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Abstract: Regular water quality monitoring programs are an important  
aspect of water management. Different multivariate statistical techniques were 
applied for interpretation and evaluation of the data matrix obtained during  
a six-year monitoring program (2006 to 2011) in the principal reservoirs  
of the central region of Argentina. Eleven sampling sites located in two  
reservoirs were surveyed each climatic season for 18 parameters. Cluster 
analysis grouped the sampling sites into three clusters and classified the 
different climatic seasons into two clusters based on their similarities.  
Principal component analysis/factor analysis showed the existence of five 
significant varifactors (VF) which account for 79.3% of the variance, related  
to soluble salts, nutrients, physico-chemical parameters, and non-common 
source. Source contribution was calculated using multiple regression of sample  
mass concentration on the absolute VF scores. This study demonstrates the 
usefulness of multivariate statistical techniques helping managers to get better 
information about surface water systems. 

Keywords: monitoring program; multivariate statistical techniques; pattern 
recognation; reservoirs; water quality. 
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1 Introduction 

Surface water quality in a region depends not only on natural factors such as precipitation 
inputs, erosion, weathering of crustal materials, but also on human activities which can 
alter these systems, either by polluting them or by modifying them to such an extent that 
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the use of surface water system become restricted (Banihabib et al., 2015; Su et al., 
2015). Thus, public officials, land owners, and the general public express concern over 
perceived deterioration of water quality and seek to determine the magnitude of the 
impact that public and private investments and regulatory actions are having on the 
attainment of water quality goals in order to decide about investing in further actions 
(Hirsch et al., 2015). 

Regular water quality monitoring programs are an important aspect of water resource 
management (Megalovasilis, 2014; Yan et al., 2015). Due to spatial and temporal 
variations in water quality, such programs need to include a large number of 
physicochemical parameters taken at different times and from many sites involving huge 
financial inputs and resulting in a large and complex data matrix which is often difficult 
to interpret towards drawing meaningful conclusions. Thus, there is a need to optimise 
the monitoring networks, reducing the number of water quality parameters, sampling 
sites and monitoring periods to representative ones without losing useful information 
(Singh et al., 2004). To achieve this goal, some data-driven approaches, such as the 
projection pursuit technique and neural networks, have been applied to water quality 
assessment (Wang et al., 2013). However, compared with these approaches, multivariate 
statistical techniques can be used to analyse large water quality data sets providing a 
representative and reliable estimation of surface water quality. These techniques  
can be used to achieve great efficiency of data compression from the original data  
and to interpret natural associations between samples or variables, highlighting the 
information which is not available at first glance (Varol et al., 2012). Furthermore,  
the multivariate treatment of environmental could be successfully used to identify 
possible pollution sources that influence water systems and offers a valuable technique 
for reliable management of water resources as well as rapid solutions on pollution 
problems (Wang et al., 2012). 

The objective of this study was to evaluate the efficiency of different pattern 
recognition methods for the analysis of water quality of the two major dam reservoirs in 
Calamuchita valley, located in the central region of Argentina. This procedure could be 
used by water management authorities and decision-makers to generate a standardised 
monitoring program for regional-scale water quality assessment, allowing an easier 
comparison of water quality from different reservoirs at a regional scale. Different 
multivariate statistical techniques [cluster analysis (CA) and principal component 
analysis/factor analysis (PCA/FA)] were applied to the data matrix obtained during a six 
years (2006–2011) monitoring program in the principal reservoirs of Calamuchita valley 
to evaluate data and draw conclusions about the similarities and dissimilarities existing 
between sampling sites and seasons, as well as to identify water quality variables 
responsible for spatial and temporal variations in water quality. The influence of 
pollution sources on reservoirs water quality was ascertained. Thus, we illustrated the 
usefulness of the multivariate statistical analysis to improve the understanding of the 
surface water system. 
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2 Methodology 

2.1 Study area 

Calamuchita valley, located in the central region of Argentina, is characterised by a 
mountainous system called Sierras Pampeanas by the west and Sierras Chicas by the east, 
which encompass approximately a 500 km long and 150 km wide area. The climate of the 
region is temperate subtropical, air temperature range between –8.0°C and 40.0°C with a 
mean value of 16.5°C. The rainy period is spring-summer (more than 200 mm per month, 
September-March) and the annual mean rain is 743 mm (Mariazzi et al., 1992). This 
region presents different moderately eutrophic reservoirs greater than 0.3 km2, which 
were built between 1930 to 1950 for multiple purposes, such as water supply, power 
generation, flood control, irrigation, tourism and recreational activities (Bonansea et al., 
2015a). As part of a monitoring program several physical, chemical and biological 
properties were surveyed in the most important reservoirs of this area (Figure 1). 

Figure 1 Principal reservoirs of Calamuchita valley and position of sampling sites in  
Los Molinos and Río Tercero reservoir (see online version for colours) 

 

Río Tercero reservoir (RTR: 32.210844 S; 64.473056 W) is the largest artificial reservoir 
in Córdoba province. This multiple purposes reservoir, which is used to supply drinking 
water to three cities located on its shores, has an area of 46 km2, a maximum volume of 
733 hm3 and a maximum and mean depth of 46.5 and 12.2 m, respectively (Bonansea  
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et al., 2015b). RTR is divided in two basins by a strait. Western basin has three branches 
where rivers flow, while eastern basin presents the only effluent called Tercero River 
(Mariazzi et al., 1992). In 1986 a nuclear power plant (CNE: 600 MWa) was installed. 
Water for cooling the nuclear reactor is taken from the middle section of the reservoir and 
is returned to the western basin by a 5 km long open-sky channel (Bonansea et al., 
2015b). Los Molinos reservoir (LMR: 31.818656 S, 64.531586 W), is used to supply 
drinking water to the 30% of Cordoba city (with 1.4 million inhabitants). This reservoir 
has an area of 21.1 km2, a maximum volume of 399 hm3 and a maximum and mean depth 
of 53.0 and 16.3 m, respectively (Bazán et al., 2005). LMR has three branches where 
rivers flow and its effluent is called Segundo River. 

2.2 Sampling and analytical procedures 

Water sampling was conducted once during each climatic season (defined in the  
southern hemisphere as winter: July–September, spring: October–December, summer: 
January–March, and fall: April–June) from 2006 to 2011. Eleven sampling sites were 
selected in order to reasonably represent the water quality of the reservoirs (Figure 1). 
Five sample sites were located in LMR and six sites were located in RTR. Coordinates of 
sample sites were recorded using a GPS device. Water samples were collected at 20 cm 
depth. Preservation and transportation of water samples were performed according to 
standard methods (APHA-AWWA-WEF, 2000). In total, samples were analysed for  
18 parameters. The selected water quality parameters included water surface temperature 
(WST), pH, dissolved oxygen (DO) and electrical conductivity (EC) which were 
measured in-situ using portable electronic instruments. Secchi disk transparency (SDT) 
was measured using a standard Secchi disk with alternating black and white quadrants. In 
laboratory, chlorophyll-a concentration (Chl-a), total phosphorus (TP), total nitrogen 
(TN), nitrate nitrogen (NO3-N), sodium (Na), potassium (K), calcium (Ca), magnesium 
(Mg), chloride (Cl), sulphate (SO4), fluoride (F), total hardness (T-Hard) and total 
alkalinity (T-Alk) were determined according to standard analytical methods and 
protocols (APHA-AWWA-WEF, 2000; WHO, 2006). 

2.3 Statistical analysis 

One way multivariate analysis of variance (MANOVA) and one way analysis of variance 
(ANOVA) were performed as a first approach to compare the significant spatial and 
temporal differences of water quality variables (p < 0.05; least significance difference, 
LSD). Relationships among variables were tested using Pearson’s coefficient with 
statistical significance set at p < 0.01 and 0.05. Multivariate statistical analysis can help 
to simplify and organise large data set to provide meaningful insight (Chen et al., 2007). 
Multivariate analysis of the water quality data set was performed using CA, PCA/FA 
techniques. These multivariate statistical techniques were applied on experimental data 
previously standardised using z-scale transformation in order to avoid misclassifications 
arising from the different orders of magnitude of both numerical value and variance of 
the parameters analysed (Wunderlin et al., 2001; Singh et al., 2004). The standardisation 
procedure, which is commonly used in multivariate statistical analysis, was used to 
eliminate the influence of different units of measurements and rendered the data 
dimensionless (Varol et al., 2012). 
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2.3.1 Cluster analysis 

CA is an unsupervised pattern recognition technique whose primary purpose is to 
assemble objects into categories or clusters based on their independent variables or 
characteristics. This technique classifies objects, so that each object is similar to the 
others in the cluster with respect to a predetermined selection criterion. The resulting 
clusters should then exhibit high internal (within-cluster) homogeneity and high external 
(between clusters) heterogeneity (Shrestha and Kazama, 2007). Hierarchical clustering is 
the most common approach in which clusters are formed sequentially, by starting with 
the most similar pair of objects and forming higher clusters step-by-step. The result can 
be displayed as a dendrogram (tree diagram) which provides a visual summary of the 
clustering process, presenting a picture of the groups and their proximity, with a dramatic 
reduction in dimensionality of the original data (Wunderlin et al., 2001). The Euclidean 
distance usually gives the similarity between two samples and a distance can be 
represented by the difference between analytical values from the samples (Otto, 1998). In 
this study, hierarchical CA was performed using the Ward’s method and Euclidean 
distance, which has proven to be a very efficient measure of similarity (Kotti et al., 
2005). This method uses an analysis of variance approach to evaluate the distances 
between clusters, attempting to minimise the sum of squares of any two clusters that can 
be formed at each step (Wang et al., 2013). CA was applied to the water quality data set 
to group the similar sampling sites (spatial variability) and seasonal (temporal) similarity 
among the samples, resulting in spatial and temporal dendrograms. The linkage distance 
is reported as Dlink/Dmax, which represents the quotient between the linkage distances 
for a particular case divided by the maximal distance, multiplied by 100, as a way to 
standardise the linkage distance represented on the y-axis (Varol et al., 2012). Finally, 
ANOVA was performed (p < 0.05) to analyse the significant differences between the 
clusters obtained by the spatial CA. As the temporal CA generated only two clusters, 
differences between clusters were tested for statistical differences using a student T-test 
(p < 0.05). 

2.3.2 Principal component analysis/factor analysis 

Kaiser-Meyer-Olkin (KMO) and Bartlett’s sphericity test were performed previously to 
examine the suitability of the data set for PCA/FA technique. KMO is a measure of 
sampling adequacy that indicates the proportion of variance that is common, i.e., variance 
that may be caused by underlying factors (Shrestha and Kazama, 2007). In this study the 
KMO was 0.78 (close to 1), indicating that PCA/FA may be useful. Bartlett’s test of 
sphericity indicates whether a correlation matrix is an identity matrix, which would 
indicate that variables are unrelated (Varol et al., 2012). The significance level of 0.00 in 
this study (less than 0.05) indicated that there were significant relationships among the 
variables. The principal component analysis (PCA) extracts the eigenvalues and 
eigenvectors from the covariance matrix of original variables (measured parameters). An 
eigenvalue gives a measure of the significance of the factor, while an eigenvector is a list 
of coefficients (loadings or weightings) by which we multiply the original correlated 
variables to obtain new uncorrelated (orthogonal) variables, called principal components 
(PCs), which are weighted linear combinations of the original variables. A PC is the 
product of the original data and an eigenvector; the result of projecting the data on to a 
new axis is a new variable. There are as many PCs as original variables, however the first 
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PC loading explains the most variance and each subsequent PC explains progressively 
less. As a result, a small number of factors usually account for approximately the same 
amount of information as the much larger set of the original observations do (Kennedy  
et al., 2015). Thus, PC provides information on the most meaningful parameters, which 
describe the whole data set affording data reduction with minimal loss of information 
(Helena et al., 2000). 

Factor analysis (FA) attempts to extract a lower dimensional linear structure from the 
data set. It further reduces the contribution of less significant variables obtained from 
PCA and the new group of variables known as varifactors (VFs) is extracted through 
rotating the axis defined by PCA. It should be noted that a PC is a linear combination of 
observable water quality variables, while a VF can include unobservable, hypothetical, 
‘latent’ variables (Wunderlin et al., 2001). PCA/FA was performed on correlation matrix 
of rearranged data (all observations for each group of sites), so that it explains the 
structure of the underlying data set. The correlation coefficient matrix measures how well 
the variance of each constituent can be explained by relationship with each of the others 
(Singh et al., 2004). PCA of the normalised variables (water quality data set) was 
performed to extract significant PCs and to further reduce the contribution of variables 
with minor significance; these PCs were subjected to a varimax rotation (raw) generating 
VFs. According to Helena et al. (2000), by this method loadings and VF are obtained in 
which original variables participate more clearly. 

2.3.3 Source apportionment 

The source apportionment is an important environmetric approach aiming to the 
estimation of contribution of identified sources to the concentration of each parameter 
(Simeonov et al., 2003). After the determination of the number and identity of possible 
sources affecting surface waters by using PCA/FA, source contribution was calculated 
using multiple regression of sample mass concentration on the absolute VF scores. A 
detailed description of the modelling approach can be found in Thurston and Spengler 
(1985). This technique makes it possible to apportion the component mass among various 
source components obtained by PCA/FA (five components in our case). The PCA/FA 
assumes the total concentration of each element is made up of the sum of elemental 
concentrations from each identified component. The approach calculates the weight of 
source in the total sum using multiple regressions. 

3 Results and discussion 

3.1 Physico-chemical characteristics of reservoirs water 

The basic statistics calculated for the studied reservoirs of Calamuchita valley are 
summarised in Table 1. This table reveals that the concentrations of all analysed 
parameters were below the prescribed maximum limits by World Health Organization 
guidelines for drinking water (WHO, 2006). 
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Table 1 Mean, range and standard deviation of different water quality parameters at different 
sampling sites 
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Table 1 Mean, range and standard deviation of different water quality parameters at different 
sampling sites (continued) 
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Table 2 Pearson correlation matrix of the 18 variables determined 
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MANOVA indicated significant temporal and spatial variations (p < 0.05). ANOVA 
indicated significant temporal variations (p < 0.05) for most water quality parameters 
except for SDT, Chl-a, TN, NO3-N and F. WST and TP displayed higher values in 
summer, while higher values of pH and DO occurred in winter. Significant spatial 
variations (p < 0.05) were observed in almost all water quality variables except for pH, 
DO, Chl-a and F. Higher concentration of PT were observed in LMR, while other 
variables showed higher values in RTR. Table 2 shows the Pearson correlation matrix of 
the 18 analysed variables. Only those correlation values higher than 0.5 were considered 
and highlighted in this table. Inspection of correlation matrix and analysis of variance 
showed that EC, Na, K, Ca, Mg, Cl, SO4, T-Hard and T-Alk, which displayed significant 
spatial and temporal variations (p < 0.05) with lower values in fall and higher 
concentrations in spring, were closely correlated (r = 0.50 to 0.97). We consider that most 
of these associations are responsible for water mineralisation, being directly related to 
hydrochemical characteristics of the region. 

3.2 Spatial and temporal similarities 

CA was applied on reservoirs water quality data, to detect similarity for grouping of 
sampling sites and climatic seasons. Dendrograms of spatial and temporal variability 
obtained by the Ward’s method are shown in Figure 2. The spatial CA, generated a 
dendrogram grouping 11 sampling sites into five clusters at (Dlink/Dmax) × 100 < 28 
[Figure 2(a)]. The spatial CA was useful to separate between analysed reservoirs. Thus, 
cluster 1 corresponded to sites 5 and 6 of RTR. Cluster 2 consisted of one site (RTR-3). 
Cluster 3 corresponded to sites 1, 2 and 4 of RTR. While cluster 4 corresponded to site 5 
of LMR, and cluster 5 consisted of sites 1 to 4 of LMR. Further, the cluster classification 
varied with significance level and in a very convincing way because sites in these clusters 
had similar characteristics features and natural backgrounds that were affected by similar 
sources. Each cluster represented geographical location of sampling sites located at each 
reservoir. Thus, cluster 2 and 3 could be considered to a relatively high pollution region 
because were directly influenced by river influxes of RTR as shown in Figure 1, 
receiving polluted effluents from different sources such as stream inputs, agricultural 
runoff and soil erosion of the RTR watershed. The results from one-way ANOVA used to 
compare difference between clusters showed that only pH and Chl-a did not showed 
significant variations (p > 0.05). With the exception of SDT and TP, most variables were 
significantly higher in these clusters (p < 0.05). Further, WST was significantly higher in 
cluster 2 than in the rest of the groups. This cluster is also influenced by the effluent of 
CNE which, as it was mentioned, raises the temperature of water. Similar results were 
found by Policht-Latawiec et al. (2016) studing the effect of a cooling water discharge 
from a power station on the water quality of a river in Poland. Cluster 5, which is related 
with river loads of LMR, could be considered as moderate pollution region because 
watersheds of these rivers present lower anthropic activities and higher areas of natural 
vegetation than RTR. However, in last years these watersheds have reported an increase 
in agricultural activities and a decrease in native forest. Hence it is possible that in the 
near future this cluster will be more related to clusters of high pollution regions. Cluster 1 
and 4 correspond to relatively low pollution regions. These clusters, situated in the west 
region of RTR and LMR respectively, are located far from major point and non-point 
pollution sources such as river loads. This was confirmed by results of ANOVA, which 
showed that clusters 1 and 4 presented the higher values of SDT. Thus, the spatial 
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variations of water quality in the principal reservoirs of Calamuchita valley demonstrated 
that water quality is better in the eastern areas than in the western portions of the 
reservoirs related with river loads. 

Figure 2 Dendrograms showing hierarchical clustering of (a) sampling sites and  
(b) climatic seasons using the Ward’s method and Euclidean distance 

  
(a) (b) 

The temporal dendrogram obtained by CA [Figure 2(b)] generated two clusters at 
(Dlink/Dmax) × 100 < 55. Cluster 1 corresponded to the wet seasons including spring 
and summer. Cluster 2 corresponded to the dry season (fall and winter). Although this 
was an expected result, CA was able to corroborate this assumption and suggests that 
sampling during only two seasons (wet and dry) in a year may suffice for assessment of 
temporal variations in water quality of the reservoirs. The results from Student’s T test 
showed that WST and SO4 were significant higher in the rainy season (p < 0.05), whereas 
DO, TN and T-Alk were higher in the dry season. 

It is evident that the CA technique is useful in offering reliable classification of 
surface waters in the study area and helpful for rapid assessment of water quality because 
only one site of each spatial and temporal cluster may serve as a good spatial assessment 
of water quality in the whole region. Further, we confirm that it is possible to design an 
optimal future spatial and temporal monitoring strategy in an optimal manner with fewer 
sampling sites and lower associated costs without missing much information in reservoirs 
of Calamuchita valley. 

3.3 Data structure determination and source identification 

PCA/FA analysis was applied to the normalised data sat (18 variables) to compare the 
compositional patterns between the analysed water samples and to identify the factors 
that influence each one. There are several criteria to identify the number of VFs to be 
retained, in order to understand the underlying data structure (Helena et al., 2000). In the 
present study, factors with eigenvalues greater than 1.0 were taking into account. Thus, 
PCA/FA renders five VFs with eigenvalues > 1.0 accounting for 79.3% of total variance 
in the water quality data set (Table 3). 
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Table 3 Loadings of experimental variables on the first five VFs for the data set 

Parameters VF1 VF2 VF3 VF4 VF5 

WST 0.13 0.05 0.88 0.00 0.07 
pH 0.10 0.26 –0.08 0.75 0.20 
DO –0.13 –0.17 –0.17 0.86 –0.20 
EC 0.95 –0.09 –0.03 0.01 0.02 
SDT 0.26 –0.22 –0.28 0.56 –0.25 
Chl-a 0.14 0.82 0.15 0.15 –0.09 
TP .0.46 0.64 0.44 –0.20 –0.04 
TN 0.44 0.53 0.18 –0.14 0.02 
NO3-N 0.37 0.54 0.35 0.05 –0.19 
Na 0.79 –0.25 0.23 0.22 –0.01 
K 0.91 0.01 –0.16 –0.19 0.02 
Ca 0.95 –0.03 –0.08 –0.11 0.03 
Mg 0.92 0.15 0.00 –0.02 –0.08 
Cl 0.80 0.32 –0.28 –0.20 0.05 
SO4 0.76 –0.17 0.37 0.26 –0.27 
F 0.01 –0.05 0.04 0.08 0.33 
T-Hard 0.98 0.02 –0.06 –0.08 0.00 
T-Alk 0.89 0.06 –0.14 0.04 0.00 
Eigenvalue 8.320 1.890 1.640 1.380 1.040 
% total variance 46.207 10.501 9.102 7.680 5.768 
Cumulative % variance 46.207 56.709 65.810 73.490 79.258 

Bold and italic values indicate strong and moderate loadings, respectively. According to 
Liu et al. (2003), the factor loadings were classified as ‘strong’, ‘moderate’ and ‘weak’ 
corresponding to absolute loading values of > 0.75, 0.75 – 0.50 and 0.50 – 0.30, 
respectively. Thus, the first VF (VF1) was the most important with 46.2% of the total 
variance. VF1 showed nine parameters with strong positive loadings > 0.75, being 
correlated with EC, Na, K, Ca, Mg, Cl, SO4, T-Hard, and T-Alk. This VF may be 
interpreted as the ‘mineral’ factor of the reservoirs, because is related to natural sources 
of the ionic groups of salts in the watersheds from inflows, soil weathering and runoff. 
These results agree with those obtained with the Pearson correlation test (Table 2). 

The second VF (VF2), which was responsible for 10.5% of the total variance, has 
strong positive loadings on Chl-a and TP, and moderate positive loadings on TN, and 
NO3-N. This VF was named as the ‘nutrient’ source of the variability, and may be 
interpreted as representing influences from stream inputs, point sources such as municipal 
and industrial effluents, and non-point sources such as agricultural runoff, erosion in the 
watersheds and atmospheric deposition. Farming and cattle rising are common activities 
in the studied watersheds. Fertilisers and manure, which can contribute to high levels of 
soil nitrogen and phosphorus, can be incorporated into the reservoirs by streams and  
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runoff after rainfall, increasing eutrophication processes which often lead to a reduction 
in the supply of ecosystems services (Saaremäe et al., 2014). Thus, the priority is to 
develop advanced techniques for decreasing nutrient sources of pollution in this region. 
VF2 also showed the effect of nutrients on Chl-a, which is one of the most important 
parameters since it is used to estimate the primary productivity of water ecosystems 
(Dall’Olmo et al., 2005). Subsequent nutrient abatement strategies implemented by 
environmental agencies or water authorities could be largely successful resulting in a 
reduction of algal biomass and better reservoirs water quality. VF3, accounting for 9.1% 
of the total variance, showed only WST with strong significant loading, so it could be 
interpreted as the ‘temperature’ factor. The contribution of WST, which showed a very 
characteristic annual cycle with highest values in summer and lowest in winter, could 
also be related with the constant input of heat from the cooling channel of CNE nuclear 
power plant in RTR. According to Bonansea et al. (2015b), the nuclear power plant 
generates a thermal plume from the cooling channel, which dissipates to the rest of RTR. 
Although Mariazzi et al. (1992) suggest that the constant influx of heat has not generated 
an increase in WST over time, as mean WST in RTR remains stable since CNE was 
installed, the effect of the nuclear power plant in WST should be analysed in detail in 
future studies. Additional 7.7% of the total variance was explained in VF4, which was 
interpreted as the ‘physico-chemical’ factor. This VF had strong contribution on pH and 
DO, and moderate contribution on SDT. Finally, VF5 explaining lower variance (5.7%) 
did not show significant loading for any parameter, suggesting that this VF may indicate 
a ‘non-common origin’ or source. 

Many potential pollution sources have been identified by using PCA/FA in reservoirs 
of Calamuchita valley. Thus, the results from PCA/FA suggested that most of the 
variations in water quality are explained by a set of soluble salts (natural) included in 
VF1, a substantial contribution comes from anthropogenic pollution sources, while minor 
contributions arise from physico-chemical and non-common sources. In this study 
PCA/FA did not result in much data reduction, as we need 16 parameters (88.9% of the 
18 parameters) to explain 79.3% of the data variance. However, this technique served as 
a means to identify those parameters that had the greatest contribution to variation in 
water quality and suggested possible sets of pollution sources in the region. 

3.4 Source apportionment 

Results of the contribution of the possible sources in each source type obtained by 
multiple regression of sample mass concentration on the absolute VF scores is presented 
in Table 4. As evident from the higher determination coefficients (R2) and the lower 
absolute root mean square errors (RMSE), the multiple regression exhibited good 
adequacy between the measured and predicted values for most parameters. A significant 
biased part of the total concentration is present for almost all parameters. Results showed 
that natural sources of the ionic groups of salts in Calamuchita valley from inflows, soil 
weathering and runoff are the main contribution to the mineral factor. Point (municipal 
and industrial effluents) and non-point sources (agricultural runoff, erosion, and 
atmospheric deposition) are the main contributors to the nutrient parameter, whereas the 
physico-chemical factors appeared to be the main source of most elements. 
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Table 4 Source contribution to surface waters in Calamuchita valley 

Parameter Intercept 

Source types 

R2 RMSE 
1 mineral 2 nutrient 3 

temperature

4 
physico-
chemical 

5 non-
common 
source 

WST 18.42 – – 4.84 – – 0.80 1.56 
pH 7.65 – 0.20 – 0.42 – 0.43 0.28 
DO 8.33 – –0.34 –0.33 1.70 –0.39 0.85 0.42 
EC 116.23 37.27 – – – – 0.91 6.28 
SDT 2.36 0.31 –0.26 –0.34 –0.67 –0.29 0.58 0.34 
Chl-a 0.01 – 0.01 – – – 0.75 0.01 
TP 0.04 –0.01 0.05 0.01 0.01 – 0.67 0.01 
TN 1.03 0.46 0.02 – – – 0.59 0.16 
NO3-N 0.47 0.34 0.32 0.21 – –0.11 0.79 0.12 
Na 9.02 1.60 –0.51 0.47 0.45 – 0.80 0.49 
K 1.98 0.45 – –0.08 –0.10 – 0.89 0.08 
Ca 12.70 4.10 – – –0.46 – 0.93 0.58 
Mg 2.84 1.00 0.17 – – – 0.87 0.10 
Cl 3.90 2.26 0.92 –0.81 –0.55 – 0.87 0.35 
SO4 8.53 4.59 –1.02 2.27 1.57 –1.62 0.88 0.65 
F 0.33 – – – – 0.12 0.87 0.01 
T-Hard 43.43 14.37 – –0.88 –1.23 – 0.97 1.30 
T-Alk 51.07 9.68 – – – – 0.82 1.83 

4 Conclusions 

Monitoring is the core of all water quality management practices since decisions to be 
made are based on available information related to water quality processes. The physical, 
chemical and biological quality of reservoir water is critically important, because they are 
linked to every aspect of human wellbeing and sustainable development. In this study, 
different multivariate statistical techniques were successfully used to assess temporal and 
spatial variation in surface water quality of the most important reservoirs of Calamuchita 
valley and to identify the main contaminants and their sources. 

According to similar water quality characteristics, hierarchical CA grouped the  
11 sampling sites into five clusters of relative high, moderate and low pollution, and 
classified climatic seasons in two clusters (wet and dry season). Based on information 
obtained from this study, it is possible to design an optimal future monitoring strategy, 
resulting in a reduced number of sampling sites, monitoring frequency and lower 
associated costs. Although PCA/FA did not result in much data reduction, it helped to 
identify the factors or sources responsible for water quality variations. VFs obtained from 
PCA/FA indicated that the parameters responsible for water quality variations are mainly 
related to soluble salts (natural), organic pollution and nutrients (point and non-point), 
physico-chemical parameters, and non-common source. Further, source contribution was 
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calculated using multiple regression of sample mass concentration on the absolute VF 
scores. Thus, the used multivariate statistical techniques served as an excellent 
exploratory tool in the analysis and interpretation of complex data set on water quality, in 
identifying pollutant sources, and in understanding their temporal and spatial variations 
for effective reservoirs water management. This study could be considered for future 
planning and management of reservoirs. The methodology presented here could be very 
useful not only to the local authorities for the pollution control/management, but also for 
all aquatic systems, either natural lakes or artificial dams, at a regional scale. 
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