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Abstract

The effects of the in-plane prebuckling deformations as well as the effect of shear flexibility on the lateral buckling of bisym
thin-walled composite beams has been investigated in this paper. The analysis is based on a geometrically non-linear theory bas
displacements and rotations. The Ritz variational method is used in order to discretize the governing equation and then the buckling lo
are obtained by requiring the singularity of the tangential stiffness matrix. The numerical results show that the classical predictions
buckling are inaccurate, and the considered effects should be taken into account for obtaining reliable solutions. Besides, the effec
length and height of the load point have also been investigated for different laminate stacking sequence.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural members made of composites are increasi
used in aeronautical, mechanical and civil engineering
applications where high strength and stiffness, and
weight are of primary importance. Many structural memb
made of composites have the form of thin-walled bea
These kinds of members are the most common lo
carrying systems in engineering applications. When loa
in its plane of symmetry, the beam initially deflec
However, at a certain level of the applied load, t
beam may buckle laterally, while its cross-section rotate
simultaneously about the beam’s axis. This phenome
is called lateral buckling, and the value of the load
which buckling occurs is the critical load. Therefor
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the accurate prediction of the stability limit state
of fundamental importance in the design of thin-walle
structures. Several studies of lateral buckling of thin-walle
beams have been developed by using a linearized appr
based on Vlasov’s theory. In this way, buckling loa
were determined for thin-walled beams made of meta
[1–6] and composite materials (for example: [7,8]). The
limitation of the linear buckling analysis of beams [1] is the
omission of any consideration of the effect of prebuckli
deflections. This omission may lead to inaccurate res
when the prebuckling deflections of the beam are
negligible.

On the otherhand, a few closed-form solutions hav
been obtained for critical loads considering the prebuckl
deflections of the beam [9–13].

The shear deformation effect has not been conside
in the last five references. However, it is well known th
this effect plays an important role in the behavior of line
stability of thin-walled composite beams, owing to th
high ratio between the equivalent elasticity modulus a
transverse elasticity modulus [7,14].

http://www.elsevier.com/locate/engstruct
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In this paper a geometrically non-linear beam theo
is presented that takes into account several non-clas
effects, such as shear flexibility. On the other hand, it is va
for symmetric balanced laminates and especially orthotro
laminates [15,16]. The primary purpose of this paper
to investigate numerically the effects of the prebuckli
displacements as well as the effect of shear deformation o
the lateral buckling of bisymmetric thin-walled compos
beams subjected to concentrated end moments, concentrate
forces, or uniformly distributed load. Simply supported a
cantilever beams are considered.

A second purpose is to investigate the effects of sp
length and the load height on the lateral buckling f
different laminate stacking sequences.

In order to perform the analysis, the Ritz variationa
method [17] is used forreducing the governing equation i
terms of generalized coordinates. From the reduced sys
the buckling loads are determined from the singular
condition of the tangential stiffness matrix evaluated in
fundamental state. In this way the prebuckling deformati
are taken into account avoiding the employment of
full non-linear analysis. Moreover, for the case of simp
supported ends, a simple analytical formula for the critic
loads is obtained. The results thus determined are compa
with values obtained by means of thelinearized theory in
order to evaluate the importance of the effects taken
account.

2. Kinematics

A straight thin-walled composite beam with an arbitra
cross-section is considered (Fig. 1). The points of the
structural member are referred to a Cartesian co-ordin
system (x, ȳ, z̄), where the x-axis is parallel to the
longitudinal axis of the beam whilēy andz̄ are the principal
axes of the cross-section. The axesy and z are parallel
to the principal ones but having their origin at the shea
center (defined according to Vlasov’s theory of isotrop
beams). The co-ordinates corresponding to points lying
the middle line are denoted asY and Z (or Y and Z ). In
addition, a circumferential co-ordinates and a normal co-
ordinaten are introduced on the middle contour of the cro
section.

ȳ(s, n) = Y (s)− n
dZ

ds
, z̄(s, n) = Z(s)+ n

dY

ds
(1)

y(s, n) = Y (s)− n
dZ

ds
, z(s, n) = Z(s)+ n

dY

ds
. (2)

On the other hand, y0 and z0 are the centroidal co
ordinates measured with respect to the shear center.

ȳ(s, n) = y(s, n)− y0

z̄(s, n) = z(s, n) − z0.
(3)

The present structural model is based on the follow
assumptions [14]:
l

,

Fig. 1. Co-ordinate system of the cross-section.

(1) The cross-section contour is rigid in its own plane.
(2) The warping distribution is assumed to be given by th

Saint-Venantfunction for isotropic beams.
(3) Flexural rotations (about thēy and z̄ axes) are assume

to be moderate, while the twistφ of the cross-section
can be arbitrarily large.

(4) Shell force and moment resultant corresponding
the circumferential stressσss and the force resultan
corresponding toγns are neglected.

(5) The radius of curvature at any point of the shell
neglected.

(6) Twisting linear curvature of the shell is express
according to the classical plate theory.

(7) The laminate stacking sequence is assumed to
symmetric and balanced, or especially orthotropic [15,
16].

According to these hypotheses the displacement field i
assumed to be in the following form

ux = uo − ȳ(θz cosφ + θy sinφ)− z̄(θy cosφ − θz sinφ)

+ω
[
θ−1

2
(θ ′

yθz − θyθ
′
z)

]
+ (θzz0 − θy y0) sinφ

uy = v − z sinφ − y(1 − cosφ)−1

2
(θ2

z ȳ + θzθy z̄)

uz = w + y sinφ − z(1 − cosφ)−1

2
(θ2

y z̄ + θzθy ȳ).

(4)

This expression is a generalization of others previou
proposed in the literature.

The displacement field proposed by Fraternali and
[18] is recovered (seeAppendix A) by considering θz =
v′, θy = w′ andθ = φ′ (neglecting flexural and torsiona
shear flexibility), approximating cosφ and sinφ by (1 −
φ2/2) andφ respectively, and conserving non-linear ter
up to second order. Moreover, the displacement field
the classical Vlasov theory is obtained when second-or
effects are ignored.

On the other hand, a simplified analog of Eqs. (4),
disregarding the underlined terms and shear flexibility, w
used by Mohri [13].
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As a final comparison, taking cosφ = 1 and sinφ =
φ and disregarding the non-linear terms, the displaceme
field (4) coincides with the one formulated by Cortínez an
Piovan [14] for linear dynamics of shear deformable thi
walled beams.

In the above expressionsφ, θy and θz are measures
of the rotations about the shear center axis,ȳ and z̄
axes, respectively;θ represents the warping variable of th
cross-section. Furthermore the superscript ‘prime’ deno
derivation with respect to the variablex . The warping
functionω of the thin-walled cross-section may be defin
as:

ω(s, n) = ωp(s)+ ωs(s, n) (5)

whereωp andωs are the contour warping function and th
thickness warping function, respectively. They are defined
the form [19]:

ωp(s) = 1

S

[∫ S

0

(∫ s

s0

[r(s)− ψ(s)]ds

)
ds

]
−
∫ s

s0

[r(s)− ψ(s)]ds

ωs(s, n) = −nl(s)

(6)

where

r(s) = −Z(s)
dY

ds
+ Y (s)

dZ

ds
(7)

l(s) = Y (s)
dY

ds
+ Z(s)

dZ

ds
(8)

r(s) represents the perpendicular distance from the s
center (SC) to the tangent at any point of the mid-surf
contour, andl(s) represents the perpendicular distance from
the shear center (SC) to the normal at any point of the mid-
surface contour, as shown inFig. 1.

In the expression (6) Ψ is the shear strain at the midd
line, obtained by means of the Saint-Venant theory of pure
torsion for isotropic beams, and normalized with respec
dφ/dx [20]. For the case of open sectionsΨ = 0.

3. The strain field

The displacements with respect to the curvilinear sys
(x, s, n) are obtained by means of the following expressio

U = ux (x, s, n) (9)

V = uy(x, s, n)
dY

ds
+ uz(x, s, n)

dZ

ds
(10)

W = −uy(x, s, n)
dZ

ds
+ uz(x, s, n)

dY

ds
. (11)

The three non-zero componentsεx x , εxs, εxn of the Green’s
strain tensorare given by:

εx x = ∂U

∂x
+ 1

2

(∂U

∂x

)2

+
(
∂V

∂x

)2

+
(
∂W

∂x

)2
 (12)
r

εxs = 1

2

[
∂U

∂s
+ ∂V

∂x
+ ∂U

∂x

∂U

∂s
+ ∂V

∂x

∂V

∂s
+ ∂W

∂x

∂W

∂s

]
(13)

εxn = 1

2

[
∂U

∂n
+ ∂W

∂x
+ ∂U

∂x

∂U

∂n
+ ∂V

∂x

∂V

∂n
+ ∂W

∂x

∂W

∂n

]
.

(14)

Substituting expressions (4) into (9)–(11) and then into

(12)–(14), employing the relations (1)–(3) and (5)–(8), after
simplifying some higher order terms, the components of
strain tensor are expressed in the following form:

εx x = ε(0)x x + nκ(1)x x

γxs = 2εxs = γ (0)xs + nκ(1)xs

γxn = 2εxn = γ (0)xn

(15)

where

ε(0)x x = u′
o + 1

2
(v′2 +w′2)+ ωp

[
θ ′ − 1

2
(θzθ

′′
y − θyθ

′′
z )

]
+ Z(−θ ′

y cosφ + θ ′
z sinφ)+ Y (−θ ′

z cosφ

− θ ′
y sinφ)+ 1

2
φ′2(Y 2 + Z2)+ (z0θ

′
z − y0θ

′
y) sinφ

+φ′(z0θz − y0θy) cosφ (16)

κ(1)x x = −dZ

ds
(−θ ′

z cosφ − θ ′
y sinφ)+ dY

ds
(−θ ′

y cosφ

+ θ ′
z sinφ)− l

[
θ ′ − 1

2
(θzθ

′′
y − θyθ

′′
z )

]
− rφ′2 (17)

γ (0)xs = dY

ds

[
(v′ − θz) cosφ − z0

1

2
(θzθ

′
y − θyθ

′
z)

+ (w′ − θy) sinφ

]
+ (r − ψ)(φ′ − θ)

+ dZ

ds

[
(w′ − θy) cosφ + y0

1

2
(θzθ

′
y − θyθ

′
z)

− (v′ − θz) sinφ

]
+ ψ

[
φ′ − 1

2
(θzθ

′
y − θyθ

′
z)

]
(18)

κ(1)xs = −2

[
φ′ − 1

2
(θzθ

′
y − θyθ

′
z)

]
(19)

γ (0)xn = dY

ds

[
(w′ − θy) cosφ + y0

1

2
(θzθ

′
y − θyθ

′
z)

− (v′ − θz) sinφ

]
− dZ

ds

[
(v′ − θz) cosφ

− z0
1

2
(θzθ

′
y − θyθ

′
z)+ (w′ − θy) sinφ

]
+ l(φ′ − θ). (20)

4. Variational formulation

Taking into account the adopted assumptions,
principle of virtual work for a composite shell may b
expressed in the form [21,14]:
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∫ ∫
(Nx xδε

(0)
x x + Mx xδκ

(1)
x x + Nxsδγ

(0)
xs

+ Mxsδκ
(1)
xs + Nxnδγ

(0)
ns ) ds dx

−
∫ ∫

(q̄xδūx + q̄yδū y + q̄zδūz) ds dx

−
∫ ∫

( p̄xδux + p̄yδuy + p̄zδuz)|x=0 ds dn

−
∫ ∫

( p̄xδux + p̄yδuy + p̄zδuz)|x=L ds dn

−
∫ ∫ ∫

( f̄xδux + f̄ yδuy + f̄zδuz) ds dn dx = 0

(21)

where Nx x , Nxs ,Mx x ,Mxs and Nxn are the shell stres
resultants defined according to the following expressions

Nx x =
∫ e/2

−e/2
σx x dn; Mx x =

∫ e/2

−e/2
(σx xn) dn;

Nxs =
∫ e/2

−e/2
σxs dn; Mxs =

∫ e/2

−e/2
(σxsn) dn;

Nxn =
∫ e/2

−e/2
σxn dn.

(22)

The beam is subjected to wall surface tractionsq̄x , q̄y and
q̄z specified per unit area of the undeformed middle surf
and acting along thex, y and z directions, respectively
Similarly, p̄x , p̄y and p̄z are the end tractions per unit area
theundeformed cross-section specified atx = 0 andx = L,
where L is the undeformed length of the beam. Besid
f̄x , f̄ y and f̄z are the body forces per unit of volume. Final
denotingūx , ū y andūz as displacements at the middle line

5. Constitutive equations

The constitutive equations of symmetrically balanc
laminates may be expressed in the terms of shell stre
resultants in the following form [15]:

Nx x

Nxs

Nxn

Mx x

Mxs

 =


A11 0 0 0 0
0 A66 0 0 0

0 0 A
(H)
55 0 0

0 0 0 D11 0
0 0 0 0 D66



ε(0)x x
γ (0)xs
γ (0)xn
κ(1)x x
κ(1)xs

 (23)

with

A11 = A11 − A2
12

A22
, A66 = A66 − A2

26

A22
,

A
(H)
55 = A(H)55 − (A(H)45 )

2

A(H)44

D11 = D11 − D2
12

D22
, D66 = D66 − D2

26

D22

(24)

where Aij , Dij and A(H)i j are plate stiffness coefficien
defined according to the lamination theory presented
Barbero [15]. The coefficient D16 has been neglecte
because of its low value for the considered laminate stackin
sequence [14].

6. Principle of virtual work for thin-walled beams

Substituting expressions (16)–(20) into (21) and integrat-
ing with respect tos, one obtains the one-dimensional e
pression for the virtual work equation given by:

L K + L P = 0 (25)

where,Lk and L p represent the virtual work contribution
due to the internal and external forces, respectively. T
expressions are given below.

L K =
∫ L

0

{
δu′

0N + δv′(Qy cosφ − Qz sinφ + v′ N)

+ δw′(Qz cosφ + Qy sinφ + w′N)

+ δθz

[
−Qy cosφ + Qz sinφ + 1

2
(Qz y0 − Qyz0)θ

′
y

− 1

2
Tsvθ

′
y − 1

2
Bθ ′′

y + Nφ′z0 cosφ

]
+ δθ ′

z

[
−Mz cosφ + (My + Nz0) sinφ + 1

2
(Qyz0

− Qz y0)θy + 1

2
Tsvθy

]
+ δθ ′′

z
1

2
Bθy

+ δθy

[
−Qz cosφ − Qy sinφ + 1

2
(Qyz0 − Qz y0)θ

′
z

+ 1

2
Tsvθ

′
z + 1

2
Bθ ′′

z − Nφ′ y0 cosφ

]
+ δθ ′

y

[
−My cosφ − (Mz + Ny0) sinφ + 1

2
(Qz y0

− Qyz0)θz − 1

2
Tsvθz

]
− δθ ′′

y
1

2
Bθz

+ δφ[My(θ
′
y sinφ + θ ′

z cosφ)+ Mz(θ
′
z sinφ

− θ ′
y cosφ)+ N(z0θ

′
z − y0θ

′
y) cosφ

− Nφ′(z0θz − y0θy) sinφ

+ Qy((θz − v′) sinφ − (θy −w′) cosφ)

+ Qz((θy −w′) sinφ + (θz − v′) cosφ)]
+ δφ′[Tw + Tsv + B1φ

′

+ N(θz z0 − θy y0) cosφ] + δθ ′B − δθTw

}
dx . (26)

In the present study, the lateral buckling of beams initia
loaded in bending about the principal axis is conside
Thus, the external workL p is defined by the following
relationship:

L P =
∫ L

0
(−qzδw + δφφezqz)dx + |δθy M y |x=L

x=0 (27)

where
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qz =
∫

q̄zds +
∫ ∫

f̄zds dn, M y =
∫ ∫

p̄x z̄ ds dn

(28, 29)

and ez denotes the eccentricity in thez-direction of the
applied loads measured from the shear center. In wh
follows this last one will be called load height parameter.

7. Beam forces

In the above expressions, the following 1-D beam force
in terms of the shell forces, have been defined

N =
∫

Nx x ds; MY =
∫ (

Nx x Z + Mx x
dY

ds

)
ds;

MZ =
∫ (

Nx x Y − Mx x
dZ

ds

)
ds;

QZ =
∫ (

Nxs
dZ

ds
+ Nxn

dY

ds

)
ds;

QY =
∫ (

Nxs
dY

ds
− Nxn

dZ

ds

)
ds;

Tw =
∫
(Nxs(r − ψ)+ Nxnl) ds;

B =
∫
(Nx xωp − Mx xl) ds;

Tsv =
∫
(Nxsψ − 2Mxs) ds;

B1 =
∫

[Nx x (Y
2 + Z2)− 2Mx xr ] ds (30)

where the integration is carried out over the entire length of
the mid-line contour.N corresponds to the axial force,Qy

and Qz to shear forces,My and Mz to bending moments
about they- and z-axis, respectively,B to the bimoment,
Tw to the flexural–torsional moment,Tsv to the Saint-Venant
torsional moment andB1 to a high-order stress resultant
which contributes to the torque.

The relations among the generalized beam forces and the
generalized strains characterizing the behavior of the bea
are obtained by substituting the expressions (16)–(20) into
(23), and the results into (30). This constitutive law can be
expressed in terms of a beam stiffness matrix[K ] as defined
in Appendix B.

8. Lateral buckling considering prebuckling deforma-
tion

The stability analysis of bisymmetric thin-walled
composite beams is analyzed by taking into account th
initial deflection in the prebuckling state (fundamental state).
The displacement components in the fundamental state are
in the form{u, v, θz, w, θy, φ, θ}t = {0,0,0, w, θy,0,0}t ,
that is to say, the beam deforms in the loading plane.
is reasonable to assume that the fundamental state m
be given with sufficient approximation by means of the
linearized theory [14].
t

y

Ritz’s method is used to discretize the variation
Eq. (25), and then the buckling loads are obtained
requiring the singularity of the tangent stiffness matr
evaluated at the fundamental state. This procedure leads
non-linear algebraic problem for the critical loads.

8.1. Simply supported beams

The prebuckling displacements are obtained from
linearized version of Eq. (25). In fact, by neglecting all
the non-linear terms in (25), and applying the variationa
calculus, the differential equations of equilibrium a
obtained which are easily solved in a closed form in ord
to determine the displacements in the loading plane.

For the case of simply supported beams subjected
uniform bending, the prebuckling displacements are giv
by the following expressions

w = Mo

2Ê I y

(Lx − x2); θy = Mo

2Ê I y

(L − 2x). (31)

The variational Eq. (25) is discretized by means of the
following functions:

v = v0 sin
(π

L
x
)

; θz = θz0 cos
(π

L
x
)

;
φ = φ0 sin

(π
L

x
)

; θ = θ0 cos
(π

L
x
)

;
(32)

where v0, θz0, φ0 and θ0 are the associated displaceme
amplitudes. These approximated displacements corresp
to the exact solution of the linearized flexural–torsion
buckling problem [14].

To determine the lateral buckling considering prebucklin
deformation, expressions (31) and (32) are substituted into
(25) and thenthe tangential stiffness matrix isobtained [22].
This procedure leads to the following expression for t
tangential matrix evaluated in the fundamental state.

Kt =

Ĝ Syπ
2

L2
− Ĝ Syπ

L

− Ĝ Syπ

L
Ĝ Sy + Ê I z

π2

L2

0 −Mo

(
1 − Ê I z

Ê I y

− Ĝ J

4Ê I y

)
π

L

0
ÊCwπ

2Mo

4Ê I y L2

0 0

−Mo

(
1 − Ê I z

Ê I y

− Ĝ J

4Ê I y

)
π

L

ÊCwπ
2Mo

4Ê I y L2

− Mo2

Ê I y

(
1 − Ê I z

Ê I y

)
+ (Ĝ J + Ĝ Sw)

π2

L2
− Ĝ Swπ

L

− Ĝ Swπ

L
Ĝ Sw + ÊCw

π2

L2


(33)
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Fig. 2. Simply supported beam subjected to uniform moment.

Fig. 3. Simply supported beam subjected to distributed load.

whereÊ I y is the flexural stiffness,̂GSz andĜSy are shear
stiffnesses of a composite beam. The definitions of thes
stiffnesses are given in theAppendix B.

The buckling state is given by the condition of singular
of this matrix [22]:

det(Kt) = 0. (34)

Hence,one obtains a quadratic equation for the external lo
for the uniform bending case (Fig. 2), the solution of which
allows to obtain the critical values.

Following the same procedure and only changing the
expression (31) for different loads conditions (distribute
load and concentrated load, seeFigs. 3and4), it is possible
to obtain a unified simple formula for the equivalent mome
defined as:

Mcr =


My0 for uniform bending
qz L2/8 for auniformly distributed load

per unit lengthqz

P L/4 for a concentrated forceP at the
middle of the span.

(35)

The explained technique leads to the following unifi
expression of the critical moment for the three loading ca
analyzed:

Mcr = C1α Ê I z
π2

L2

−C2ezα

+

√√√√√ ĜSwĜ J + ÊCw(ĜSw + Ĝ J ) π
2

L2

Ê I z
π2

L2

(
ĜSw + ÊCw

π2

L2

) + (C2ezα)2

 (36)

α =
{(

1 − Ê I z

Ê I y

)(
1 − β

Ĝ J

Ê I y
− β

ÊCwĜSwπ2

Ê I y(ĜSwL2 + ÊCwπ2)

)

− δ
Ê I z

ĜSy

π2

L2

[
1 − ĜS y

ĜSz

(
0.71− ĜSy

ĜSz
0.29

)]}− 1
2

(37)

whereC1,C2, β andδ are approximate constants presen
in Table 1.

Expression (36) also gives the corresponding equiv
alent moments according to the linearized theory (se
Appendix C), which does not account for the prebucklin
Fig. 4. Simply supported beam subjected to a concentrated load.

Table 1
Parameters in Eqs. (36) and (37)

Simply supported beam C1 C2 β δ

(a) End moments 1 0 0.5 0
(b) Uniformly distributed load(Mcr = qz L2/8) 1.141 0.459 0.033 0.214
(c) Concentrated force(Mcr = P L/4) 1.423 0.554 0.076 0.083

deflection, if one takesα = 1 andC1 andC2 as indicated in
Table 2. These constants are exact from the point of view
the linear theory, for uniformbending and approximate fo
the other loading cases.

Table 2
Parameters in Eq. (36) according to the linearized theory

Simply supported beam C1 C2 α

(a) End moments 1 0 1
(b) Uniformly distributed load(Mcr = qz L2/8) 1.132 0.459 1
(c) Concentrated force(Mcr = P L/4) 1.366 0.554 1

Therefore, the presence of theα coefficient reveals the
dependence of the prebuckling effect with respect to
relation between the bending stiffnesseŝE I z andÊ I y in the
case of uniform bending. For the other two load conditio
α also depends on the bending and shear stiffnesses(δ �= 0).

As a particular case, neglecting shear deformation,
expression (36) takes the following form for uniform
bending:

Mcr =
π
L

√
Ê I z

(
Ĝ J + ÊCw

π2

L2

)
√(

1 − Ê I z

Ê I y

)(
1 − Ĝ J

2Ê I y
− ÊCw

2Ê I y

π2

L2

) . (38)

This last expression coincides with the closed-form solut
obtained by Pi and Trahair [11] for elastic lateral buckling,
of beams made with isotropic materials, considering
prebuckling deflections.

8.2. Cantilever beams

In this case,the variational Eq. (25) is discretized by
using beam characteristic orthogonal polynomials for
displacementsv, θz , φ and θ , while the displacementsw
and θy (load plane) are adopted as the exact solution
the linearized problem. Forthis case, the only type of
loading considered is a concentrated force applied at the
free end of the beam. The corresponding expressions fo
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prebuckling displacements are given by

w = − P

ĜSz
x + P

Ê I y

(
x3

6
− L

x2

2

)
;

θy = P

Ê I y

(
x2

2
− Lx

)
. (39)

The set of orthogonal polynomials which satisfy t
geometrical boundary conditionsare generated by using th
Gram–Schmidt process.

U =
n∑

i=1

ciξi (x) (40)

whereU represent each of the displacementsv, θz , φ andθ ,
andci are arbitrary coefficients which are to be determin
The polynomialsξi (x) are generated as follows [24]:

ξ2(x) = (x − B2)ξ1(x), . . . , ξk(x) = (x − Bk)ξk−1(x)
− Ckξk−2(x),

whereBk =
∫ L

0 xξ2
k−1(x)dx∫ L

0 ξ
2
k−1(x)dx

,

Ck =
∫ L

0 xξk−1(x)ξk−2(x)dx∫ L
0 ξ2

k−2dx
. (41)

The first member of the orthogonal polynomialξ1(x) is
chosen as the simplest polynomial (of the least order)
satisfies the boundary conditions.

In order to obtain sufficient accurate results, four ter
(n = 4) are taken for each one of the flexural–torsion
displacements.

Due to the size of the resulting tangential matrix, it
difficult to obtain a simple analytical formula for the critical
loads. Therefore these are evaluated numerically from the
tangential matrix.

9. Applications and numerical results

The purpose of this section is to apply the pres
theoretical model in order tostudy the lateral buckling
behavior of thin-walled composite beams. The buckl
loads obtained with and without prebuckling deformati
are compared, for different load conditions.

In the tables and figures, (LB) denotes values determi
by the linear theory (without considering prebucklin
deformations) and (NLB) denotes values obtained
means of the present model (accounting for prebuck
deflections).

On the other hand, the influence of shear deformatio
is analyzed for different laminate stacking sequence.
the following numerical results the shear effect on t
thicknessγ (0)xn has been neglected because its considera
conduces to inaccurate results for thin-walled sections
explained by Piovan and Cortínez [23]. They showed that
the inclusion of the in-thickness shear deformation effe
.

t

t

d

n
s

Fig. 5. Analyzed cross-section shape.

Fig. 6. Buckling loads versus length, lamination {0/0/0/0}.

increases erroneously the rigidity instead of flexibilizing
beam behavior.

9.1. Simply supported I-beam subjected to uniform moments

The example considered is a simply supported I-be
subjected to uniform bending momentMo applied about its
major axis as shown inFig. 2. Thegeometrical properties ar
h = 0.6 m, b = 0.6 m, e = 0.03 m (Fig. 5). The analyzed
material is graphite-epoxy (AS4/3501) whose properties
E1 = 144 GPa,E2 = 9.65 GPa,G12 = 4.14 GPa,
G13 = 4.14 GPa,G23 = 3.45 GPa,ν12 = 0.3, ν13 =
0.3, ν23 = 0.5.

The buckling loads versus beam lengths are sh
in Figs. 6–8, for a sequence of lamination {0/0/0/0},
{ 0/90/90/0} and {45/-45/-45/45}, respectively. The analyt
ical buckling moments considering and neglecting the pre
buckling deflections were calculated by means of exp
sions (36) and (37) along withTable 1, andby means of ex-
pression (36) along withTable 2, respectively.

The buckling moments computed from the linear stabi
(LB) analysis show a very conservative behavior compa
with those computed from the non-linear stability (NL
model, in fact, considering prebuckling deflections. Fo
example, for a beam lengthL = 6 m and lamination
{ 0/0/0/0}, the buckling moments are:

• Mcr = 13.53 MN m, according to theNon-Linear
Buckling (NLB) analysis.
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Fig. 7. Buckling loads versus length, lamination {0/90/90/0}.

Fig. 8. Buckling loads versus length, lamination {45/-45/-45/45}.

• Mcr = 11.42 MN m, according to theLinear Buckling
(LB) analysis.

We observe that the effect of the prebuckling deflectio
is important for all the sequences of lamination a
beam lengths. On the other hand, the shear deforma
effect is significant for beams with unidirectional fibe
and insignificant for the sequence of lamination {45/-45/-
45/45}. For this last lamination the curves with and witho
shear deformation coincide for both NLB and LB analys
Besides,Figs. 6and7 show that the buckling moments wit
and without shear deformation converge as the beam le
increases. The shear deformation may significantly red
the buckling load of short beams. For example, the bucklin
moments, for a beam lengthL = 6 m and lamination
{ 0/0/0/0}, are:

• Mcr = 13.53 MN m, according toNLB with shear
deformation.

• Mcr = 15.31 MN m, according toNLB without shear
deformation.

9.2. Simply supported I-beam subjected to distributed load

In this example a simply supported I-beam und
distributed load is considered for three load positio
as shown inFig. 9. The loadcan be applied to the to
n

h

flange (case a), at the shear center (case b), and to the b
flange (case c). Attention is focused on the importance o
the load height parameter effect on the buckling behavi
The geometrical properties and the analyzed material are
same as the previous example.

Figs. 10–12 show comparative results between the no
linear (NLB) and linear (LB) buckling analysis (considerin
shear effect) in terms of the critical loads, for a sequen
of lamination {0/0/0/0}, { 0/90/90/0} and {45/-45/-45/45},
respectively. The equivalent buckling moments versus be
lengths are shown for different positions of the applied lo
over the middle section.

We observe that the lateral buckling strength depends
the load height parameter, and it is higher when the loa
are on the bottom flange (case c). The load height param
effect on the buckling behavior is similar for the differe
sequences of lamination and beam lengths. As an exam
the equivalent buckling moments for a beam lengthL = 6 m
are shown inTable 3.

Table 3
Equivalent buckling moment,L = 6 m (Mcr × 106 N m)

Load height Buckling analysis {0/0/0/0} { 0/90/90/0} { 45/-45/-45/45}

Top NLB 8.96 5.19 1.70
LB 7.89 4.62 1.51

Shear center NLB 16.59 9.13 2.49
LB 12.93 7.37 2.09

Bottom NLB 30.71 16.06 3.66
LB 21.2 11.76 2.90

One can observe from this table, a noticeable differenc
between the linear and non-linear buckling model wh
the load is applied on the bottom flange of the I-beam
This discrepancy can reach a percentage of about 3
Therefore, the lateral buckling resistance is a function of
the initial deflection in the prebuckling state. On other ha
the lamination {0/0/0/0} has the higher critical load for the
three load positions. For this I-beam the shear deforma
effect continues being important and has a similar behavior
as in the previous example. For this reason, this effect is
discussed for this load condition.

9.3. Cantilever beam subjected to end force

The example considered is a cantilever I-beam subje
to end force for three loadpositions. The geometrica
properties and the analyzed material are the same as
previous example. As an example, the buckling load fo
lamination {0/0/0/0} and three lengths of beam are shown i
Table 4.

One can observe fromTable 4, the difference between
linear and non-linear buckling analysis is more noticeabl
for a length ofL = 4 m and when the loadis applied at
the shear center of the beam. This discrepancy can reach
percentage of about 36%.
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Fig. 9. Different load heights.
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Table 4
Buckling load for cantilever beams, {0/0/0/0}, L = 6 m (Pcr × 106 N)

Load height Buckling analysis L = 4 m L = 6 m L = 12 m

Top NLB 1.87 0.62 0.10
LB 1.75 0.60 0.10

Shear center NLB 9.38 2.75 0.39
LB 5.97 2.30 0.36

Bottom NLB 11.68 4.11 0.67
LB 10.09 4.06 0.65

Fig. 10. Buckling loads versus length, lamination {0/0/0/0}.

For verification purpose, an isotropic cantilever I-bea
subjected to a vertical end forceP is considered. Two
different positions of the applied load are examined: load
the top flange and load at the shear center. The geome
properties areh = 0.0724 m, b = 0.0315 m, t f =
0.0031 m, tw = 0.0022 m (Fig. 13). The material
properties are assumed to be:E = 65,120 MPa,G =
25,965 MPa. This example was investigated experiment
and theoretically by Anderson and Trahair [12] and also
studied by Pi and Trahair [11] and Lin and Hsiao [25]
using the finite element method. The present buckling loa
obtained by usingn = 4 in expression (40), are shown in
Table 5together with those given in [11,12,25]. It is seen
that the present solutions are in good agreement with th
obtained by the experimental results.
l

Fig. 11. Buckling loads versus length, lamination {0/90/90/0}.

Fig. 12. Buckling loads versus length, lamination {45/-45/-45/45}.

Fig. 13. Cantilever beam subjected to end force.
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Table 5
Comparison of buckling load for a cantilever I-beam,Pcr (N)

L (m) Load height Exp. [12] Theory [12] FEM [11] FEM [25] Present

1.65 Top 256.7 252.8 251.4 250.0 248.0
Shear center 323.5 330.2 338.5 331.4 323.4

1.27 Top 405.8 421.0 409.6 408.3 405.5
Shear center 597.2 619.4 630.9 614.3 591.8

9.4. Comparison of the present model against a moderate
rotation theory

The purpose of this example is to show the effect of t
degree of non-linearity adopted in the displacement fie
(4) on the lateral buckling loads. A simply supported
beam subjected to a transverse forceP at the middle of
the span is considered, as shown inFig. 4. Threedifferent
positions of the applied load are examined: load at the
flange, load at the shear center and load at the bott
flange. The geometrical properties areh = 0.05 m, b =
0.05 m, e = 0.003 m. The analyzed material is glass-epo
(S2) whose properties areE1 = 48.3 GPa,E2 = 19.8 GPa,
G12 = 8.96 GPa,G13 = 8.96 GPa,G23 = 6.19 GPa,
ν12 = 0.27, ν13 = 0.27, ν23 = 0.6.

In Table 6, the results by the present closed-form solutio
(36) and (37) are compared with those obtained by using
second-order displacement field by Fraternali and Feo [18].

Table 6
Critical values of the load multiplier(λ) for simply supported beams

Load height Buckling analysis Present model Fraternali and Feo [18]

Top LB 17.12 16.61
NLB 20.05 21.75

Shear center LB 25.58 25.59
NLB 32.48 44.34

Bottom LB 38.22 39.17
NLB 52.63 88.6

Fraternali et al. investigatedthe post-buckling behavior
of thin-walled composite beams by using a second-or
displacement field (seeAppendix A) obtained through a
second-order rotation matrix. The use of the second-or
rotation matrix in these studies may lead to the loss
some significant terms in the non-linear strains and in t
tangential matrix, thus someinaccurate approximations in
the coupling between displacements, rotations and their
derivates [11].

In the Fraternali and Feo [18] example, the results
were obtained by employing a mesh of 30 two-node fin
elements over the beam length. The following scaling fac
of the loadQz is used:

λ = P L2√
Ê I z Ĝ J

.

r

r

r

Quoted results refer to a value of thedimensionless ratio
α = Ĝ J L2/ÊCw = 8.

It is seen that the results by the second-order appr
imation overestimates the maximum load-carrying capac
and this effect is more noticeable when the load is applied
on the bottom flange.

10. Conclusions

In this paper a geometrically non-linear theory fo
thin-walled composite beams is presented. The the
is formulated in the context of large displacements a
rotations, through the adoption of a shear deforma
displacement field (accounting for bending and warping
shear) considering moderate bending rotations and la
twist. The theory accounts for bisymmetric cross-sectio
either open or closed.

The Ritz method was applied in order to obtain a
approximate tangential matrix that allows to determine t
critical loads considering prebuckling deflections.

From some numerical examples studied, it is found th
the agreement between the buckling loads of the present
study (considering prebuckling effect) and those fro
experimental studies given in the literature is very goo
In the case of simply supported ends a practical gen
formula was obtained for determining the critical load
of lateral buckling for bisymmetrical thin-walled beams.
This formula takes into account the effects of prebuckli
and shear deformation for beams subjected to concentrate
end moments, concentrated forces, or uniformly distributed
loads.

From the numerical studies, it has been established
the buckling loads obtained from the linear theory are ve
conservative in some cases.

On the other hand, the sheardeformation effect has
been investigated. For the analyzed cases, this effect
be significant for short beams, in particular when one
the material axes coincides with the beam axis. In
case of lateral loads, the prebuckling influence is high
dependent on the load height parameter. Moreover, sh
effect may be higher for other boundary conditions such a
clamped–clamped conditions [14,19]. These cases are to b
investigated ina future work.
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Appendix A

The following displacement field corresponding to the
one developed by Fraternali and Feo [18] but referred to our
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Cartesian co-ordinate system is given by (seeFig. 1):

ux = uo − v′ ȳ −w′ z̄ + φv′z − φw′y

+ω
[
φ′ − 1

2

(
w′′v′ −w′v′′)]

uy = v − φz + 1

2
(−φ2y − v′2 ȳ − v′w′ z̄)

uz = w + φy + 1

2
(−φ2z −w′2z̄ − v′w′ ȳ).

(A.1)

This last is based on the principle of semitangential rotat
defined by Argyris [26] to avoid the difficulty due to
the noncommutative nature of rotations. A remarkab
characteristic of this displacement field is the calculatio
of the warping function carried out on the basis of tw
assumptions:

εxn = 0; εxs|n=0 = 0. (A.2)

Finally, these last assumptions are not taken into accoun
the expression (4).

Appendix B

The constitutive law for a bisymmetric beam is defined
the following form:

{ fg} = [K ]{∆} (B.1)

{ fg} = [N My Mz B Qy Qz Tw Tsv B1]T (B.2)

{∆} = [εD1 εD2 εD3 εD4 εD5 εD6 εD7 εD8 εD9]T (B.3)

where{ fg} is the vector of generalized forces,{∆} is the
vector of the generalized strains and[K ] is a symmetric
matrix (9 × 9).

εD1 = u′
o + 1

2
(v′2 +w′2);

εD2 = −θ ′
y cosφ + θ ′

z sinφ;
εD3 = −θ ′

z cosφ − θ ′
y sinφ;

εD4 = θ ′ − 1

2
(θzθ

′′
y − θyθ

′′
z );

εD5 = (v′ − θz) cosφ + (w′ − θy) sinφ;
εD6 = (w′ − θy) cosφ − (v′ − θz) sinφ;
εD7 = φ′ − θ; (B.4)

εD8 = φ′ − 1

2
(θzθ

′
y − θyθ

′
z);

εD9 = 1

2
φ′2;

K =



Ê A 0 0 0 0 0 0 0 Ê I 0
0 Ê I y 0 0 0 0 0 0 0
0 0 Ê I z 0 0 0 0 0 0
0 0 0 ÊCw 0 0 0 0 0
0 0 0 0 ĜS y 0 0 0 0
0 0 0 0 0 ĜSz 0 0 0
0 0 0 0 0 0 ĜSw 0 0
0 0 0 0 0 0 0 Ĝ J 0

Ê I 0 0 0 0 0 0 0 0 Ê I R


(B.5)
n

The elements of the symmetric matrix[K ] are given by the
following contour integrals:

Ê A =
∫

A11ds;

Ê I y =
∫
(A11Z2 + D11Y ′2)ds;

Ê I z =
∫
(A11Y 2 + D11Z ′2)ds;

Ê Iw =
∫
(A11ω

2
p + D11l

2)ds;

ĜSy =
∫
(A55Z ′2 + A66Y ′2)ds;

ĜSz =
∫
(A55Y ′2 + A66Z ′2)ds;

Ĝ J =
∫
(A66ψ

2 + 4D66)ds;

Ê I R =
∫

[A11(Y
2 + Z2)2 + 4D11r

2]ds;

Ê I 0 =
∫

A11(Y
2 + Z2)ds.

(B.6)

whereY ′ = dY
ds ; Z ′ = dZ

ds .

Appendix C. Linearized lateral buckling of simply sup-
ported I-beams

The stability analysis of simply supported doubly sym
metric thin-walled composite beams subjected to conc
trated end moments, concentrated forces, or uniformly
distributed load, is analyzed. The linearized governing eq
tions may be obtained from Eq. (25) applying the usual
concepts of variational calculus and linearizing the result
expressions. This procedure leads to the following equati
[14]:

N ′ = 0 (C.1)

M ′
y − Qz = 0 (C.2)

−Q′
z = qz (C.3)

M ′
z − Qy − [Myφ]′ = 0 (C.4)

−Q′
y = 0 (C.5)

−B ′ − Tw = 0 (C.6)

−T ′
w − T ′

sv + Myθ
′
z = −qzz0φ. (C.7)

Eq. (C.1) corresponding to the equilibrium in the axia
direction is uncoupled from the rest and it is not of intere
here. Eqs. (C.2) and (C.3) correspond to the classica
bending of the beam before buckling. The lateral buckli
is governedby Eqs. (C.4)–(C.7). In this case, buckling is
assumed to be independent of the prebuckling deflecti
(classical analysis).

Eqs. (C.4)–(C.7) are coupled. However, in the case of
simply supported beam, Eq. (C.4) can be derivated once to



1196 S.P. Machado, V.H. Cortínez / Engineering Structures 27 (2005) 1185–1196

ed

ed

ns

ing
ry

es.
he
the
ing
tic

t

ew

-

fs

for

ure,
n;

of

s.

ite

n

ne

:

and

;40:

-
02;

and

ry

d

d
umér

t

on

tic,
nc.;

the
rent

am
al
86;

put
obtain the following expression:

M ′′
z − Q′

y − [Myφ]′′ = 0. (C.8)

With the consideration of (C.5), the last one may be written
as

[Mz − Myφ]′′ = 0. (C.9)

Integrating twice and taking into account the lineariz
constitutive equation for the bending momentMz (see
Appendix B) and the boundary conditions, one arrives to:

−Ê I zθ
′
z − φMy = 0. (C.10)

Substituting this last expression along with the lineariz
constitutive equations forTw, Tsv and B (seeAppendix B)
into (C.6) and (C.7), one arrives to:

−ÊCwθ
′′ − ĜSw(φ

′ − θ) = 0 (C.11)

−ĜSw(φ
′′ − θ ′)− Ĝ Jφ′′ − M2

y

Ê I z
φ = −qzezφ. (C.12)

Ritz’s method is used for computing analytical solutio
of these last equations. The twisting and warping
displacements are approximated by means of the follow
functions, which are compatible with the bounda
conditions of the beam:

φ = φ0 sin
(π

L
x
)

; θ = θ0 cos
(π

L
x
)

; (C.13)

whereφ0 andθ0 are the associated displacement amplitud
Using this method and after integration along t
beam length according to the adopted functions for
displacements, the buckling loads or equivalent buckl
moments are given by obtaining the roots of a quadra
equation.

Using this procedure, it ispossible to obtain a unified
simple formula for the equivalent moment for differen
loads. This formula may beexpressed as indicated in (36)
with the constants defined as inTable 2.
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