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Abstract

The effects of the in-plane prebuckling deformations as well as the effect of shear flexibility on the lateral buckling of bisymmetric
thin-walled composite beams has been investigated in this paper. The analysis is based on a geometrically non-linear theory based on large
displacements and rotations. The Ritz variational method is usediar tw discretize the governing equation and then the buckling loads
are obtained by requiring the singularity of the tangential stiffness matrix. The numerical results show that the classical predictions of lateral
buckling are inaccurate, and the considered effects should be taken into account for obtaining reliable solutions. Besides, the effects of span
length and height of the load point have also been investigated for different laminate stacking sequence.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction the accurate prediction of the stability limit state is
of fundamental importance in the design of thin-walled

Structural members made of composites are increasinglystructues. Several studies of lateral buckling of thin-walled
used in aeronautical, mechaal and civil engineering beams have been developed by using a linearized approach
applications where high strength and stiffness, and low based on Vlasov’s theory. In this way, buckling loads
weight are of primary importance. Many structural members were determined for thin-walled beams made of metallic
made of composites have the form of thin-walled beams. [1-6 and conposite méerials (for example: 7,8]). The
These kinds of members are the most common load- limitation of the linear buckling analysis of beani§ [s the
carrying systems in engineering applications. When loaded omission of any consideration of the effect of prebuckling
in its plane of symmetry, the beam initially deflects. deflections. This omission may lead to inaccurate results
However, at a certain level of the applied load, the when the prebuckling deflections of the beam are not
beam may buckle laterally, vile its cross-section rotates negligble.
simultaneously about the beam’s axis. This phenomenon On the otherhand, a few closed-form solutions have
is called lateral buckling, and the value of the load at been obtained for critical loads considering the prebuckling
which buckling occurs is the critical load. Therefore, deflections of the bean®f13.

The shear deformation effect has not been considered
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fax: +54 0291 4555311. high ratio between the equivalent elasticity modulus and
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In this paper a geometrically non-linear beam theory Z )
is presented that takes into account several non-classical z

effects, such as shear flexibility. On the other hand, it is valid
for symmetric balanced laminates and especially orthotropic

laminates 1516]. The primary purpose of this paper is
to investigate numerically the effects of the prebuckling
displacements as well as thifext of shear deformation on
the lateral buckling of bisymmetric thin-walled composite
beams subjected to concenedend moments, concentrated
forces, or uniformly distributed load. Simply supported and
cantilever beams are considered.

A semnd purpose is to investigate the effects of span
length and the load height on the lateral buckling for
different laminate stacking sequences.

In order to perform the anadys, the Ritz variational
method [L7] is used forreducing the governing equation in

contour
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Fig. 1. Co-ordinate system of the cross-section.

(1) The cross-section contour is rigid in its own plane.

terms of generalized coordinates. From the reduced system,2) The warping disibution is assumed to be given by the

the huckling loads are determined from the singularity
condition of the tangential stiffness matrix evaluated in the

fundamental state. In this way the prebuckling deformations

are taken into account avoiding the employment of a
full non-linear analysis. Moreover, for the case of simply
supported ends, a simple analytical formula for the critical

loads is obtaied. The results thus determined are compared

with values obtained by mearof thelinearized theory in

order to evaluate the importance of the effects taken into

account.

2. Kinematics

A straight thn-walled composite beam with an arbitrary
cross-section is consideredrig. 1). The points of the

Saint-Venantunction for isotropic beams.

(3) Flexural rotations (about theandz axes) are assumed
to be moderate, while the twigt of the doss-section
can be arbitrarily large.

(4) Shell force and moment resultant corresponding to
the circumferential stressss and the force resultant
corresponding toms are neglected.

(5) The radius of curvature at any point of the shell is
neglected.

(6) Twisting linear curvature of the shell is expressed
according to the classical plate theory.

(7) The laminate stacking sequence is assumed to be
symmetric and balnced, or especially orthotropit,

16].

According to these hypothesthe displacement field is

structual member are referred to a Cartesian co-ordinate agssumed to be in the following form

system (X, Y, z), where the x-axis is pasllel to the
longitudinal axis of the beam whilgandz are the principal
axes of the cross-section. The axgsand z are parallel
to the principal ong but having their origin at the shear
center (defined according to Vlasov’s theory of isotropic

Ux = Uo — Y (6, C0S¢ + Oy sing) — z(By cosp — 6 sing)
(4)

beams). The co-ordinates corresponding to points lying onUy = v —Zsing — y(1— COS¢)——(9 Y +6;6y2)

the middle lire are daoted asY and Z (or Y and Z). In
addition, a circumferential co-ordinageand a normal co-
ordinaten are introduced on the middle contour of the cross-
section.
— dz
=Y() —nh—,
(s i

y(s, n Z(s,n) = Z(S) ndY
Y(:) (v - ( +E

(1)
dz dy
=Y() —nh—, z(s,n) = Z(s) + n—. 2
(s as (s,n) (s + s (2
On the otler hand,yp and zy are the centroidal co-
ordinates measured with respect to the shear center.

y(s. n)

Z(s,n) = z(s,n) — 2o.

3)

The present structural model is based on the following
assumptions14]:

U, = w+ ysing — z(1 — cos¢)—§(9§2 + 6,6yY).

This expression is a generalization of others previously
proposed in the literature.

The displacement field proposed by Fraternali and Feo
[18] is remvered (seéAppendix A by considemg 6, =
v, 0y = w’ andd = ¢’ (neglecting flexural and torsional
shear flexibility), approximating cas and sinp by (1 —
$2/2) and ¢ respectively, and conserving non-linear terms
up to second order. Moreover, the displacement field of
the dasstcal Vlasov theory is obtained when second-order
effects are ignored.

On the other hand, a sitified analog of Egs. 4),
disregarding the underlined terms and shear flexibility, was
used by Mohri L3].
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As a final @mparison, taking cap = 1 and sinp =
¢ and disregarding the non-kar terms, the displacement
field (4) coincides with the one formulated by Cortinez and
Piovan [L4] for linear dynamics of shear deformable thin-
walled beams.

In the above expressions, 6y and 6, are measures
of the rotations about the shear center axisand z
axes, respectivelyj represents the warping variable of the

1187
L1 _8U+ V900U aVaV  9W oW
721 8s | ax | ax s | ax 9s | ax as
(13)
1 '3U+ aW+ aUaU+ aVaV+ IW W
=5l n T ax T ax an ax an - ax an |
(14)

cross-section. Furthermore the superscript ‘prime’ denotesgpstituting expressionsd)( into (9)—(11) and tren into

derivaion with respect to the variable. The warping
function w of the thin-walled cross-section may be defined
as:

(S, N) = wp(S) + ws(S, N)

®)

wherewp andws are the contour warping function and the
thickness warping furion, respectively. They are defined in
the form [L9:

1 S S
wp(S) = ¢ [/ (/ [r(s) — 1//(3)]d3> d3i|
S|Jo S

S
- f [ (S) — Y(s)lds ©
So
ws(S, N) = —nl(s)
where
dy dz
r(s Z_Z(S)E +Y(S)E (7)
dy dz
I(s) = Y(S)E + Z(S)E (8)

r(s) represents the perpendicular distance from the shear
center (SC) to the tangent at any point of the mid-surface Vﬁg)

contour, and(s) represents the perperdiar distance from
the shear center (SC) to the nwal at any point of the mid-
surface contour, as shown kig. 1

In the expressiond) ¥ is the shear strain at the middle
line, obtained by means of the iB&Venant tleory of pure

torsion for isotropic beams, and normalized with respect to

d¢ /dx [2Q]. For the case of open sectiows= 0.

3. Thedtrain field

The displacements with respect to the curvilinear system
(X, s, n) are obtained by means of the following expressions:

U = ux(x, s, n) )
— dy dz

V= Uy(X, 8.m) o+ Uz(X, 8, M) (10)
— dz dy

W = —uy(X,s, n)E + uz(X, s, n)g. (11)

The three non-zero components, exs, exn Of the Green’s
strain tensoare given by:

_ _\2 _\2 _\2
_oU 1] a0\ (aV\" (oW w2
=% T2 | ax ax aX

(12—-(14), employing the relationslj—(3) and 6)—(8), after
simplifying some higher order terms, the components of the
strain tensor & expressed in the following form:

= o + el

Exx

Yxs = 28xs = 7/}2) + nK%) (15)
Yxn = 26xn = )’)22)

where

1 1
eQ =u) + E(v’z +w?) + wp [9/ - E(azevg,’ — eyeg’)}
+ Z(—6y cosp + 6, sing) + Y (—6; cosp
! o 1 12 N2 2 / / H
— ey sing) + §¢ Y+ Z°) 4 (200, — yoey) sing
+ ¢’ (2007 — Yofy) COS¢ (16)

d_Z
ds

1
+6;sing) —1 [9/ — 5(929)’,/ — eye;@} —r¢2 (17)

/ / H dY /
(—6;cosp — 6y sing) + e (—06y cose

1
gt

dY / 1 / /
o | (V' — 62 cosp — 2000 — 6,6

+ (w' —6y) sincb} + (=¥ —0)
dz
s

. 1
— (V' =6, Sln¢i| + ¥ |:¢/ - 5(92% - eyeé)] (18)

1

K =-2 [qs’ - %(9299 - eyeg)} (19)
© _ dy , 1 , ,
Yen = e |:(w — 6y) cosp + yO§(929y — 6y0,)
— (V' —6y) sin¢] _d4z [(v/ — 6,) cosp
ds
_ ZO%(GZG; — 6y0)) + (W' — by) sinq)}
+1(¢" —0). (20)

4. Variational formulation

Taking into account the adopted assumptions, the
principle of virtual work for a composite shell may be
expressed in the form[1,14):
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/ (Nyxd6Q + My + Nysd,©
+ Mysdi i) + Nyndy, D) ds dx

- / (qxaux + qy(sl]y + qzaﬂz) dS dX
5 5 - (21)
—/ (Pxdux + Pyduy + Pz8uz)|,_, dsdn
—/ (PxSux + PySuy + Pz8uz)|x=L dsdn

—// (fxdux + fyduy + f;8uz) dsdndx =0

where Nxx, Nys, Mxx, Mxs and Nyn are the shell stress
resultants defined according to the following expressions:

e/2 e/2
Nxx = / oxx dn; Mxx = / (oxxn) dn;
—e/2 —e/2

e/2 e/2
NXS = / Oxs dn, MXS = / (UXSn) dn; (22)
—e/2 —e/2

e/2
an = / Oxn dn.
—e/2

The beam is subjected to wall surface tractiggsdy and

gz specified per unit area of the undeformed middle surface

and acting along thes, y and z directions, respectively.
Similarly, px, py and p; are the end tractions per unit area of
the undeformed cross-section specifieckat 0 andx = L,

where L is the undeformed length of the beam. Besides

fx, fy and f, are the body forces per unit of volume. Finally,
denotingix, Gy andt; as displacements at the middle line.

5. Congtitutive equations

The constitutive equations of symmetrically balanced
laminates may bexpressed in the terms of shell stress

resultants in the following forml]:

Nyy At 0 0 0 0](el
Nxs 0 Aess O 0 0 V)E(s))
Neng=| 0 0 AZ 0 o0 [1n? (23)
Myxx 0 0 0 511 0 Kg()
Mxs 0 0 0 0 Dgl el
with
A? A2
Arp= A — 22, A66=A66—A—26,
22
(H)\2
(H) H  (Ags))
Rss = Asy — — (24)
44
2 DZ
D11 = Dyg — =22, Des = Dog — —=2
22 D22

where Ajj, Dij and Ai(jH) are plate stiffness coefficients

defined according to the lamination theory presented by

Barbero [L5. The coefficient D1g has been neglected
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because of its low value for th@nsidered laminate stacking
seuence 14].

6. Principle of virtual work for thin-walled beams

Substituting expression&§)—(20) into (21) and irtegrat-
ing with respect tcs, one obtains the one-dimensional ex-

pression for the virtual work equation given by:
Lk +Lp=0 (25)

where, Ly andLp represent the virtual work contributions
due to the internal and external forces, respectively. Their
expressions are given below.

L
Lk = / {8u/ON + 8v'(Qy cosp — Qzsing + v'N)
0
+ 8w’ (Qzcos¢ + Qysing + w'N)
. 1
+ 86, [— Qy cosp + Qzsing + E(szo - QyZO)%

1 1
- ETSUG)// - EBG)/; + N¢'z0 COS¢]

. 1
+ 86, [— M; cos¢ + (My + Nzp) sing + E(Qyzo
1 1
— QzYo)oy + ETsvey + 66, > Boy
[ . 1
+ 380y |—Qzcosp — Qysing + E(QyZO — QzY0)0,

1 1
+ ETSU% + > BO, — N¢'yo COS¢]

, 1
+ 86y | =My cosp — (Mz + Nyo) sing + =(QzYo

1 1
— Qy20)8; — ETSv92j| - 59)/,/5 Bo,

+ 8¢[My(9§, sing + 0, cosg) + Mz(6;, sing
— 9;, cosp) + N(zo0), — y09§) coSs¢g

— N¢' (2087 — Yoby) Sing

+ Qy((6z — V) sing — (By — w') cosep)

+ Qz((6y — w') sing + (62 — v') cosp)]
+8¢'[Ty + Tsy + B1gp/

+ N(6220 — OyYo) cOSP] + 86'B — 89Tw} dx. (26)
In the present study, the lateral buckling of beams initially
loaded in bending about the principal axis is considered.

Thus, the external work , is defined by the following
relationship:

L
Lp= / (—Gudw + Sdesandx + 6, My =5 (27)
0

where
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qZ=/q2d3+// f,ds dn, Vyzf PxZdsdn

(28, 29)

and e, denotes the eccentricity in thediredion of the
applied loads measured from the shear center. In wha
follows this last one will be called load height parameter.

1189

Ritz’s method is used to discretize the variational
Eq. 25, and then the buckling loads are obtained by

requiring the singularity of the tangent stiffness matrix
evaluated at the fundamental state. This procedure leads to a
thon-linear algebraic problem for the critical loads.

8.1. Smply supported beams

7. Beam forces

In the above expressions, the following 1-D beam forces,
in terms of the shell forces, have been defined

= Y
N == / Nxxds, MY = / (Nxxz + Mxxi—s> dS,

e[ (17 E)

— dz
NXXY - IleX
ds

dz dy
Qz = / <NXSE + anE) ds;
dy dz
Qy = / <Nxsg - an@) ds;

T = [ (Nustr = 9+ Nuoh
B = /(Nxxwp — Myxl) ds;
Tsy = /(Nxsl/f — 2Mys) ds;

By = / [Nyx (Y2 4 Z2) — 2Myxr ] ds (30)
where the integration is caed out over the entire length of
the mid-line contourN corresponds to the axial forc&y

and Q; to shear forcesMy and M, to bending moments
about they- and z-axis, respectivelyB to the bimoment,

T, to the flexural-@rsional momenfTs, to the Saint-Venant
torsional noment andB; to a higherder stress resultant
which contributs to the toque.

The relations among the geaéized beam forces and the
generalized strains characterizing the behavior of the beam
are obtained by substituting the expressiab®-{(20) into
(23), and the rsults into B0). This constitutive law can be
expressed in terms of a beam stiffness maky as defined
in Appendix B

8. Lateral buckling considering prebuckling deforma-
tion

The stability analysis of bisymmetric thin-walled
composite beams is analyzed by taking into account the
initial deflection in the prebuding state (fundamental state).
The displacement componentsthe fundamental state are
in the form{u, v, -, w, 6y, ¢,6}' = {0,0,0, w, 6y, 0, O},
that is to say, the beam deforms in the loading plane. It

is reasonable to assume that the fundamental state may

be given with sufficient approximation by means of the
linearized theory14].

¢ = ¢o sin(%x) :

where vo, 07,, o and 6o are the associated displacement
amplitudes. These approximated displacements correspond
to the exact solution of the linearized flexural—torsional

The prebuckling displacements are obtained from the
linearized version of Eq.25). In fact, by regleding all

the non-linear terms in45), and applying the variational
calculus, the differential equations of equilibrium are
obtained which are easily solved in a closed form in order
to determine the displacements in the loading plane.

For the case of simply supported beams subjected to
uniform bending, the prebuckling displacements are given
by the following expressions

Mo Mo
w=——(Lx —x?); Oy = —— (L — 2x). (31)
2E1, 2E1,

The variational Eq. 45) is discetized by means of the
following functions:

v =10 sin(%x) . 0=0y C‘”(%X) ; (32)

)

b g
6 =06g cos(—x)
L

bucHKing problem [L4].
To deternine the lateral buckling considering prebuckling

deformation, expression81) and @32) are substituted into

(25) and therthe tangential stiffnesmatrix isobtained p2].

This procedure leads to the following expression for the
tangential matrix evaluated in the fundamental state.

Kt =
 GSyn? GSym
L2 L
€Syn —~ 2
— GSy+El, —
El, GJ
Ely, 4EI,/L
0 EéwnzMO
4ET L2
0 0 h
mol1_ EZ B (i] b Ecinzlvlo
Ely, 4El,/L 4E1L2
Mo? El — 7P G¢
= (1-=2)+@I+G505 ST (33)
y Ely L L
é\swﬂ 6 ’E 7'[2
- L SU"’E wﬁ_
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Fig. 2. Simply supported beam subjected to uniform moment.

» N

Fig. 3. Simply supported beam subjected to distributed load.

whereEl y is the flexural stiffnessGS, andGS, are shear
stiffnesses of a compositeeam. The definitions of these
stiffnesses are given in thigppendix B

The buckling state is given by the condition of singularity
of this matrix [22]:

detKt) = 0. (34)

Hencepne obtains a quadratic equation for the externalload  gimpiy supported beam

for the uniform bending caséig. 2), the soldion of which
allows to obtain the critical values.

Folowing the same procederandonly changing the
expression 81) for different loads conditions (distributed
load and concendted load, se€igs. 3and4), it is possble
to obtain a unified simple formula for the equivalent moment
defined as:

Myo for uniform bending
q.L2/8  for auniformly distributed load

Mg = per unit lengthy; (35)
PL/4 for a mncentrated forc® at the

middle of the span

The explained technique leads to the following unified

expression of the critical moment for the three loading cases

analyzed:

+ (Czeza)z} (36)

Eéwé\swnz
Ely(GSyL2+ ECyn2)
GSy

. _1
(0.71 (E\—Syo.zgﬂ } i
GS; GS;

whereCy, Co, 8 andé are approximate constants presented
in Table 1

Expression 86) also gives the corresponding equiv-
alent moments according tché linearized theory (see
Appendix §, which does not account for the prebuckling

ET 2
Y el {1
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1 z

L

Fig. 4. Simply supported beam subjected to a concentrated load.

Table 1

Paraméers in Egs. 86) and @7)

Simply supported beam Ci C B 8
(a) End manents 1 0 05 0

(b) Uniformly distributed load M¢r = qZL2/8) 1.141 0.459 0.033 0.214
(c) Corcentrated forcéM¢r = PL/4) 1.423 0.554 0.076 0.083

deflection, if one takes = 1 andC; andC; as indicated in
Table 2 These onstants are exact from the point of view of
the linear theory, for unifornbending and approximate for
the other loading cases.

Table 2
Parametes in Eq. 86) according to the linearized theory
C1 Co o
(a) End manens 1 0 1
(b) Uniformly distributed loadM¢r = qzL2/8) 1.132 0.459 1
(c) Corcentrated forcéMcr = PL/4) 1.366 0554 1

Therefore, the presence of thecoefficient reveals the
dependence of the prebuckling effect with respect to the
relation between the bending stiffnesdet; andEl y in the
case of uniform bending. For the other two load conditions,
«a also depends on the bending and shear stiffnggsg).

As a particular case, neglecting shear deformation, the
expression 86) takes the following form for uniform
bending:

(38)

This last expression coincides with the closed-form solution
obtained by Pi and TrahaifL]] for elastic lateral buckling,

of beams made with isotrapi matrials, considering
prebuckling deflections.

8.2. Cantilever beams

In this casethe variational Eq. 45) is discetized by
using beam characteristic orthogonal polynomials for the
displacements, 6;, ¢ and 6, while the displacements
and 6y (load plane) are adopted as the exact solution of
the linearized problem. Fothis case, ta only type of
loading considered is a condeated force applied at the
free end of the beam. The corresponding expressions for the
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prebuckling displacements are given by '_A___A{_éﬂ(qujét_/éf} ______ 1
w:—AiX+Ai<X—3—LX—2); i
GS, Ely \ 6 2 y )
ey:%@;_u). (39 A
The set of orthogonal polynomials which satisfy the S = =
geometrical boundary conditioase generated by using the ‘ b ‘

Gram-Schmidt process. . .
Fig. 5. Analyzed cross-section shape.

n
U=> cé&X) (40) 35
=1 \ —— NLB with shear deformation
whereU represent each of the displacements,, ¢ and®, e T W — LB with shear deformation
andc; are arbitrary coefficients which are to be determined. 25\ \ = == LB withoshsheandelommation
- — LB without shear deformation

The polynomialg; (x) are generated as follow24:

&E2(X) = (X — B2)é1(X), ..., &k (X) = (X — Br)ék-1(X)
— Cék—2(x), 15

L g2
X x)dx
WhereBk — l/bl_ik%l()’ 10
Jo &1 00dx

_ Jo 10082000

Mg (MNm)
S

Cik foL Skz_zdx (41) Length (m)

The first member of the orthogonal polynomigl(x) is Fig. 6. Buckling loads versus length, laminatic®/@/0/0}.

chosen as the simplest polynomial (of the least order) that

sdisfies the boundary conditions. increases erroneously the rigidity instead of flexibilizing the
In order to obtain sufficient accurate results, four terms beam behavior.

(n = 4) are taken for each one of the flexural-torsional

displacements. 9.1. Smply supported |-beam subjected to uniformmoments
Due to the size of the resulting tangential matrix, it is

difficult to obtain a Simple anﬁtical formula for the citical The examp|e considered is a S|mp|y Supported I-beam

loads. Therefore these areatuatd numerica”y from the wbjected to uniform bending momeio app“ed about its

tangentiamatrix. major axis as shown iRig. 2 Thegeometrical properties are

h=06mb=06me=0.03m(ig. 5. The analyzed
material is graphite-epoxy (AS4/3501) whose properties are
E1 = 144 GPa,E; = 9.65 GPa,Gi2 = 4.14 GPa,
Gi13 = 4.14 GPa,Goz = 345 GPa,vyi2 = 03,113 =

0.3, 123 =0.5.

The buckling loads versus beam lengths are shown
in Figs. 68, for a seuence of lamination &0/0/0},
{0/90/90/0} and {45/-45/-45/45}, respectively. The analyt-
ical buckling moments conséding and neglecting the pre-
bucKing deflections were calculated by means of expres-
sions 36) and 37) along with Table 1 andby means of ex-
pression 86) along withTable 2 respectively.

The buckling moments computed from the linear stability
(LB) analysis show a very conservative behavior compared
with those computed from the non-linear stability (NLB)
model, in fact, coniglering prebuckling deflections. For
exampe, for a beam length. = 6 m and amination
{0/0/0/0}, the buckling moments are:

9. Applicationsand numerical results

The purpose of this section is to apply the present
theoretical model in order tatudy the lateral buckling
behavior of thin-walled composite beams. The buckling
loads obtained with and without prebuckling deformation
are compared, for different load conditions.

In the tables and figures, (LB) denotes values determined
by the linear theory (without considering prebuckling
deformations) and (NLB) denotes values obtained by
means of the present model (accounting for prebuckling
deflections).

On the other hand, #hinfluence of shear deformation
is analyzed for different lainate stacking sequence. In
the following numerical results the shear effect on the
thickness&ﬂ) has been neglected because its consideration
conduces to inaccurate results for thin-walled sections, as
explained by Piovan and Cortine23]. They showed that e Mg = 1353 MN m, according to theéNon-Linear
the inclusion of the in-thikness shear deformation effect Buckling (NLB) analysis.
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175k \ flange (case a), at the shear center (case b), and to the bottom
—HLB-with slicasdetmmiation flange (case c). Attention iss€used on the importance of
sP\N LB with shear deformation the load haght parameter effect on the buckling behavior.
— — NLB without shear deformation . . .
_ 125 AN - — LB without shear deformation The geometrical properties and the analyzed material are the
5 same as the pv@ous example.
g 1 Figs. 16-12 show comparative results between the non-
5o linear (NLB) and linear (LB) buckling analysis (considering
= shear effect) in terms of the critical loads, for a sequence
5 of lamination {0/0/0/0}, { 0/90/90/0} and {45/-45/-45/45},
- respectively. The equivalent buckling moments versus beam
) lengths are shown for different positions of the applied load
Length (m) over the niddle section.
We observe that the lateral buckling strength depends on
Fig. 7. Buckling loads versus length, laminatic®/40/90/0}. the load heght parameter, and it is higher when the loads
are on the bottom flange (case c). The load height parameter
4 effect on the buckling behavior is similar for the different
—— NLB with shear deformation saquences of lamination and beam lengths. As an example,
g5L8 X% s LB with shear deformation . .
N R o stat il e the equivalent buckling moments for a beam lerigte 6 m
g 3 \ - — LB without shear deformation are shown infable 3
E 2 Table 3
25 2 Equivalent buckling moment, = 6 m (Mg x 108 N m)
15 Load heght Buckling analysis @0/0/0} { 0/90/90/0} { 45/-45/-45/45}
] Top NLB 8.96 5.19 1.70
LB 7.89 4.62 1.51
4 Shear center NLB 16.59 9.13 2.49
Lengthi() LB 1293 737 2.09
Fig. 8. Buckling loads versus length, laminatio#b{-45/-45/45}. Bottom NLB 30.71 16.06 3.66
LB 21.2 11.76 2.90

e Mg = 1142 MN m, according to th&inear Buckling

(LB) analysis. One can observe from this ta&b a noticeable difference

We observe that the effect of the prebuckling deflections between the linear and non-linear buckling model when
is important for all the sequences of lamination and the load is applie on thebottom flange of the I-beam.
beam lengths. On the other hand, the shear deformationThis discrepancy can reach a percentage of about 30%.
effect is significant for beams with unidirectional fibers Therefore, the lateral bucklinresisance is a dinction of
and insignificant for the sequence of laminatictb445/- the initial deflection in the prebuckling state. On other hand,
45/45}. For this last lamination the curves with and without the lamination 0/0/0/0} has the figher critical load for the
shear deformation coincide for both NLB and LB analysis. three load positions. For this I-beam the shear deformation
BesidesFigs. 6and7 show that the buckling moments with ~ effect continues being importaand has a siitar behavior
and without shear deformation converge as the beam lengthas in the previous example. For this reason, this effect is not
increases. The shear deformation may significantly reducediscussed for this load condition.
the buckling load bshort beams. For example, the buckling
moments, for a beam length = 6 m and amination  9.3. Cantilever beam subjected to end force

{0/0/0/C}, are:
The example considered is a cantilever I-beam subjected

e Mg = 1353 MN m, according toNLB with shear to end force for three loagositions. The geometrical
deformation. properties and the analyzed material are the same as the
e Mg = 1531 MN m, according td\NLB without shear previous example. As an example, the buckling load for a
deformation. lamination {0/0/0/0} and three lagths of beam are shown in
Table 4
9.2. Smply supported I-beam subjected to distributed load One can observe frofable 4 the difference between

linear and non-linear bucklingnalysis is more noticeable
In this example a simply supported I-beam under for a length ofL = 4 m and whae the loadis applied at
distributed load is considered for three load positions, the shear center of the beamhi3 discrepancy can reach a
as shown inFig. 9. The loadcan be applied to the top percentage of about 36%.
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Fig. 9. Different load heights.
Table 4 30
Buckling load for cantilever beamsQf0/0/0}, L = 6 m (Pgr x 106 N) — NLB- Bottom flange loading
2510\ ---- LB- Bottom flange loading
Load heght  Buckling analysis L=4m L=6m L=12m S —+~NLB- Shear centre loading
\ -4- LB- Shear centre loading
Top NLB 1.87 0.62 0.10 — 20Fa N fEéB%TO% ﬂangle lod%ding
LB 175 0.60 0.10 k2 - SSPESCCroRee
Shear center  NLB 9.38 2.75 0.39 E; 15
LB 5.97 2.30 0.36 2"
Bottom NLB 11.68 4.11 0.67 10
LB 10.09 4.06 0.65
50
60 4 6 8 10 12
— NLB- Bottom flange loading Length (m)
---- LB- Bottom flange loading . . L
50 -+ NLB- Shear centre loading Fig. 11. Buckling loads versus length, laminatidi90/90/0}.
N -+- LB- Shear centre loading
= N - NLB- Top flange loading
E AN -=- LB- Top flange loading
g
5
p= 7
— NLB- Bottom flange loading
6 ---- LB- Bottom flange loading
AN —— NLB- Shear centre loading
: b -4- LB- Shear centre loading
AN ——NLB- Top flange loading
\\ -=- LB- Top flange loading

Length (m)

My (MNm)

Fig. 10. Buckling loads versus length, laminatid®/0/0}.

For verification purpose, an isotropic cantilever I-beam
subjected to a vertical end forc® is considered. Two
different positions of the applied load are examined: load at  Fig. 12. Buckling loads versus length, laminatiotbf-45/-45/45}.
the top flange and load at the shear center. The geometrical
properties areh = 0.0724 m,b = 0.0315 m,ts =
0.0031 m,t, = 0.0022 m Fig.13). The material
properties are assumed to bEé: = 65120 MPaG =
25,965 MPa. This example was investigated experimentally ZJ

Length (m)

and theoretically by Anderson and TrahaiZ] and also
studied by Pi and Trahairlfl] and Lin aad Hsiao R5

using the finite element method. The present buckling loads, § ot
obtained by usingn = 4 in expression @0), are shown in < >
Table 5together with those given inl[,12,25). It is seen

that the present solutions are in good agreement with those
obtained by the experimental results.

<« g
A
e
=

Fig. 13. Cantilever beam subjected to end force.
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Table 5
Comparison of buckling load for a cantilever I-bealRg; (N)

L (m) Load height Exp.12] Theory [12] FEM [11] FEM [25] Present

1.65 Top 256.7 252.8 251.4 250.0 248.0
Shear center 323.5 330.2 338.5 331.4 3234
1.27 Top 405.8 421.0 409.6 408.3 4055
Shear center 597.2 619.4 630.9 614.3 591.8

9.4. Comparison of the present model against a moderate
rotation theory

The purpose of this example is to show the effect of the
degree of non-linearity adopted in the displacement field
(4) on the lateral buckling loads. A simply supported I-
beam subjected to a transverse fofeeat the middle of
the span is onsidered, as shown iRig. 4 Threedifferent
positions of the applied load are examined: load at the top

SP. Machado, V.H. Cortinez / Engineering Sructures 27 (2005) 1185-1196

Quoted results refer to a vawf thedimensionless ratio
o« =GJL?/EC, = 8.

It is seen that the results by the second-order approx-
imation overestimates the maximum load-carrying capacity,
and this effect is more noticekbwhen the load is applied
on the bottom flange.

10. Conclusions

In this paper a geometrically non-linear theory for
thin-walled composite beams is presented. The theory
is formulated in the context of large displacements and
rotations, through the adoption of a shear deformable
displacement field (accountinfor bending and warping
shear) considering moderate bending rotations and large
twist. The theory accounts for bisymmetric cross-sections
either open or closed.

The Ritz method was applied in order to obtain an

flange, load at the shear center and load at the bottomgpproximate tangential matrix that allows to determine the

flange. The geometrical properties dre= 0.05 mb =
0.05 m e = 0.003 m. The analyzed material is glass-epoxy
(S2) whose properties aie = 483 GPa,E; = 19.8 GPa,
G12 = 896 GPa,Giz = 8.96 GPa,Gyz = 6.19 GPa,
v12 = 0.27,v13 = 0.27, vp3 = 0.6.

In Table 6 the resits by the present closed-form solution
(36) and @B7) are compred with those obtained by using a
second-order displacement field by Fraternali and Reh [

Table 6
Critical values of the load multipliefr) for simply supported beams

Load heght Buckling analysis Present model Fraternali and A&p [

Top LB 17.12 16.61
NLB 20.05 21.75

Shear center LB 25.58 25.59
NLB 32.48 44.34

Bottom LB 38.22 39.17
NLB 52.63 88.6

Fraternali et al. investigatetthe post-buckling behavior
of thin-walled composite beams by using a second-order
displacement field (se@ppendix A obtained through a
second-order rotation matrix. The use of the second-order
rotaion matrix in these studies may lead to the loss of
same significant terms in the non-linear strains and in the
tangential matrix, thus someaccurate approximations in
the coupling between displacemts, rotations and their
derivates 11].

In the Fraternali and Feolf] example, he results
were obtained by employing a mesh of 30 two-node finite
elements over the beam length. The following scaling factor
of the loadQ; is used:

PL2

JEI,GI

A=

critical loads consideringrpbuckling deflections.

From some numerical examples studied, it is found that
the agreement between the klicg loads of the present
study (considering prebuckling effect) and those from
experimental studies given in the literature is very good.
In the case of simply supported ends a practical general
formula was obtained for determining the critical loads
of lateral buckling for bisgnmetrical thin-walled beams.
This formula takes into account the effects of prebuckling
and shear deformation foeams subjected to concentrated
end moments, concentrateddes, or uniformly distributed
loads.

From the numerical studies, it has been established that
the buckling bads obtained from the linear theory are very
conservative in some cases.

On the other hand, the shedeformation effect has
been investigated. For the analyzed cases, this effect may
be significant for short beams, in particular when one of
the material axes coincides with the beam axis. In the
case of lateral loads, the prebuckling influence is highly
dependent on the load height parameter. Moreover, shear
effect may be higher for ber boundary conditions such as
clamped—clamped condition$4,19]. These cases are to be
investigated ira future work.
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Appendix A

The following displacemenfield corresponding to the
one developed by Fraternali and Fé&@][but referred to our
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Cartesian o-ordinate system is given by (seg. 1): The elements of the symmetric matfik | are given by the

_ - followin ntour integrals:
Ug = Up — V'Y — w'Z+ ¢pv'z — 'y ollowing contour integrals

+ow |:¢/ _ % (w//v/ _ w/v//)i| ﬁ = /Knds;

1 (A.1) el _ N 2. N 12\ Hee.
uy =y — ¢Z+ E(_¢2y _ U/2y _ U/w/z) EI y = (A]_]_Z + DllY )dS,

1 5 _ | &2 72 e
Up= w+ py + E(_¢22_ w7 — v’w/)_/). El, = /(AllY + D11Z%)ds;
This last is based on the principle of semitangential rotation ET,, = /(Kllw% + D11 ?)ds;
defined by Argyris 26] to avoid the difficulty due to
the noncommutative nature of rotations. A remarkable é\Syz / (BssZ? + AscY'2)ds: (B.6)
characteristic of this disptement field is the calculation
of the warping function carried out on the basis of two Gs, = /(K55Y’2+K662’2)ds;

assumptions:
exn = 0; éxsln=0 = 0. (A.2) Gl= /(KGGI//Z + 4Dge)ds;

Finally, these last assumptions are not taken into account in__ — 2 9o = o
the expression 4). Elr= /[An(Y + Z%)” + 4D11r “]ds;

ETO = /Kll(Yz + ZZ)dS.

Appendix B
whereY’ = 3£, 2/ = 9.
The constitutive law for a bisymmetric beam is defined in
the following form:
{fg} = [KI{A} (B.1) Appendix C. Linearized lateral buckling of simply sup-
(fg) = [N My Mz B Qy Q; Ty Tey Bal" (B2  Ported!-beams
_ T
{4} = [ep1 D2 £D3 £04 £D5 £D6 £D7 £D8 €D (8.3) The stability analysis of simply supported doubly sym-

where{fg} is the vector of generalized forcels)} is the metiic thin-walled composite beams subjected to concen-
vector of the generalized strains afid] is a symmetric trated end moments, concestied forces, or uniformly

matiix (9 x 9). distributed load, is analyzed. The linearized governing equa-
1 tions may be obtained from Eq2%) applying the usual
ep1= Uy + E(v’2 +w'?); concepts of variational calculus and linearizing the resultant
p ;s expressions. This procedure leads to the following equations
ED2 = —9y Cos¢ + 0, sing; (14
£p3 = —0,C0Sp — 6., Sing;
D3 z 1S¢ y ¢ N =0 (Cl)
eps = (v — 67) COSp + (w' — 6y) Sing; Q=0 (C.3)
ep6 = (W' — By) COSp — (v — 6;) sing; M; — Qy — [My¢]' =0 (C4)
ep7=¢' —0; (B.4) -Qy=0 (C.5)
1 -B-T,=0 C.6
epg=¢' — 5(929)// — 6y0)); , L / o
1 _Tw - TSU + Myez = —qzzo¢. (C?)
_ 2.
€D9 = §¢ ' Eq. (C.1) corresponding to the equilibrium in the axial
“EA O 0 0 0 0 0 0 Eig7 direction is uncoupled from the rest and it is not of interest
0 Ely 0 0 0 0 o0 0 O here. Egs. €.2 and (.3 correspond to the classical
0 0 El; 0 6 o o 0 O bending of the beam before buckling. The lateral buckling
6 0 0 EC, O O 0 0 O is governedby Egs. C.4—(C.7). In this case, buckling is
K= 8 8 8 8 Gf)’y GAOSZ 8 g 8 (B.5) assumed to be independent of the prebuckling deflections
o 0 0 0 0 0GS 0 o0 (classical analysis). _
0 0 0 0 0 0 0 GJ O ~ Egs. C.4—(C.7) are coupled. However, in the case of a
[ Eip 0 O 0 0 o0 0 0 Eigl simply supported beam, EqC(4) can be derivated once to
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obtain the following expression: [4] Vlasov VZ. Thin walled elastic beams. Jerusalem: Israel Program for

” , ” Scientific Translation; 1961.

Mz - Qy - [My¢] =0. (C.8) [5] Goodier JN. The buckling of compressed bars by torsion and flexure,
. . . . Bulletin 27. Cornell University Engineering Experimental Station;

With the consideration of.5), the last one may be written 1941 y Eng g =X

as [6] Wang CM, Wang CY, Reddy JN. Exact solutions for buckling of

structural members. Boca Raton (FL): CRC Press; 2004.
[M; — Myg]” = 0. (C.9) Lo (FL)

[7] Sapkas A, Kollar LPLatera—torsional buckling of composite beams.
Integrating twice and taking into account the linearized Int J Solids Struct 2002;39:2939-63.
constitutive equation for the bending momeht, (see

[8] Lee J, Kim SE, Hong K. Lateral buckling of I-section composite
; - ‘ beams. Eng Struct 2002;24:955-64.

Appendix B and the boundary conditions, one arrives to:

—El,6, — ¢My = 0. (C.10)

[9] Trahair NS. Flexural-torsionaluekling of structures. Boca Raton
Substituting this last expression along with the linearized

(FL): CRC Press; 1993.
[10] Vacharajittiphan P, Woolcock ST, Trahair NS. Effect of in-plane
constitutive equations fof,,, Ts, and B (seeAppendix B
into (C.6) and (C.7), one arrives to:

deformation on lateral buckling. J Struct Mech 1974;3(1):29-60.

[11] Pi YL, Trahair NS. Prebuckling eflections and lateral buckling. II:
applications. J Structiigrg ASCE 1992;118(11):2967-85.

[12] Anderson JM, Trahair NS. Stability of monosymmetric beams and

— ., = , _ cantilevers. J Struct Div ASCE 1972;98:269—86.
—ECy0" —GSy(¢p —6) =0 (C'll) [13] Mohri F, Azrar L, Potier-Ferry M.Lateral post-buckling analysis
e B ) — M)% of thin-walled open sections beams. Thin Walled Struct 2002;40:
-GS, (¢" -6 —GI¢p" — ?gb = —0z26:0. (C.12) 1013-36.
z

[14] Cortinez VH,Piovan MT. Vibrdion and buckling of composite thin-
waled beams with shear deformability. J Sound Vibration 2002;

Ritz's method is used for computing analytical solutions
258(4):701-23.

OT these last equatlons.' he twisting and warping . [15] Barbero EJ. Introduction to composite material design. Taylor and
displacements are approximated by means of the following Francis Inc: 1999.
functions, which are compatible with the boundary [16] Reddy JN. Mechanicsftaminated composite plates and shells: theory
conditions of the beam: and analysis. 2nd ed. Boca Raton (FL): CRC Press; 2004.

vz T [17] Reddy JN. Energy principlesnd variational methods in applied
¢ =¢osm(tx); (2] =Hocos(tx>;

mechanics. 2nd ed. NY: John Wiley; 2002.
[18] Fraternali F, Feo L. On a modéearotation theory of thin-walled
wheregg anddp are the associated displacement amplitudes. composite beams. Composites B 2000;31:141-58.
Using this method and after integration along the [19] Cortinez VH, Rossi RE. Dynamiasf shear deformable thin-walled
beam length according to the adopted functions for the open b_eams subjected to initial stresses. Rev Internac Métod Numér
displacements, the buckling loads or equivalent buckling .., Co.c Disefl Ingr 1998;14(3):293-316.
v o ~ [20] Krenk S, Gunneskov O. Statics dfin-walled pre-twisted beams. Int
moments are given by obtaining the roots of a quadratic J Numer Methods Eng 1981;17:1407—26.
equation. [21] Washizu K. Variational methods in elasticity and plasticity. Pergamon
Using this procedure, it ipossible to obtain a unified Press; 1968.
simple famula for the equivalent moment for different

[22] Bazant ZP, Cedolin L. Stability of structures: elastic, inelastic,
. N . fracture, and damage theories. Mineola (NY): Dover Publication Inc.;
loads. This formula may bexpressed as indicated i136) g (NY)
with the constants defined asTable 2

(C.13)

2003.

[23] Piovan MT, Cortinez VH. Transverse shear deformability in the
dynamics of thin-walled composite beams: consistency of different
approaches. J Sound Vibration [in press].

[24] Bhat RB. Transverse vibrations of a rotating uniform cantilever beam
with tip mass as predicted by agi beam characteristic orthogonal
polynomials in the Rayleigh—Ritz method. J Sound Vibration 1986;
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