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Abstract

A geometrically non-linear theory for thin-walled composite beams is developed for both open

and closed cross-sections and taking into account shear flexibility (bending and warping shear). This

non-linear formulation is used for analyzing the static stability of beams made of composite

materials subjected to concentrated end moments, concentrated forces, or uniformly distributed

loads. Composite is assumed to be made of symmetric balanced laminates or especially orthotropic

laminates. In order to solve the non-linear differential system, Ritz’s method is first applied. Then,

the resulting algebraic equilibrium equations are solved by means of an incremental Newton–

Rapshon method. This paper investigates numerically the flexural–torsional and lateral buckling and

post-buckling behavior of simply supported beams, pointing out the influence of shear–deformation

for different laminate stacking sequence and the pre-buckling deflections effect on buckling loads.

The numerical results show that the classical predictions of lateral buckling are conservative when

the pre-buckling displacements are not negligible, and a non-linear buckling analysis may be

required for reliable solutions.
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1. Introduction

Structural members made of composites are increasingly used in aeronautical,

mechanical and civil engineering applications, where high strength and stiffness, and low

weight are of primary importance. Many structural members made of composites have the

form of thin-walled beams. The load carrying capacity of this kind of members is often

governed by instability. Thin-walled beams may fail in a flexural or/and torsional buckling

mode: the beam suddenly deflects laterally or twists out of the plane of loading. The

buckling of the beam is caused by the coupling among bending, twisting and stretching

deformations. For this reason, a non-linear theory is required for the accurate behavior

prediction of such structures. The limitation of the linear buckling analysis of beam

problems [1] is the omission of any consideration of the effect of pre-buckling deflections

of the beam. This omission is not important when the pre-buckling deflection of the beam

is negligible. In other cases, however, the effect of the pre-buckling deflections must be

taken into account for obtaining accurate predictions of buckling loads. For example,

lateral buckling is a relevant phenomenon [2] that, in particular, involves mechanical

complications, since structures may experience large or moderately large deflections and

rotations before buckling occurs. Moreover, the linear buckling gives no information

about the shape of the secondary path of equilibrium (post-buckling). Sometimes the

behavior of a structure can be understood only if the shape of the secondary path is known.

Thus, the additional load carrying capacity after buckling can be determined.

Keeping in mind the importance of the problem, a significant amount of research has

been conduced in recent years toward the development of non-linear theories of three-

dimensional beams. Most of these have been confined to metallic structures [3–7], for

example]. On the other hand, the amount of work carried out on thin-walled beams made

of composite materials has been rather limited. Bhaskar and Librescu [8] presented a

geometrically non-linear theory for thin-walled composite beams, but post-buckling

analyzes were not performed. The non-linear stability analysis of thin-walled composite

beams with open cross-section has been recently investigated by Fraternali and Feo [9]

using a finite element formulation and without considering shear–deformation.

The objective of this paper is to investigate the post-buckling behavior and the effect of

pre-buckling deflections on the buckling loads of thin-walled composite beams using a

geometrically non-linear beam theory, for both open and closed cross-sections and taking

into account several non-classical effects. On the other hand, it is valid for symmetric

balanced laminates and especially orthotropic laminates [10]. As a distinctive feature, the

present beam model incorporates, in a full form, the effects of shear flexibility (bending

and warping shear). This shear effect plays an important role in the analysis of linear

stability of thin-walled composite beams [11–14]. In this paper, the non-linear model is

used to predict the post-buckling behavior of simply supported thin-walled composite

beams subjected to different load conditions. This work is basically divided into two kinds

of analysis. First, the flexural–torsional post-buckling of beams subjected to a compression

load is studied for different cross-sectional shapes. Then, beams with uniform bending

moments, concentrated forces, or uniformly distributed load are considered to investigate

the lateral buckling and post-buckling behavior. In all the cases, the influence of shear–

deformation is analyzed for different laminate stacking sequences.
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2. Kinematics

A straight thin-walled composite beam with an arbitrary cross-section is considered

(Fig. 1). The points of the structural member are referred to a Cartesian co-ordinate system

ðx; �y; �zÞ, where the x-axis is parallel to the longitudinal axis of the beam while �y and �z are

the principal axes of the cross-section. The axes-y and -z are parallel to the principal ones

but having their origin at the shear center (defined according to Vlasov’s theory of

isotropic beams). The co-ordinates corresponding to points lying on the middle line are

denoted as Y and Z (or �Y and �Z). In addition, a circumferential co-ordinate s and a normal

co-ordinate n are introduced on the middle contour of the cross-section:

�yðs; nÞ Z �YðsÞKn
dZ

ds
; �zðs; nÞ Z �ZðsÞCn

dY

ds
(1)

yðs; nÞ Z YðsÞKn
dZ

ds
; zðs; nÞ Z ZðsÞCn

dY

ds
(2)

On the other hand, y0 and z0 are the centroidal co-ordinates measured with respect to the

shear center:

�yðs; nÞ Z yðs; nÞKy0 �zðs; nÞ Z zðs; nÞKz0 (3)

The present structural model is based on the following assumptions [13]:

(1) The cross-section contour is rigid in its own plane.

(2) The warping distribution is assumed to be given by the Saint–Venant function for

isotropic beams.

(3) Flexural rotations (about the �y- and �z-axes) are assumed to be moderate, while the

twist f of the cross-section can be arbitrarily large.

(4) Shell force and moment resultant corresponding to the circumferential stress sss and

the force resultant corresponding to gns are neglected.
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Fig. 1. Co-ordinate system of the cross-section and notation for displacement measures.
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(5) The radius of curvature at any point of the shell is neglected.

(6) Twisting linear curvature of the shell is expressed according to the classical plate

theory.

(7) The laminate stacking sequence is assumed to be symmetric and balanced, or

especially orthotropic [10].

According to these hypotheses, the displacement field is assumed to be in the following

form:

ux Z u0K �yðqz cos f Cqy sin fÞK�zðqy cos fKqz sin fÞ

Cu qK
1

2
ðq0

yqzKqyq0
yÞ

� �
C ðqzz0 Kqyy0Þsin f

uy Z vKz sin fKyð1Kcos fÞK
1

2
ðq2

z �y Cqzqy �zÞ

uz Z w Cy sin fKzð1Kcos fÞK
1

2
ðq2

y �z Cqzqy �yÞ

(4)

This expression is a generalization of others previously proposed in the literature.

The displacement field proposed by Fraternali and Feo [9] is recovered (see Appendix

A) by considering qzZv 0, qyZw 0 and qZf 0 (neglecting flexural and torsional shear

flexibility), approximating cos f and sin f by (1Kf2/2) and f, respectively, and

conserving non-linear terms up to second-order. Moreover, the displacement field of the

classical Vlasov theory is obtained when second-order effects are ignored.

On the other hand, a simplified analog of Eq. (4), disregarding the underlined terms and

shear flexibility, was used by Mohri [6].

As a final comparison, taking cos fZ1 and sin fZf and disregarding the non-linear

terms, the displacement field (4) coincides with the one formulated by Cortı́nez and Piovan

[13] for linear dynamics of shear–deformable thin-walled beams.

In the above expressions, f, qy and qz are measures of the rotations about the shear

center axis, �y- and �z-axes, respectively; q represents the warping variable of the cross-

section. Furthermore, the superscript ‘prime’ denotes derivation with respect to the

variable x. The warping function u of the thin-walled cross-section may be defined as

uðs; nÞ Z upðsÞCusðs; nÞ (5)

where up and us are the contour warping function and the thickness warping function,

respectively. They are defined in the form [15]

upðsÞ Z
1

S

ðS
0

ðs
s0

½rðsÞKjðsÞ�ds

0
B@

1
CAds

2
64

3
75K

ðs
s0

½rðsÞKjðsÞ�ds usðs; nÞ ZKnlðsÞ (6)
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where

rðsÞ ZKZðsÞ
dY

ds
CYðsÞ

dZ

ds
(7)

lðsÞ Z YðsÞ
dY

ds
CZðsÞ

dZ

ds
(8)

r(s) represents the perpendicular distance from the shear center (SC) to the tangent at any

point of the mid-surface contour, and l(s) represents the perpendicular distance from the

shear center (SC) to the normal at any point of the mid-surface contour, as shown in Fig. 1.

In the expression (6), J is the shear strain at the middle line, obtained by means of the

Saint–Venant theory of pure torsion for isotropic beams, and normalized with respect to

df/dx [16]. For the case of open sections, JZ0.
3. The strain field

The displacements with respect to the curvilinear system (x,s,n) are obtained by means

of the following expressions:

�U Z uxðx; s; nÞ (9)

�V Z uyðx; s; nÞ
dY

ds
Cuzðx; s; nÞ

dZ

ds
(10)

�W ZKuyðx; s; nÞ
dZ

ds
Cuzðx; s; nÞ

dY

ds
(11)

The three non-zero components 3xx, 3xs, 3xn of the Green’s strain tensor are given by:

3xx Z
v �U

vx
C

1

2

v �U

vx

� �2

C
v �V

vx

� �2

C
v �W

vx

� �2
" #

(12)

3xs Z
1

2

v �U

vs
C

v �V

vx
C

v �U

vx

v �U

vs
C

v �V

vx

v �V

vs
C

v �W

vx

v �W

vs

� �
(13)

3xn Z
1

2

v �U

vn
C

v �W

vx
C

v �U

vx

v �U

vn
C

vV

vx

vV

vn
C

v �W

vx

v �W

vn

� �
(14)

Substituting expressions (4) into (9)–(11) and then into (12)–(14), employing the

relations (1)–(3) and (5)–(8), one obtains after simplifying some higher order terms, the

components of the strain tensor which can be expressed in the following form

3xx Z 3
ð0Þ
xx Cnk

ð1Þ
xx gxs Z 23xs Z g

ð0Þ
xs Cnk

ð1Þ
xs gxn Z 23xn Z g

ð0Þ
xn (15)
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where

3ð0Þxx Z u0
0 C

1

2
ðu02

0 Cv02 Cw02ÞCup q0K
1

2
ðqzq

00
y Kqyq00

z Þ

� �
C �Z½ðKq0

y

Ku0
0q0

yÞcos f C ðq0
z Cu0

0q0
zÞsin f�C �Y½ðKq0

zKu0
0q0

zÞcos fKðq0
y

Cu0
0q0

yÞsin f�C
1

2
f02ðY2 CZ2ÞC

1

2
q02

y
�Z2 C

1

2
q02

z
�Y2 Cq0

zq
0
y
�Z �Y

C ðz0q0
zKy0q0

yÞsin f Cf0ðz0qzKy0qyÞcos f (16)

kð1Þxx ZK
dZ

ds
½Kðq0

z Cu0
0q0

zÞcos fKðq0
y Cu0

0q0
yÞsin f�C

dY

ds
½ðKq0

yKu0
0q0

yÞcos f

C ðq0
z Cu0

0q0
zÞsin f�Kl q0K

1

2
ðqzq

00
y Kqyq00

z Þ

� �
Krf02K �Y

dZ

ds
q02

z

CZ
dY

ds
q02

y C �Y
dY

ds
K �Z

dZ

ds

� �
q0

yq0
z (17)

gð0Þ
xs Z

dY

ds
ðv0KqzKu0

0qzÞcos fKz0

1

2
ðqzq

0
y Kqyq0

zÞC ðw0Kqy Ku0
0qyÞsin f

� �

C ðrKjÞðf0KqÞ

C
dZ

ds
ðw0Kqy Ku0

0qyÞcos f Cy0

1

2
ðqzq

0
y Kqyq0

zÞKðv0Kqz Ku0
0qzÞsin f

� �

Cj f0K
1

2
ðqzq

0
yKqyq0

zÞ

� �
(18)

kð1Þxs ZK2 f0K
1

2
ðqzq

0
y Kqyq0

zÞ

� �
(19)

gð0Þ
xn Z

dY

ds
ðw0KqyKu0

0qyÞcos f Cy0

1

2
ðqzq

0
y Kqyq0

zÞKðv0KqzKu0
0qzÞsin f

� �

K
dZ

ds
ðv0KqzKu0

0qzÞcos fKz0

1

2
ðqzq

0
y Kqyq

0
zÞC ðw0Kqy Ku0

0qyÞsin f

� �

C lðf0KqÞ

(20)
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4. Variational formulation

Taking into account the adopted assumptions, the principle of virtual work for a

composite shell may be expressed in the form [13,17]ðð
ðNxxd3ð0Þxx CMxxdkð1Þxx CNxsdgð0Þ

xs CMxsdkð1Þxs CNxndgð0Þ
ns Þdsdx

K

ðð
ð �qxd �ux C �qyd �uy C �qzd �uzÞdsdxK

ðð
ð �pxdux C �pyduy C �pzduzÞ

����
xZ0

dsdn

K

ðð
ð �pxdux C �pyduy C �pzduzÞ

����
xZL

dsdnK

ððð
ð �f xdux C �f yduy C �f zduzÞdsdndx Z 0

ð21Þ

where Nxx, Nxs, Mxx, Mxs and Nxn are the shell stress resultants defined according to the

following expressions:

Nxx Z

ðe=2
Ke=2

sxx dn; Mxx Z

ðe=2
Ke=2

ðsxxnÞdn; Nxs Z

ðe=2
Ke=2

sxs dn;

Mxs Z

ðe=2
Ke=2

ðsxsnÞdn; Nxn Z

ðe=2
Ke=2

sxn dn

(22)

The beam is subjected to wall surface tractions �qx, �qy and �qz specified per unit area of

the undeformed middle surface and acting along the x-, y- and z-directions, respectively.

Similarly, �px, �py and �pz are the end tractions per unit area of the undeformed cross-section

specified at xZ0 and xZL, where L is the undeformed length of the beam. Besides, �f x, �f y

and �f z are the body forces per unit of volume. Finally, denoting �ux, �uy and �uz as

displacements at the middle line.
5. Constitutive equations

The constitutive equations of symmetrically balanced laminates may be expressed in

the terms of shell stress resultants in the following form [10]

Nxx

Nxs

Nxn

Mxx

Mxs

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

Z

�A11 0 0 0 0

0 �A66 0 0 0

0 0 �AðHÞ
55 0 0

0 0 0 �D11 0

0 0 0 0 �D66

2
666666664

3
777777775

3ð0Þxx

gð0Þ
xs

gð0Þ
xn

kð1Þxx

kð1Þxs

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(23)
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with

�A11 Z A11 K
A2

12

A22

; �A66 Z A66K
A2

26

A22

; �AðHÞ
55 Z AðHÞ

55 K
ðAðHÞ

45 Þ2

AðHÞ
44

�D11 Z D11 K
D2

12

D22

; �D66 Z D66 K
D2

26

D22

(24)

where Aij, Dij and AðHÞ
ij are plate stiffness coefficients defined according to the lamination

theory presented by Barbero [10]. The coefficient �D16 has been neglected because of its

low value for the considered laminate stacking sequence [13].
6. Governing equation

Substituting expressions (16)–(20) into (21) and integrating with respect to s, one

obtains the one-dimensional expression for the virtual work equation given by

LK CLP Z 0 (25)

where Lk and Lp represent the virtual work contributions due to the internal and external

forces, respectively. The corresponding expressions are given below

LK Z

ðL
0

du0
0½N Cu0

0NKMzðq
0
z cos f Cq0

y sin fÞKMyðq
0
y cos f Cq0

z sin fÞ

(

KQyðqz cos f Cqy sin fÞKQzðqy cos f Cqz sin fÞ�

Cdv0ðQy cos fKQz sin f Cv0NÞCdw0ðQz cos f CQy sin f Cw0NÞ

Cdqz KQyð1 Cu0
0Þcos f CQzð1 Cu0

0Þsin f C
1

2
ðQzy0KQyz0Þq

0
y K

1

2
Tsvq0

y

�

K
1

2
Bq00

y CNf0z0 cos f

�
Cdq0

z KMzð1 Cu0
0Þcos f Cq0

zPzz Cq0
yPyz

�

CNz0 sin f CMyð1 Cu0
0Þsin f C

1

2
ðQyz0KQzy0Þqy C

1

2
Tsvqy

�

Cdqy

1

2
Bq00

z KNf0y0 cos fKQzð1 Cu0
0Þcos fKQyð1 Cu0

0Þsin f

�

C
1

2
ðQyz0KQzy0Þq

0
z C

1

2
Tsvq0

z

�
Cdq0

y KMyð1 Cu0
0Þcos fKMzð1 Cu0

0Þsin f
�

KNy0 sin f C
1

2
ðQzy0KQyz0ÞqzK

1

2
Tsvqz Cq0

zPyz Cq0
yPyy

�

Cdf½Myððq
0
y Cq0

yu0
0Þsin f C ðq0

z Cq0
zu

0
0Þcos fÞCMzððq

0
z Cq0

zu
0
0Þsin f



Kðq0
y Cq0

yu0
0Þcos fÞKNf0ðz0qzKy0qyÞsin f CNðz0q0

zKy0q0
yÞcos f

CQyððqzKv0 Cqzu
0
0Þsin fKðqy Kw0 Cqyu0

0Þcos fÞCQzððqy Kw0 Cqyu0
0Þsin f

CðqzKv0 Cqzu
0
0Þcos fÞ�Cdq00

z

1

2
Bqy Kdq00

y

1

2
Bqz Cdf0½Tw CTsv CB1f0

CNðqzz0Kqyy0Þcos f�Cdq0BKdqTw

)
dx ð26Þ

LP Z

ðL
0

Kqxdu0KqydvKqzdwKbdqKdq0
z

1

2
bqy Cdq0

y

1

2
bqz

�

Cdqz mz cos fKðmy Cz0qxÞsin f C
1

2
bq0

y C
1

2
lmxqy Clyqz

� �

Cdqy my cos f C ðmz Cy0qxÞsin fK
1

2
bq0

z C
1

2
lmxqz Clzqy

� �

Cdf½Kmx cos fKðmzqz CmyqyÞsin fKðmy Cz0qxÞqz cos f

Cðmz Cy0qxÞqy cos f Csin fðly Clz Cz0qz Cy0qyÞ�

)
dx

C K�Ndu0K �QydvK �QzdwK �BdqKdq
0
z

1

2
qy

�B Cdq
0
y

1

2
qz
�B

����
Cdqz

�Mz cos fKð �My C �Nz0Þsin f C
1

2
q0

y
�B Cqz

�ly C
1

2
qy
�lmx

� �

Cdqy
�My cos f C ð �Mz C �Ny0Þsin fK

1

2
q0

z
�B Cqy

�lz C
1

2
qz
�lmx

� �

Cdf½K �Mx cos fKsin fð �Mzqz C �MyqyÞKcos fð �MyqzK �Mzqy

C �Nz0qzK �Ny0qyÞC �B1 sin f�

�����
xZL

xZ0

ð27Þ

where qx, qy, qz, mx, my, mz, b, ly, lz, and lmx are resultants of the applied wall surface

tractions as defined in Appendix C. In the same way, �N, �Qy, �Qz, �Mz, �My, �B, �Mx, �ly, �lz, �lmx,

and �B1 are defined in Appendix C and represent the resultants of the applied end tractions.
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7. Beam forces

In the above expressions, the following 1D beam forces, in terms of the shell stress

resultants, have been defined
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N Z

ð
Nxxds; MY Z

ð
Nxx

�Z CMxx

dY

ds

� �
ds;

MZ Z

ð
Nxx

�Y KMxx

dZ

ds

� �
ds; QZ Z

ð
Nxs

dZ

ds
CNxn

dY

ds

� �
ds;

QY Z

ð
Nxs

dY

ds
KNxn

dZ

ds

� �
ds; Tw Z

ð
ðNxsðrKjÞCNxnlÞds;

B Z

ð
ðNxxupKMxxlÞds; Tsv Z

ð
ðNxsjK2MxsÞds

(28)

where N corresponds to the axial force, Qy and Qz to shear forces, My and Mz to bending

moments about �y- and �z-axis, respectively, B to the bimoment, Tw to the flexural–torsional

moment and Tsv to the Saint–Venant torsional moment. In addition, the following four

high-order stress resultants have been defined:

B1 Z

ð
½NxxðY

2 CZ2ÞK2Mxxr�ds; Pyy Z

ð
Nxx

�Z2 C2Mxx
�Z

dY

ds

� �
ds;

Pzz Z

ð
Nxx

�Y2 K2Mxx
�Y

dZ

ds

� �
ds;

Pyz Z

ð
Nxx

�Y �Z CMxx
�Y

dY

ds
K �Z

dZ

ds

� �� �
ds

(29)

In expressions (28) and (29), the integration is carried out over the entire length of the

mid-line contour.

The relations among the generalized beam forces and the generalized strains

characterizing the behavior of the beam are obtained by substituting the expressions

(16)–(20) into (23), and the results into (28) and (29). This constitutive law can be

expressed in terms of a beam stiffness matrix [K] as defined in Appendix B.
8. The discretized equilibrium problem

The equations of motion (25) are discretized to analyze the behavior of simply

supported beams under different load conditions. The displacements are approximated by

means of the following functions, which are compatible with the boundary conditions of

the beam

u Z u0

x

L
; v Z v0 sin

p

L
x

 !
; qz Z qz0

cos
p

L
x

 !
;

w Z w0 sin
p

L
x

 !
; qy Z qy0

cos
p

L
x

 !
; f Z f0 sin

p

L
x

 !
;

q Z q0 cos
p

L
x

 !
(30)



Table 1

Materials consider in the numerical applications

Properties Glass/epoxy (M1) Graphite/epoxy (M2)

Young’s modules (GPa)

E1 48.3 144

E2 19.8 9.65

Shear’s modules (GPa)

G12ZG13 8.96 4.14

G23 6.19 3.45

Poisson’s ratio

n12Zn13 0.27 0.3

n23 0.60 0.5
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where u0, v0, w0, qz0
, qy0

, f0 and q0 are the associated displacement amplitudes. Besides,

these functions (30) represent the exact solution for the linear analysis of thin-walled

beams [13]. In order to solve the variational system (25), Ritz’s method is first applied.

After integration along the beam length according to the adopted functions for the

displacements, a coupled and strongly non-linear algebraic system is obtained. This

resulting system has an extremely complicated form and, for this reason, is not presented

here. An incremental-iterative method based on the Newton–Rapshon method is employed

for solving the non-linear equilibrium equations.
9. Applications and numerical results

In the following numerical results, the shear effect on the thickness gð0Þ
xn has been

neglected because its consideration conduces to inaccurate results for thin-walled sections,

as explained Piovan [18]. He showed that the inclusion of thickness shear–deformation

effect increases erroneously the rigidity instead of flexibilizing the beam behavior.

Different cross-sectional shapes, laminate schemes and beam lengths are considered to

perform the numerical analysis. Material properties corresponding to S2-glass/epoxy (M1)

and AS4/3501 graphite/epoxy (M2) were used (see Table 1). The analyzed cross-sections

are shown in Fig. 2.
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Fig. 2. Analyzed cross-sectional shapes.
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10. Flexural–torsional stability analysis

Flexural–torsional buckling and post-buckling of a simply supported beam subjected to

a concentrated axial force applied to the centroid is studied. In order to investigate this

behavior, the following cases are considered.

10.1. Bisymmetric open cross-section

The example considered is a simply supported bisymmetric-I section whose geometric

properties are LZ6 m, hZ0.6 m, bZ0.6 m, eZ0.03 m. The analyzed material is graphite-

epoxy (M2). In this example (y0Zz0Z0), the equilibrium equations are non-linear but

uncoupled. Therefore, there are three buckling modes corresponding either to bending or

to torsion. Taking into account that the flexural mode corresponding to displacement v

(y-direction) has the smallest buckling load, the post-buckling curves are presented for the

displacement amplitude v0. The load-deflection curves are shown, in Fig. 3, for different

laminate stacking sequences. Moreover, two models are compared: the present theory

(model I) and results obtained by neglecting shear flexibility (model II). It is observed

from the figures that the post-buckling equilibrium paths are stable and symmetric. The

sequence of lamination {0/0/0/0} presents the highest buckling load and also the largest

load carrying capacity after buckling. In addition, the shear–deformation effect is

considerably more important when this one is used. As may be seen in this case, shear

effect reduces the values of the equilibrium path in about 21% with respect to the non-

shearable theory. On the other hand, the sequence of lamination {45/K45/K45/45}

presents limited margins of post-buckling strength due to its flat shape. Besides, both with
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Fig. 3. Post-buckling paths (P,v0), (–) present theory, (- - -) neglecting shear flexibility.



Table 2

Buckling loads for I-beam subjected to axial force, LZ6 m (P!106 N)

Lamination Model I Model II Cosmos/M

{0/0/0/0} 33.18 42.11 30.02

{0/90/90/0} 19.84 22.57 20.02

{45/K45/K45/45} 4.44 4.45 4.38
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and without shear–deformation curves are practically coincident for this last type of

lamination.

In Table 2, the linear buckling loads are given for models I and II, and compared with

the buckling loads calculated using shell finite elements (Shell4L) from the program

Cosmos/M [19]. An acceptable agreement between the present beam theory and Cosmos/

M shell finite element is observed. The simply supported thin-walled I-beam was modeled

by 120 shell elements and its buckled mode shape is shown in Fig. 4, for a lamination

{0/90/90/0}.
10.2. Bisymmetric closed cross-section

In this example, a bisymmetric-Box section is considered with the following geometric

properties: LZ6 m, hZ0.6 m, bZ0.3 m, eZ0.03 m. The analyzed material is the same as

the previous example graphite-epoxy (M2). The non-linear behavior of this box beam

(y0Zz0Z0) subjected to an axial force is similar to the previous example. The load–

deflection curves are shown, in Fig. 5, for different laminate stacking sequence. Again, two

models are compared: present theory (model I) and results obtained by neglecting shear

flexibility (model II). The post-buckling equilibrium paths are stable and symmetric. The

beam with unidirectional fibers shows the stiffest post-buckling behavior and then the

highest buckling load with respect to the other laminations. In addition, the shear–

deformation effect is considerably more important for this beam. For the sequence of

lamination {45/K45/K45/45}, there is no influence of the shear–deformation and its

additional load carrying capacity after buckling is limited.
Fig. 4. Buckling mode for a beam I under an axial load, {0/90/90/0}.
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In Table 3, the buckling loads of the present study are given for models I and II, and

compared with the buckling loads calculated using shell finite elements (Shell4L) from the

program Cosmos/M. An acceptable agreement between the present beam theory and

Cosmos/M shell finite element is observed, while results obtained by neglecting shear

flexibility are inaccurate for the lamination {0/0/0/0} and {0/90/90/0}. The simply

supported thin-walled Box-beam was modeled by 160 shell elements and its flexural

buckling mode shape is shown in Fig. 6, for a lamination {45/K45/K45/45}.
10.3. Monosymmetric cross-section

The considered example is a monosymmetric channel section, the geometric properties

are LZ6 m, hZ0.6 m, bZ0.6 m, eZ0.03 m. The analyzed material is graphite-epoxy

(M2). In this case (z0Z0), the equilibrium equations corresponding to y-direction (v

transversal displacement) are, therefore, uncoupled. Thus, the buckling modes can

correspond either to bending in y-direction (v) or to flexural–torsional mode (w and f). For

the cross-section analyzed, the flexural–torsional mode presents the smallest buckling
Table 3

Buckling loads for Box-beam, LZ6 m (P!106 N)

Lamination Model I Model II Cosmos/M

{0/0/0/0} 24.91 37.41 21.23

{0/90/90/0} 15.80 20.05 14.54

{45/K45/K45/45} 3.88 3.89 4.01



Fig. 6. Buckling mode for a box beam under an axial load, {45/K45/K45/45}.
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load. The load–twisting curves are shown in Fig. 7, for different laminate stacking

sequence, with and without shear flexibility consideration. The post-buckling equilibrium

paths are stable and symmetric. The shear–deformation effect continues being more

significant for the lamination {0/0/0/0}and insignificant for the lamination {45/K45/

K45/45}. The sequence of lamination {0/0/0/0} has the highest buckling load and the

largest additional load carrying capacity after buckling. In Fig. 8, the initial post-buckling

paths of the amplitude displacements u0, w0 and qy0
are shown, for a sequence of

lamination {0/0/0/0} and considering the models I and II.

In Table 4, the buckling loads of the present study are given for model I and II, and

compared with the buckling loads calculated using shell finite elements (Shell4L) from the
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Fig. 7. Post-buckling paths (P,f0), (–) present theory, (- - -) neglecting shear flexibility.
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Table 4

Buckling loads for channel-beam, LZ6 m (P!106 N)

Lamination Model I Model II Cosmos/M

{0/0/0/0} 11.79 16.23 11.20

{0/90/90/0} 7.37 8.78 7.31

{45/K45/K45/45} 2.61 2.61 2.83
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program Cosmos/M. An acceptable agreement between the present beam theory and

Cosmos/M shell finite element is observed. The simply supported thin-walled channel-

beam is modeled by 120 shell elements and its flexural–torsional buckling mode shape is

shown in Fig. 9, for a lamination {45/K45/K45/45}.

10.4. The case of close buckling loads for monosymmetric sections

The considered example is a simply supported channel section subjected to a

concentrated axial force applied to the centroid. The geometric properties are hZ0.6 m,

bZ0.3 m, eZ0.03 m, and the analyzed material is Glass-epoxy (M1). For this channel

section (z0Z0), the buckling loads corresponding to the flexural mode (v) and flexural–

torsional mode (w and f), coincide for a particular beam length. The variation of the
Fig. 9. Buckling mode for a channel beam under an axial load, {45/K45/K45/45}.



Fig. 10. Buckling load variation with the length, lamination {0/0/0/0}.
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buckling loads for both modes is shown as a function of the beam length L in Fig. 10, and

for a lamination sequence {0/0/0/0}. As it is clearly shown, the buckling loads coincide for

LZ8.85 m. The buckling mode is flexural for length LO8.85 m and is flexural–torsional

for less than this value.

In linear stability and design practice, only the smallest buckling load is considered. In

post-buckling behavior, when a structure presents two close buckling loads, their

interaction must be accounted for. The initial post-buckling path of the channel section

previously investigated is shown in Fig. 11. The post-buckling equilibrium paths are stable
Fig. 11. Post-buckling paths for a channel-beam, {0/0/0/0}, LZ8.85 m.
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and symmetric. In particular, load–twisting and warping curves (the upper-left curve) are

initially flat and then suddenly stiffen. On the other hand, the secondary paths

corresponding to the displacement amplitudes v0 and qz0
(the bottom-left curve) show a

stiffer behavior in comparison with the ones corresponding to the displacement amplitudes

w0 and qy0
(the upper-right curve).
11. Lateral stability analysis

When the beam is loaded in the plane the symmetry this initially deflects. However, at a

certain level of the applied load, the beam may buckle laterally, while the cross-sections of

the beam rotate simultaneously about the beam’s axis. This phenomenon is called lateral

buckling, and the value of the load at which buckling occurs is the critical load. The initial

deflection corresponds to the pre-buckling state, also called ‘the fundamental state’. When

the buckling load is reached, the behavior of the beam is flexural–torsional. In order to

investigate the non-linear lateral stability of three-dimensional beams, we consider a

simply supported beam subjected to concentrated end moments, concentrated forces, or

uniformly distributed load.

11.1. Simply supported I-beam subjected to uniform moments

A simply supported I-beam subjected to uniform bending moment is considered (with

end moments Mo applied about its major axis) as shown in Fig. 12. The geometric
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properties are hZ0.6 m, bZ0.6 m, eZ0.03 m, and the analyzed material is graphite-

epoxy (M2). The equilibrium equations are completely coupled. The initial post-buckling

paths of the amplitude displacements v0, qz0
, w0, qy0

, f0 and q0 are shown in Figs. 13–15,

for a beam length LZ6 m and lamination sequence {0/0/0/0}, {0/90/90/0} and

{45/K45/K45/45}, respectively. The post-buckling equilibrium paths are stable and

symmetric. We observe that the initial post-buckling behavior is similar for the different

sequence of lamination analyzed. The lamination {0/0/0/0} presents the highest buckling

load and the largest additional load carrying capacity after buckling. On the other hand, the

lamination {45/K45/K45/45} presents the lowest critical load and the greatest pre-

deflection w0 (pre-buckling state). The load–twisting curves are shown in Fig. 16, for

different laminate stacking sequence and LZ6 m, considering two models: present theory

(model I) and a non-shearable model (model II). The shear–deformation effect decreases

considerably the values of the equilibrium path curves when the lamination {0/0/0/0} is

used, while this effect has no influence for the lamination {45/K45/K45/45}. Again, the

load–twisting curves for a laminate stacking sequence {0/0/0/0} are shown in Fig. 17, but

now considering three different beam lengths. It is observed from Fig. 16 that the influence
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of shear–deformation is more significant on the post-buckling paths as the beam length

decreases. On the other hand, the margins of post-buckling strength are smaller as the

beam length increases.

Table 5 shows the buckling moments considering both the linear buckling behavior

(classical linear theory [1,20]) and the present theory (geometrically non-linear theory). In

the former case, buckling is assumed to be independent of the pre-buckling deflections. As

can be seen, the discrepancy between the present buckling moments (considering pre-

buckling deflections) and the linear buckling moments is remarkable. The buckling

moments computed with the linear stability analysis show a very conservative behavior

compared with those computed with the non-linear stability. The influence of the non-

linear deflection on the critical loads remains important for the different laminate stacking

sequences and beam lengths.
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Table 5

Buckling loads for I-beam subjected to end moments, (Mo!106 N m)

L (m) Buckling analysis {0/0/0/0} {0/90/90/0} {45/K45/K45/45}

4 Non-linear 26.82 15.96 4.23

Linear 22.61 13.44 3.55

6 Non-linear 13.53 7.71 2.19

Linear 11.42 6.51 1.85

12 Non-linear 3.92 2.12 0.85

Linear 3.21 1.79 0.72
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11.2. Simply supported I-beam subjected to distributed load

In this example, a simply supported I-beam under distributed load is considered for

three load positions, as shown in Fig. 18. The load can be applied to the top flange (case a),

on the shear center (case b), and to the bottom flange (case c). Attention is focused on the

importance of the load height parameter effect on the buckling and post-buckling

behavior. The geometrical and material properties are the same as the previous example.

The load–twisting curves are shown in Fig. 19, for a beam length LZ6 m and different

laminate stacking sequence. The beam behavior is reported for the three loads heights. The

post-buckling equilibrium paths are stable and symmetric. The bifurcation point depends

on the load height parameter. We observe that the beam resistance to lateral buckling is

larger when the loads are applied on the bottom flange (case c). In Figs. 20–22, the initial

post-buckling paths of the amplitude displacements v0, qz0
, w0, qy0

, f0 and q0 are shown,

for the load applied on the top flange, centroid and bottom flange, respectively. A beam

length LZ6 and a sequence of lamination {0/0/0/0} is considered. It is observed from the

figures that the load–twisting and warping curves (f0 and q0) are similar for the different

load heights. On the other hand, the load–deflection curves v0 presents a stiffer behavior

when the load is applied on the top flange. In addition, the pre-buckling displacement w0 is

important in all the cases, but it is quite larger when the load is applied on the bottom

flange (Fig. 22).

In Table 6, the buckling loads of the present study are compared with results obtained

from the linear analysis, for different lamination and considering the three load height

cases. In this case, the influence of the non-linear pre-buckling on the buckling loads is

notable, and it becomes greater when the load is applied to the bottom flange. This last fact

has been also observed in Fig. 22 for the w0 pre-buckling behavior.
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Fig. 18. Different load heights.



2

4

6

8

10

qz
 (

M
N

m
)

qz
 (

M
N

m
)

qz
 (

M
N

m
)

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
φ0 (rad)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
φ0 (rad)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
φ0 (rad)

0.2

0.4

0.6

0.8

1

{45/-45/-45/45}

{0/90/90/0}{0/0/0/0}

(b) (b) 

(c) (c) 

(a) (a) 

(a)

(b)

(c)

Fig. 19. Lateral post-buckling paths for a I-beam, LZ6 m.

S.P. Machado, V.H. Cortı́nez / Thin-Walled Structures 43 (2005) 1615–16451636
11.3. Simply supported C-beam subjected to end moments

The example considered here is a simply supported channel beam subjected to equal

end moments Mo applied about its major axis, as shown in Fig. 12. The geometric

properties are hZ0.6 m, bZ0.3 m, eZ0.03 m. The analyzed material is graphite-epoxy

(M2). The initial post-buckling curves are shown in Figs. 23–25, for a beam length LZ6 m

and for the laminate stacking sequences {0/0/0/0}, {0/90/90/0} and {45/K45/K45/45},

respectively. Figs. show that the post-buckling equilibrium paths are stable and
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symmetric. It is observed that the rate of growth of the twisting rotation with load is greater

than the analogous rates of growth of in-plane and out-of-plane bending rotations. Besides,

the behavior of these last rotations is very similar for the three lamination sequence

analyzed.

Table 7 shows the buckling moments considering both the linear buckling analysis

(classical theory) and the geometrically non-linear analysis (present theory). In this case,
Table 6

Buckling loads for I-beam subjected to distributed load, LZ6 m (qz!106 N m)

Load height Buckling analysis {0/0/0/0} {0/90/90/0} {45/K45/K45/45}

Top Non-linear 1.99 1.15 0.38

Linear 1.75 1.03 0.36

Centroid Non-linear 3.69 2.03 0.55

Linear 2.87 1.64 0.46

Bottom Non-linear 6.82 3.57 0.81

Linear 4.71 2.61 0.64
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Fig. 24. Lateral post-buckling paths for a channel beam, {0/90/90/0}, LZ6 m.
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Fig. 25. Lateral post-buckling paths for a channel beam, {45/K45/K45/45}, LZ6 m.
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Table 7

Buckling loads for I-beam subjected to end moments, LZ6 m (Mo!106 N m)

Buckling analysis {0/0/0/0} {0/90/90/0} {45/K45/K45/45}

Non-linear 2.67 1.70 0.70

Linear 2.60 1.65 0.68
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the agreement between the linear and non-linear buckling loads is very good, because the

pre-buckling displacements are negligible.

11.4. Simply supported Box-beam subjected to a concentrated load

A simply supported Box-beam loaded by a transverse force Qz at the middle of the span

is considered for two load positions, as shown in Fig. 26. The load can be applied to the top

beam face (case a) and to the bottom beam face (case b). The geometric properties are LZ
6 m, hZ0.6 m, bZ0.3 m, eZ0.03 m. The analyzed material is the same as the previous

examples graphite-epoxy (M2). In Figs. 27–29, the initial post-buckling paths of the

amplitude displacements v0, qz0
, w0, qy0

, f0 and q0 are shown, considering both load height,

and for lamination sequences {0/0/0/0}, {0/90/90/0} and {45/K45/K45/45}, respect-

ively. In this case, the lamination {45/K45/K45/45} presents the greatest resistance to

buckling when the load is applied to the upper beam face. Besides, for this last lamination

the pre-deflection w0 is considerably larger, as also the rate of growth of the deflection v0

with load is greater than the other lamination sequences, in both load conditions. On the

other hand, the lamination {0/0/0/0} presents the highest critical load when this load is

applied to the bottom beam face.
L

Z
Qz

a b

y

Z

y

Z

Fig. 26. Box-beam subjected to different load heights.
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The buckling loads of the present study (pre-buckling behavior) are compared with

those obtained by the classical linear analysis in Table 8. The influence of the pre-

deflection on the buckling loads is very important in this case. It becomes greater when the

load is applied to the bottom face. On the other hand, the beam with unidirectional fibres

shows a notable difference in the pre-buckling effect when the load position is changed (as

can also be observed in the pre-buckling state, Fig. 27).
12. Conclusions

In this paper, a geometrically non-linear theory of thin-walled composite beams is

presented to investigate numerically the buckling and post-buckling behavior of simply

supported beams. The theory is formulated in the context of large displacements and
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Fig. 29. Post-buckling paths {45/K45/K45/45}, left curves, load on top; right curves, load on bottom.

Table 8

Buckling loads for Box-beam subjected to a concentrated load, LZ6 m (Qz!106 N)

Load height Buckling analysis {0/0/0/0} {0/90/90/0} {45/K45/K45/45}

Top Non-linear 14.37 11.70 21.60

Linear 12.11 9.63 15.57

Bottom Non-linear 31.93 21.27 23.84

Linear 23.43 15.70 16.76
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rotations, through the adoption of a shear–deformable displacement field (accounting for

bending and warping shear) considering moderate bending rotations and large twist.

The beam model is valid for arbitrary cross-sections, either open or closed. Based on the

Ritz’s method, an algebraic system is obtained and then solved by an incremental

Newton–Raphson algorithm.

From the numerical examples studied, it is found that the agreement between the non-

linear buckling loads of the present study and the linear buckling loads obtained with the

classical theory are very good when the pre-buckling displacements are small. However,

for cases with large pre-buckling displacements, the buckling loads obtained by means of

the classical linear theory are very conservative. Thus, when the pre-buckling

displacements are not negligible, a non-linear buckling analysis may be required for

reliable solutions. From the analysis of laterally loaded beams, it has been established that

the buckling loads and the pre-buckling behavior is highly dependent on the load height

parameter. On the other hand, the post-buckling curves of the beam showed a stable and

symmetric behavior in all the cases analyzed.

Moreover, the shear–deformation effect has been investigated, showing a significant

influence for certain laminations, in fact when the beam presents longitudinal fibers. The

shear–deformation may significantly decrease the buckling loads and the values of the

equilibrium path (post-buckling) of short beams.

Finally, in future works we will extend the application of the present model, for

analyzing beams with different boundary conditions.
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Appendix A

The following displacement field corresponding to the one developed by Fraternali and

Feo [18], but referred to our Cartesian co-ordinate system is given by (see Fig. 1):

ux Z u0Kv0 �yKw0 �z Cfv0zKfw0y Cu f0K
1

2
ðw00v0Kw0v00Þ

� �

uy Z vKfz C
1

2
ðKf2yKv02 �yKv0w0 �zÞ

uz Z w Cfy C
1

2
ðKf2zKw02 �zKv0w0 �yÞ

(A1)

This last is based on the principle of semi-tangential rotation defined by Argyris [21] to

avoid the difficulty due to the non-commutative nature of rotations. A remarkable

characteristic of this displacement field is the calculation of the warping function carried
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out on the bases of two assumptions:

3xn Z 0; 3xsjnZ0 Z 0 (A2)

Finally, these last assumptions are not taken into account in the expression (4).
Appendix B

The constitutive law for a bisymmetric beam is defined in the following form

ffgg Z ½K�fDg (B1)

ffgg Z N My Mz B Qy Qz Tw Tsv B1 Pyy Pzz Pyz

� "T
(B2)

where {fg} is the vector of generalized forces, {D} is the vector of the generalized strains.

The elements of the symmetric matrix [K] (12!12) are given by the following contour

integrals, being null the matrix elements that are not indicated below

K1;1 Z

ð
�A11 ds; K1;9 Z

ð
�A11ðY

2 CZ2Þds; K1;10 Z

ð
�A11

�Z2
ds;

K1;11 Z

ð
�A11

�Y2
ds; K1;12 Z

ð
�A11

�Y �Z ds; K2;2 Z

ð
ð �A11Z2 C �D11Y 02Þds;

K2;9 Z

ð
½ �A11

�ZðY2 CZ2ÞK2 �D11rY 0�ds; K2;10 Z

ð
ð �A11

�Z3 C2 �D11
�ZY 02Þds;

K2;11 Z

ð
ð �A11

�Y2 �ZK2 �D11
�YY 0Z 0Þds; K2;12 Z

ð
½ �A11

�Y �Z2 C �D11ð �YY 0K �ZZ 0ÞY 0�ds;

K3;3 Z

ð
ð �A11Y2 C �D11Z 02Þds; K3;9 Z

ð
½ �A11

�YðY2 CZ2ÞC2 �D11rZ 0�ds;

K3;10 Z

ð
ð �A11

�Y �ZK2 �D11
�ZY 0Z 0Þds; K3;11 Z

ð
ð �A11

�Y3 C2 �D11
�YZ 02Þds;

K3;12 Z

ð
½ �A11

�Y2 �ZK �D11ð �YY 0K �ZZ 0ÞZ 0�ds; K4;4 Z

ð
ð �A11u2

p C �D11l2Þds;

K4;9 Z

ð
½ �A11upðY

2 CZ2ÞC2 �D11rl�ds; K4;10 Z

ð
ð �A11up

�Z2K2 �D11
�ZY 0lÞds;

K4;11 Z

ð
ð �A11up

�Y C2 �D11
�YZ 0lÞds; K4;12 Z

ð
½ �A11

�Yup
�ZK �D11ð �YY 0K �ZZ 0Þl�ds;
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K5;5 Z

ð
ð �A55Z 02 C �A66Y 02Þds; K5;6 Z

ð
ð �A66 K �A55ÞZ

0Y 0 ds;

K5;7 Z

ð
½ �A66Y 0ðrKjÞK �A55Z 0l�ds; K5;8 Z

ð
�A66jY 0 ds;

K6;6 Z

ð
ð �A55Y 02 C �A66Z 02Þds; K6;7 Z

ð
½ �A66Z 0ðrKjÞC �A55Y 0l�ds;

K6;8 Z

ð
�A66jZ 0 ds; K7;7 Z

ð
½ �A66ðrKjÞ2 C �A55l2�ds;

K7;8 Z

ð
�A66jðrKjÞds; K8;8 Z

ð
ð �A66j2 C4 �D66Þds;

K9;9 Z

ð
½ �A11ðY

2 CZ2Þ2 C4 �D11r2�ds;

K9;10 Z

ð
½ �A11ðY

2 CZ2Þ �Z2K4 �D11
�ZY 0r�ds;

K9;11 Z

ð
½ �A11ðY

2 CZ2Þ �Y2 C4 �D11
�YZ 0r�ds;

K9;12 Z

ð
½ �A11ðY

2 CZ2Þ �Y �ZK2 �D11ð �YY 0K �ZZ 0Þr�ds;

K10;10 Z

ð
ð �A11

�Z4 C4 �D11
�Z2

Y 02Þds;

K10;11 Z

ð
ð �A11

�Z2 �Y2K4 �D11
�ZY 0 �YZ 0Þds;

K10;12 Z

ð
½ �A11

�Z3 �Y C2 �D11ð �YY 0K �ZZ 0Þ �ZY 0�ds;

K11;11 Z

ð
ð �A11

�Y4 K4 �D11
�Y2

Z 02Þds;

K10;12 Z

ð
½ �A11

�Y3 �ZK2 �D11ð �YY 0K �ZZ 0Þ �YZ 0�ds;

K12;12 Z

ð
½ �A11

�Z2 �Y2 C �D11ð �YY 0K �ZZ 0Þ2�ds;

(B3)

where

Y 0 Z
dY

ds
; Z 0 Z

dZ

ds
; (B4)
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Appendix C

The resultants of the applied wall surface tractions appearing in (27) are defined below:

qx Z

ð
�qx ds C

ðð
�f x dsdn qy Z

ð
�qy ds C

ðð
�f y dsdn

qz Z

ð
�qz ds C

ðð
�f z dsdn b Z

ð
�qxup ds C

ðð
�f xu dsdn

mz Z

ð
�qx
�Y ds C

ðð
�f x �y dsdn my Z

ð
�qx
�Z ds C

ðð
�f x �z dsdn

mx Z

ð
ð �qz

�Y K �qy
�ZÞds C

ðð
ð �f z �yK �f y �zÞdsdn Cqzy0 Kqyz0

ly Z

ð
�qy
�Y ds C

ðð
�f z �y dsdn lz Z

ð
�qz
�Z ds C

ðð
�f z �z dsdn

lmx Z

ð
ð �qy

�Z C �qz
�YÞds C

ðð
ð�f y �z C �f z �yÞdsdn

(C1)

The resultants of the applied end tractions are:

�N Z

ðð
�px dsdn �Qy Z

ðð
�py dsdn �Qz Z

ðð
�pz dsdn

�Mz Z

ðð
�px �y dsdn �My Z

ðð
�px �z dsdn �B Z

ðð
�pxu dsdn

�Mx Z

ðð
ð �pzð �y Cy0ÞK �pyð�z Cz0ÞÞdsdn �ly Z

ðð
�py �y dsdn

�lz Z

ðð
�pz �z dsdn �lmx Z

ðð
ð �py �z C �pz �yÞdsdn

�B1 Z

ðð
ð �pyð �y Cy0ÞC �pzð�z Cz0ÞÞdsdn

(C2)
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