ¼

fBÞ ¼ PnðFB ¼ fBÞ; we find that

PmðF
in
A Þ ¼

fLb;mðPðF
out
A ÞÞ

PðFout
A Þ

fFB;n
ðPðFout

B ÞÞ ð26Þ

In order to calculate Eq. (23), we still need to evaluate

PSBðF
in
B Þ

PSBðF
in
B Þ ¼

X1
l¼0

X2

fB¼1

PSBðF
in
B lLb ¼ l;FB ¼ fBÞ

PSBðL
b ¼ lÞPSBðFB ¼ fBÞ

¼
X1
l¼0

X2

fB¼1

PðFout
A ÞlPðFout

B ÞfB21

PSBðL
b ¼ lÞPSBðFB ¼ fBÞ ¼

X1
l¼0

PðFout
A Þl

PSBðL
b ¼ lÞ

X2

fB¼1

PðFout
B ÞfB21PSBðFB ¼ fBÞ

ð27Þ

Applying again the definitions of probability generating

functions,

PSBðF
in
A Þ ¼ fLb;nðPðF

out
A ÞÞ

fFB ;SBðPðF
out
B ÞÞ

PðFout
B Þ

ð28Þ

where we have used the result that PSBðL
b ¼ lÞ ¼ PnðL

b ¼

lÞ; obtained in Appendix A (Eq. (A14)).

Substitution of Eqs. (21), (26) and (28) into Eq. (20)

yields

PðFout
A Þ ¼ 1 2 aþ að1 2 gÞ

fLb;mðPðF
out
A ÞÞ

PðFout
A Þ

�fFB ;n
ðPðFout

B ÞÞ

þ agfLb;nðPðF
out
A ÞÞ

fFB;SBðPðF
out
B ÞÞ

PðFout
B Þ

ð29Þ

The probability of finding a finite end looking out of a B-

site, PðFout
B Þ, is also found by conditioning. The result is

PðFout
B Þ ¼ 1 2

agð1 2 bÞ

2b
þ

agð1 2 bÞ

2b

�
fLb;mðPðF

out
A ÞÞ

PðFout
A Þ

fFB;n
ðPðFout

B ÞÞ ð30Þ

Eqs. (29) and (30) must be solved iteratively. A simple

bisection search scheme works very well. The various pgfs

may be calculated by definition. Expressions of pgfs for

common chain length distributions have been reported in the

literature [22].

Once the probability of finite ends looking out of both

types of sites is known, we are ready to calculate the

probability of choosing a site and finding that it has no paths

leading to the gel along the chain. In the notation of Miller

and Macosko [22] this is GRð0Þ: For this process we pick

units of mass at random. We will pick an A-site with
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probability

PmðA-unitÞ ¼
NCEmðLÞm0 2 NCbEmðLÞm0

NCEmðLÞm0 þ NCbEmðLÞm0

¼
1 2 b

1 þ b
ð31Þ

where NC is the total number of chains. Given that an A site

has been selected, the probability of finding no paths to the

gel along the chain is

GRð0lA-siteÞ ¼
X2

fB¼0

X1
j¼0

X1
k¼0

PðFout
A ÞjþkPðFout

B ÞfB

PSAðF1 ¼ j;F2 ¼ kÞPSAðFB ¼ fBÞ ¼
X2

fB¼0

PðFout
B ÞfB

PmðFB ¼ fBÞ
X1
j¼0

X1
k¼0

PðFout
A ÞjþkPnðFA ¼ jþ k þ 1Þ=EnðFAÞ

ð32Þ

Combining the indices of the last two summations,

GRð0lA-siteÞ ¼
X2

fB¼0

PðFout
B ÞfB

PnðFB ¼ fBÞ
X1
fA¼1

PðFout
A ÞfA21PnðFA ¼ fAÞ=EnðFAÞ

¼ fFB ;n
ðPðFout

B ÞÞ
X1
fA¼1

PðFout
A ÞfA21PSAðFA ¼ fAÞ

¼ fFB ;n
ðPðFout

B ÞÞ
fFA;m

ðPðFout
A ÞÞ

PðFout
A Þ

ð33Þ

Similar reasoning leads to the probability of finding no

paths to the gel along the chain given a B-site was chosen

GRð0lB-siteÞ ¼
X2

fB¼0

X1
l¼0

PðFout
A ÞlPðFout

B ÞfB21

PSBðL ¼ lÞPSBðFB ¼ fBÞ

¼
X2

fB¼0

PðFout
B ÞfB21 fBPnðFB ¼ fBÞ

EnðfBÞ

X1
l¼0

PðFout
A Þl

PnðL
b ¼ lÞ ¼

f0
FB;n

ðPðFout
B ÞÞ

EnðfBÞ
fLb;nðPðF

out
A ÞÞ

ð34Þ

where the prime indicates the first derivative of the

probability generating function with respect to its dummy

argument.

Since a B-site is chosen with probability

PmðB-unitÞ ¼ 1 2 PmðA-unitÞ ¼
2b

1 þ b
ð35Þ

then the total probability of finding no paths to the infinite

network is

GRð0Þ ¼
1 2 b

1 þ b
GRð0lA-siteÞ þ

2b

1 þ b
GRð0lB-siteÞ ð36Þ

Following the arguments of Flory [24] and other authors

[20,25], one may define an extent of reaction valid only for

the sol fraction in the postgel region, which is equivalent to

an extent of reaction in the pregel region. In our case,

as ¼ aGRð0lA-siteÞ ð37Þ

We have used the probability of no connections to the gel

given the choice of an A-site because the conversion a

refers to A-sites only. Substitution of as in place of a in the

expressions for the average molecular weights in the pregel

region yields the average molecular weights of the sol

fraction in the postgel region.

In order to find the sol fraction, we must again pick units

of mass at random. Then,

ws ¼ PmðA-siteÞPmðsolublelA-siteÞþ

PmðB-siteÞPmðsolublelB-siteÞ

¼
1 2 b

1 þ b

X1
fA¼1

PðFout
A ÞfA

PmðFA ¼ fAÞ þ
2b

1 þ b

X2

fB¼0

PðFout
B ÞfBPmðFB ¼ fBÞ

¼
1 2 b

1 þ b

X1
l¼1

PðFout
A Þl

PmðL
b ¼ lÞ þ

2b

1 þ b

X2

fB¼0

PðFout
B ÞfBPnðFB ¼ fBÞ

¼
1 2 b

1 þ b
fLb;mðPðF

out
A ÞÞ þ

2b

1 þ b
fFB;n

ðPðFout
B ÞÞ

ð38Þ

All the equations presented may be calculated for any

known starting distribution of chains.

3. Results and discussion

The model just described was implemented in Fortran

code and run for several cases. The quantities needed for

input are the starting molecular weights and type of

molecular weight distribution, the gel point (expressed as

dose at the critical point), the maximum dose used, the level

of scission (expressed as a fraction of the crosslinking

conversion a) and the proportion of all crosslinks that are of

the Y type. All this information can be obtained from

standard experimental techniques such as size exclusion

chromatography (SEC), sol extraction measurements from

the crosslinked polymer, and nuclear magnetic resonance
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(NMR) determinations to evaluate the fraction of Y and H

type crosslinked points. The model assumes that the ratio

a=b is constant throughout the reaction, and that the energy

expended on the sample is directly proportional to the sum

of conversions aþ b: The output is the number and weight

average molecular weights, both before and after the gel

point, and the soluble fraction. Results are obtained as

functions of conversion. Since experimental information is

available in terms of applied dose, results are converted

using the expression

D

Dc

¼
aþ b

ac þ bc

ð39Þ

where D is the dose, and the subscript c indicates the critical

point or gel point. In order to compare theoretical

predictions with experimental data, a reasonably good

estimate of the experimental gel point Dc is needed in order

to be able to use Eq. (39). The values of ac and bc will vary

with the a=b ratio and must be calculated theoretically. They

are evaluated as those conversions at which the weight

average molecular weight diverges.

As an example, Fig. 3 shows a comparison between model

results and experimental data obtained on a commercial

PDMS (supplier: Petrarch Systems, currently United

Chemical Technologies, Mw ¼ 70; 100 and Mn ¼ 41; 800)

irradiated using electron beams in air at room temperature.

The starting distribution was assumed to be a Negative

Binomial with parameters chosen so that the experimentally

measuredMn andMw could be reproduced. For details on this

distribution as applied to polymer chains, see Miller and

Macosko [22]. The level of scission was estimated to be 20%

of the overall crosslinking conversion. The full line shows

predictions when 25% of the crosslinks are of the Y type,

while the dashed line corresponds to 100% H type crosslinks.

Consideration of the Y type crosslinks affords a definite

improvement in the agreement with experimental data. If Y

type crosslinks are not allowed, the only other parameter that

could possibly lower Mw in the postgel region is the level of

scission. However, it was impossible to fit the experimental

Mw data solely by increasing this level. Fig. 4 shows that even

if one assumes that b ¼ a; a gross overestimation of the

possible level of scission for this particular system, the

predicted Mw does not fit well the experimental values if Y

type crosslinks are not allowed. The level of Y crosslinks that

gives a good fit in Fig. 3 is in the range of those reported by

Hill et al. [10] for a PDMS system.

Fig. 3. Model predictions for a commercial PDMS treated with electron

beams using different proportions of H and Y crosslinks and a constant

degree of scission compared with experimental data. Filled circles:

experimental data; dashed line: 100% H crosslinks; full line: 25% Y

crosslinks, 75% H crosslinks.

Fig. 4. Model predictions for a commercial PDMS treated with electron

beams using different levels of scission and 100% H crosslinks compared

with experimental data. Filled circles: experimental data; dashed line: b ¼

0:2a; full line: b ¼ a:

Fig. 5. Influence of the proportion of Y crosslinks on the sol fraction.

Curves correspond to g ¼ 0; g ¼ 0:25; g ¼ 0:5:

C. Sarmoria, E. Vallés / Polymer 45 (2004) 5661–5669 5667



The proportion of Y crosslinks also affects the prediction

of the sol fraction. An example is shown in Fig. 5, where we

have plotted the predicted weight fraction of solubles for

three different proportions of Y crosslinks (the arrow points

in the direction of increasing g). Comparison with Fig. 3

suggests that the sol fraction is less sensitive to the

parameter g than the weight average molecular weight.

Similar results are obtained with other sets of data, and will

be shown in a forthcoming publication [26].

4. Conclusions

We have presented a mathematical model for the

simultaneous crosslinking and scission of polymeric chains

that takes both H and Y crosslinks into account. The starting

chains may be either monodisperse or polydisperse. The

model allows fitting Mw data that was impossible to fit

otherwise, with a level of trifunctional crosslinks compar-

able to that reported in the literature for PDMS systems [10].

The model is a tool that will allow the study of other

irradiated systems. Coupled with a multiparameter optim-

ization algorithm, and experimental data obtained under

different conditions, it could allow to find out whether the

proportions of H and Y crosslinks depend solely on the

chemistry of the chains, or whether the irradiation

conditions are important. Work is under way in this

direction [26].
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Appendix A

A.1. Probability distributions that describe the polymer

chains

Let the number chain length distribution of a polymer

PnðL ¼ lÞ be known. The remaining distributions needed in

the model may be calculated from it as follows:

PmðL ¼ lÞ ¼
m0lPnðL ¼ lÞ

m0

X1
l¼0

lPnðL ¼ lÞ

¼
lPnðL ¼ lÞ

EnðLÞ
ðA1Þ

The number of B-sites per chain may be 0, 1 or 2. A B-

site appears on a chain end every time a scission reaction

occurs. Since this reaction is postulated to take place

randomly, the B-sites are randomly distributed among all

chains. We assume that the B-sites follow a Binomial

distribution with probability PnðB-siteÞ and two trials (one

for each end). The resulting distribution is

PnðFB ¼ fBÞ ¼
X2

fB¼0

2

fB

 !
PnðB-siteÞfB

£ ð1 2 PnðB-siteÞÞ22fB

ðA2Þ

The probability PnðB-siteÞ is the number probability of

finding a B-site. Since they are found only at chain ends, the

relevant probability is calculated as the ratio of new ends

created by scission to total number of chain ends. At a

degree of scission b; the total number of new chain ends that

has been formed from N0 starting chains is 2N0EmðLÞb,

since each cut generates two B-sites. Then,

PnðB-siteÞ ¼
2N0EmðLÞb

2N0 þ 2N0EmðLÞb
¼

EmðLÞb

1 þ EmðLÞb
ðA3Þ

Now we can calculate probabilities associated with the

number of B-sites per chain.

PmðFB ¼ fBÞ ¼
lPnðFB ¼ fBÞX2

fB¼0

lPnðFB ¼ fBÞ

¼
PnðFB ¼ fBÞX2

fB¼0

PnðFB ¼ fBÞ

¼ PnðFB ¼ fBÞ ðA4Þ

where the last equality results from the fact that the

denominator is unity.

PSBðL ¼ lÞ ¼
fBPnðL ¼ lÞX1

l¼0

fBPnðL ¼ lÞ

¼ PnðL ¼ lÞ ðA5Þ

PSBðFB ¼ fBÞ ¼
fBPnðFB ¼ fBÞX2

fB¼0

fBPnðFB ¼ fBÞ

¼
fBPnðFB ¼ fBÞ

EnðFBÞ
ðA6Þ

The corresponding expectations, as defined in Eq. (1), are

EmðLÞ ¼
X1
l¼0

lPmðL ¼ lÞ ¼
X1
l¼0

l2PnðL ¼ lÞ

EnðLÞ
¼

EnðL
2Þ

EnðLÞ
ðA7Þ

The quantities EnðL
2Þ and EnðLÞ are easily calculated by

definition for most common chain length distributions.

Several examples may be found in the works of Miller and

Macosko [21,22].

ESBðFBÞ ¼
X2

fB¼0

f 2
BPnðFB ¼ fBÞ

EnðFBÞ
¼

EnðF
2
BÞ

EnðFBÞ
ðA8Þ

where the expectations EnðF
2
BÞ and EnðFBÞ are calculated by

definition.
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As a consequence of Eqs. (A4) and (A5),

EmðFBÞ ¼ EnðFBÞ ðA9Þ

ESBðLÞ ¼ EnðLÞ ðA10Þ

After the scission step, at a given degree of scission b; the

probabilities that describe the resulting chains may be

calculated. It follows from Montroll [23] and Miller and

Macosko [22] that

PnðL
b ¼ lÞ

¼

PnðL ¼ lÞð1 2 bÞl21 þ
X1

i¼lþ1

PnðL ¼ iÞð1 2 bÞi21½2 þ bði2 l2 1Þ�

1 þ bðEnðLÞ2 1Þ

ðA11Þ

and the corresponding expectation is [22]:

EnðL
bÞ ¼

EnðLÞ

1 þ bðEnðLÞ2 1Þ
ðA12Þ

Similarly, Miller and Macosko [22] show that the mass

expectation is

EmðL
bÞ ¼

2 2 b

b
2

2ð1 2 bÞ

b2EnðLÞ
ð1 2 fL;nð1 2 bÞÞ ðA13Þ

where fL;nð1 2 bÞ is the probability generating function

defined in Eq. (24) for the dummy argument 1 2 b:

Following a procedure analogous to that used in Eqs.

(A5) and (A10), we may find that

PSBðL
b ¼ lÞ ¼ PnðL

b ¼ lÞ ðA14Þ

ESBðL
bÞ ¼ EnðL

bÞ ðA15Þ
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