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Abstract

A geometrically non-linear theory for thin-walled composite beams is developed for both open
and closed cross-sections and taking into account shear flexibility (bending and warping shear). This
non-linear formulation is used for analyzing the static stability of beams made of composite
materials subjected to concentrated end moments, concentrated forces, or uniformly distributed
loads. Composite is assumed to be made of symmetric balanced laminates or especially orthotropic
laminates. In order to solve the non-linear differential system, Ritz’s method is first applied. Then,
the resulting algebraic equilibrium equations are solved by means of an incremental Newton—
Rapshon method. This paper investigates numerically the flexural-torsional and lateral buckling and
post-buckling behavior of simply supported beams, pointing out the influence of shear—deformation
for different laminate stacking sequence and the pre-buckling deflections effect on buckling loads.
The numerical results show that the classical predictions of lateral buckling are conservative when
the pre-buckling displacements are not negligible, and a non-linear buckling analysis may be
required for reliable solutions.
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1. Introduction

Structural members made of composites are increasingly used in aeronautical,
mechanical and civil engineering applications, where high strength and stiffness, and low
weight are of primary importance. Many structural members made of composites have the
form of thin-walled beams. The load carrying capacity of this kind of members is often
governed by instability. Thin-walled beams may fail in a flexural or/and torsional buckling
mode: the beam suddenly deflects laterally or twists out of the plane of loading. The
buckling of the beam is caused by the coupling among bending, twisting and stretching
deformations. For this reason, a non-linear theory is required for the accurate behavior
prediction of such structures. The limitation of the linear buckling analysis of beam
problems [1] is the omission of any consideration of the effect of pre-buckling deflections
of the beam. This omission is not important when the pre-buckling deflection of the beam
is negligible. In other cases, however, the effect of the pre-buckling deflections must be
taken into account for obtaining accurate predictions of buckling loads. For example,
lateral buckling is a relevant phenomenon [2] that, in particular, involves mechanical
complications, since structures may experience large or moderately large deflections and
rotations before buckling occurs. Moreover, the linear buckling gives no information
about the shape of the secondary path of equilibrium (post-buckling). Sometimes the
behavior of a structure can be understood only if the shape of the secondary path is known.
Thus, the additional load carrying capacity after buckling can be determined.

Keeping in mind the importance of the problem, a significant amount of research has
been conduced in recent years toward the development of non-linear theories of three-
dimensional beams. Most of these have been confined to metallic structures [3-7], for
example]. On the other hand, the amount of work carried out on thin-walled beams made
of composite materials has been rather limited. Bhaskar and Librescu [8] presented a
geometrically non-linear theory for thin-walled composite beams, but post-buckling
analyzes were not performed. The non-linear stability analysis of thin-walled composite
beams with open cross-section has been recently investigated by Fraternali and Feo [9]
using a finite element formulation and without considering shear—deformation.

The objective of this paper is to investigate the post-buckling behavior and the effect of
pre-buckling deflections on the buckling loads of thin-walled composite beams using a
geometrically non-linear beam theory, for both open and closed cross-sections and taking
into account several non-classical effects. On the other hand, it is valid for symmetric
balanced laminates and especially orthotropic laminates [10]. As a distinctive feature, the
present beam model incorporates, in a full form, the effects of shear flexibility (bending
and warping shear). This shear effect plays an important role in the analysis of linear
stability of thin-walled composite beams [11-14]. In this paper, the non-linear model is
used to predict the post-buckling behavior of simply supported thin-walled composite
beams subjected to different load conditions. This work is basically divided into two kinds
of analysis. First, the flexural—torsional post-buckling of beams subjected to a compression
load is studied for different cross-sectional shapes. Then, beams with uniform bending
moments, concentrated forces, or uniformly distributed load are considered to investigate
the lateral buckling and post-buckling behavior. In all the cases, the influence of shear—
deformation is analyzed for different laminate stacking sequences.
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2. Kinematics

A straight thin-walled composite beam with an arbitrary cross-section is considered
(Fig. 1). The points of the structural member are referred to a Cartesian co-ordinate system
(x,¥,7), where the x-axis is parallel to the longitudinal axis of the beam while ¥ and 7 are
the principal axes of the cross-section. The axes-y and -z are parallel to the principal ones
but having their origin at the shear center (defined according to Vlasov’s theory of
isotropic beams). The co-ordinates corresponding to points lying on the middle line are
denoted as Y and Z (or ¥ and Z). In addition, a circumferential co-ordinate s and a normal
co-ordinate n are introduced on the middle contour of the cross-section:

y(S,l’l) = Y(s)_nd_z, Z(S,n) =Z(s)+nd—Y (1)
ds ds
dz dy

y(s,n) = Y(s)—n—, 2(s,n) = Z(s) +n— ?)
ds ds

On the other hand, yy and zj are the centroidal co-ordinates measured with respect to the
shear center:

)_7(5, n) = )’(Sy n)_yO Z(S, i’l) = Z(Sa n)_ZO (3)

The present structural model is based on the following assumptions [13]:

(1) The cross-section contour is rigid in its own plane.

(2) The warping distribution is assumed to be given by the Saint—Venant function for
isotropic beams.

(3) Flexural rotations (about the y- and z-axes) are assumed to be moderate, while the
twist ¢ of the cross-section can be arbitrarily large.

(4) Shell force and moment resultant corresponding to the circumferential stress o, and
the force resultant corresponding to v, are neglected.
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Fig. 1. Co-ordinate system of the cross-section and notation for displacement measures.
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(5) The radius of curvature at any point of the shell is neglected.

(6) Twisting linear curvature of the shell is expressed according to the classical plate
theory.

(7) The laminate stacking sequence is assumed to be symmetric and balanced, or
especially orthotropic [10].

According to these hypotheses, the displacement field is assumed to be in the following
form:

u, = uy—y(0, cos ¢ + 6, sin ¢) —z(6, cos ¢ — 6, sin ¢)

1 .
+w |:6_§(6;HZ - (9),0;,):| + (ezZO - 6}'y0)81n ¢

L “4)
u, =v—zsin ¢ —y(1 —cos ¢)—§(0J +6.6,2)

1
u, =w +ysin ¢ —z(1 —cos ¢)—§(0§z + 0.0,5)

This expression is a generalization of others previously proposed in the literature.

The displacement field proposed by Fraternali and Feo [9] is recovered (see Appendix
A) by considering 6,=V', §,=w' and §=¢’' (neglecting flexural and torsional shear
flexibility), approximating cos ¢ and sin¢ by (1—¢%/2) and ¢, respectively, and
conserving non-linear terms up to second-order. Moreover, the displacement field of the
classical Vlasov theory is obtained when second-order effects are ignored.

On the other hand, a simplified analog of Eq. (4), disregarding the underlined terms and
shear flexibility, was used by Mohri [6].

As a final comparison, taking cos ¢ =1 and sin ¢ = ¢ and disregarding the non-linear
terms, the displacement field (4) coincides with the one formulated by Cortinez and Piovan
[13] for linear dynamics of shear—deformable thin-walled beams.

In the above expressions, ¢, 6, and 6, are measures of the rotations about the shear
center axis, y- and Z-axes, respectively; # represents the warping variable of the cross-
section. Furthermore, the superscript ‘prime’ denotes derivation with respect to the
variable x. The warping function w of the thin-walled cross-section may be defined as

w(s,n) = wp(s) + w(s, n) 5)

where w;, and wg are the contour warping function and the thickness warping function,
respectively. They are defined in the form [15]

S s K

1

) = J J[r(s)—w(snds ds —j[r(s)—¢(s>]ds w(sin) = —nl(s)  (6)
0 ) So
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where
dy dz
r(s) = _Z(S)E +7Y (S)E )
dYy dz
I(s) = Y(S)E + Z(S)E (®

r(s) represents the perpendicular distance from the shear center (SC) to the tangent at any
point of the mid-surface contour, and I(s) represents the perpendicular distance from the
shear center (SC) to the normal at any point of the mid-surface contour, as shown in Fig. 1.

In the expression (6), ¥ is the shear strain at the middle line, obtained by means of the
Saint—Venant theory of pure torsion for isotropic beams, and normalized with respect to
d¢/dx [16]. For the case of open sections, ¥ =0.

3. The strain field

The displacements with respect to the curvilinear system (x,s,n) are obtained by means
of the following expressions:

U= u,(x,s,n) 9
_ dy dz

V = u,(x,s,n) 4 + u,(x,s,n) 4 (10)
_ dz dYy

W= —uy(x,s,n)a —i—uz(x,s,n)a 11

The three non-zero components ¢,,, €., &, Of the Green’s strain tensor are given by:
0 1| [00\* [9V\* (oW’

=—4+—||—— — —_— 12

Exx ax 2 <6x) +(6x> +<6x) (12)

_ 1[0, 3V, 00 9T oV oV , oW oW 03
=5 19s " ax | dx ds « ox s dx Os

1 aU+aW+aUaU+aVaV+aWaW (14)
G =510 T ox | ox on | ox on | ox on

Substituting expressions (4) into (9)—(11) and then into (12)—(14), employing the
relations (1)—(3) and (5)—(8), one obtains after simplifying some higher order terms, the
components of the strain tensor which can be expressed in the following form

0 1 0 1 0
e = &0 A nY v =26 =70 Akl v =26, =70 (15)
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where

O =y) +— (u62 +V7+ W) + o, |0 ——(a 0, —0,0)| + ZI(-,

—upfy)cos ¢ + (0, + upbl)sin ] + Y[(—0, —up.)cos ¢ — (6,
+ upf)sin @] + = ¢/2(Y +7H+= 0/22 += 0'2Y +0.0,2Y

+ (200, —yo0y)sin ¢ + ¢'(z08, — yob,)cos ¢ (16)

dz dy
kD = 5 [0, + upfl)cos ¢ — (6, + upby)sin ¢] + o [(—0; —uob),)cos ¢

1 _dz
+ (0. + upf.)sin o] —1 {0’ -5 (6.6 — @02’)} —r¢* — v 07

Y Y -
d 0’2 (Yc(ll—s—zdz>a’0’ a7)

dy 1 .
Ye = e {(V’ — 0. —upf)cos ¢ —zg 5 (0,6, —0,0)) + (w' — 0, —upb,)sin ¢]

+ (=¥ —0)

dz
+ " {(w — 0, —upf,)cos ¢ + yo = (020; —0,00) —(v' — 0, —upf,)sin 4

+y [qs’ —%wzﬁi - w}

(13)
Ko =2 [qb’ —%(010; —Mé)] (19)
) _ dy / / 1 / / / / .
Yer = ’n (W — 0, —uyby)cos ¢ + y, 5 (0.0, —0,6,)— (' — 8, —upb,)sin ¢
dZ !/ 1 / / / ! .
N o - —upl,)cos ¢ —z 5 (0,0, —6,6) + w — 0, —uyb,)sin ¢
+ (¢ —6)

(20)
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4. Variational formulation

Taking into account the adopted assumptions, the principle of virtual work for a
composite shell may be expressed in the form [13,17]

ﬂ(NxxéeEQ + Mo 0k + N0y Q) + M okY) + N, 0vY)dsdx

— ”(cjxéﬁx + g,0i, + G,6it;)dsdx — JJ (Prou, + p,ou, + p,ou,) dsdn
=0

x=

- JJ (Pyou, + p,ou, + p.ou,)| dsdn— Jjj(fxéux +f_,,(3uy + f,6u,)dsdndx = 0
x=L

@1

where N,., Nys, M\, M and N,, are the shell stress resultants defined according to the
following expressions:

el2 el2 el2

Ny = J T, dn; M, = J (0,,n)dn; Ny = J 0. dn;
—e/2 —e/2 —e/2
(22)
el2 el2
st = J (stn)dl’l; an = J Oxp dn
—e/2 —e/2

The beam is subjected to wall surface tractions g, g, and g, specified per unit area of
the undeformed middle surface and acting along the x-, y- and z-directions, respectively.
Similarly, p,, p, and p, are the end tractions per unit area of the undeformed cross-section
specified at x=0 and x=L, where L is the undeformed length of the beam. Besides, f,, fy
and f, are the body forces per unit of volume. Finally, denoting i,, #, and i, as
displacements at the middle line.

5. Constitutive equations

The constitutive equations of symmetrically balanced laminates may be expressed in
the terms of shell stress resultants in the following form [10]

0

=

%

Y9 (23)

1
K

1 (H)
0 0 Dy
0 0 0 Dgl Lklh

0
Agg O 0 0 Yy
0
0

=

XXz zx
Il
o o o o

a
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_ A?
A=Ay —A—lz,
2
D2
Dy =Dy, _D_12’
2

A ) _ 4 (H)
Ass —Ass -
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A0y
(H)
A44

(24)

where A, D;; and AE;" ) are plate stiffness coefficients defined according to the lamination
theory presented by Barbero [10]. The coefficient D, has been neglected because of its

low value for the considered laminate stacking sequence [13].

6. Governing equation

Substituting expressions (16)—(20) into (21) and integrating with respect to s, one
obtains the one-dimensional expression for the virtual work equation given by

LK+LP:0

(25)

where Ly and L, represent the virtual work contributions due to the internal and external
forces, respectively. The corresponding expressions are given below

L

0

—Qy(ﬁz cos ¢ + 0y sin ¢) —Qz(ﬁy cos ¢ + 0, sin ¢)]

Ly = J {6u6[N + upN —M (0. cos ¢ + 0, sin ¢p) —M,(6), cos ¢ + 0. sin ¢)

—|—6v'(Qy cos ¢ —Q, sin ¢ + VN) + ow'(Q, cos ¢ + O, sin ¢ + w'N)

1 1
+49, [—Qy(l + up)cos ¢ + Q.(1 + up)sin ¢ + 5 (Q2x0 —0,20)0, —3 Ty,

1
- BY + Nz cos ¢] + 60, [-M (1 + up)cos ¢ + 0.P_, + 0,P,,

. . 1 1
+Nzg sin ¢ + M, (1 + up)sin ¢ + 5 (Qy20 — Q.00 + > TSVH}}

1
+66, [E BO! —Ng'yy cos ¢ —Q.(1 + up)cos ¢ —Q,(1 + up)sin ¢

1 1
+ 5 (Qy20 — 000, + 5 Tsveg] + 660, [=M,(1 + up)cos ¢ —M (1 + up)sin ¢

. 1 1
_NyO sm ¢ + E(szo - QyZO)Hz _E Tsvez + ‘%Pyz + a,lvay:|

+6[M, (0,

+ Gup)sin ¢ + (0, +

0.up)cos @) + M, (0, + OLup)sin ¢
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—(0), + 0,up)cos ¢) —N¢' (290, — yoby)sin ¢ + N(zo0. —yo0;)cos ¢
+0,((8, —v' + 6.ug)sin ¢ — (6, —w' + 0\,u())cos ¢) + 0.((0, —w' + 0},u6)sin ¢

+(0, —V' + 0,up)cos ¢)] + 667 Ba 50” Ba + 0¢/[T,, + Ty, + B¢’

+N(0,29 —0,y0)cos ¢] + 60'B— 60T, } dx (26)

L
1 1
Lp = J {—qxéuo —q,0v —q,0w —bdd — o0, Ebﬁy + 60;, Ebﬁz
0
. 1., 1
+00, |m, cos ¢ —(m, + zpq,)sin ¢ + Ebﬁy + E)meﬁy + 4,0,
. 1., 1
+060, | m, cos ¢ + (m, + yoq,)sin ¢ —Ebﬂz + E/lmxﬁz + 4.0,

+0o¢[—m, cos ¢ —(m,0, + m,0,)sin ¢ —(m, + z0q,)0, cos ¢

+(@m, + yoq,)0, cos ¢ + sin ¢(A, + A, + z20q, + yoq,)] }dx

+ '—N&uo — 0,0v— 0.0w—Bo0— 0. - S 0B + 6,5 oZB

+00, [M cos ¢ — (M, + Nzp)sin ¢ + = a’B +0.2,+= 0 A}

_ _ _ 1 _ _ 1 -
+60, {My cos ¢ + (M, + Nyy)sin ¢ -3 0.B + 0,4, + 5 ezxm}

+06¢[—M, cos ¢ —sin ¢(M_0, + M,0,) —cos ¢p(M,0, —M_0,
x=L
+Nzof, —Nyob,) + B, sin ¢] 27
x=0
where gy, gy, q., My, my, m, b, A,, A, and A,,, are resultants of the applied wall surface
tractions as defined in Appendix C In the same way, N, Q}, 0., M, M LB, M, A, )

A
xo Mtys Az mxos
and B, are defined in Appendix C and represent the resultants of the apphed end tractions.
7. Beam forces

In the above expressions, the following 1D beam forces, in terms of the shell stress
resultants, have been defined
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_ dy
N:JNxde; MY :J<N,CXZ+MMd—>dS,
s

_ dz dz dY
MZ = J NxxY_Mxx_ ds; QZ _J Xs +N ds;
ds ds

0, = J (Nxs dy dZ) ds; T, = J(Nm(r—x//) + N, Dds;

(28)

ds Xil d

B = J(Nxxwp _Mxxl)dS; I, = J(Nxsw_Zst)ds

where N corresponds to the axial force, O, and Q, to shear forces, M, and M, to bending
moments about y- and z-axis, respectively, B to the bimoment, T, to the flexural-torsional
moment and Ty, to the Saint—Venant torsional moment. In addition, the following four
high-order stress resultants have been defined:
»

N _dy
B, = J[NXX(YZ + 75 —2M,rlds; P, = J [NMZ2 +2M 2| ds;
S

dz
P = J {Nmy —oM. 7 }dv (29)
__ _dYy -dZ
1‘)),Z = J |:NMYZ +MXX(YE_ZE):|(1S

In expressions (28) and (29), the integration is carried out over the entire length of the
mid-line contour.

The relations among the generalized beam forces and the generalized strains
characterizing the behavior of the beam are obtained by substituting the expressions
(16)—(20) into (23), and the results into (28) and (29). This constitutive law can be
expressed in terms of a beam stiffness matrix [K] as defined in Appendix B.

8. The discretized equilibrium problem
The equations of motion (25) are discretized to analyze the behavior of simply
supported beams under different load conditions. The displacements are approximated by

means of the following functions, which are compatible with the boundary conditions of
the beam

X . (T T
U= i V=W s1n(zx); 0, =10, cos(zx);

. (T TC LT
w = wy sin (Zx>; 0, = 0,, cos (zx); ¢ = ¢y sin (Zx); 30)

0 = 0, cos (%x)
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Table 1

Materials consider in the numerical applications

Properties Glass/epoxy (M1) Graphite/epoxy (M2)
Young’s modules (GPa)

E, 48.3 144
E, 19.8 9.65
Shear’s modules (GPa)

GlzzGlg, 8.96 4.14
Gy 6.19 345
Poisson’s ratio

Vio=V13 0.27 0.3
Va3 0.60 0.5

where ug, vo, wo, 010, 0y0, ¢o and 6, are the associated displacement amplitudes. Besides,
these functions (30) represent the exact solution for the linear analysis of thin-walled
beams [13]. In order to solve the variational system (25), Ritz’s method is first applied.
After integration along the beam length according to the adopted functions for the
displacements, a coupled and strongly non-linear algebraic system is obtained. This
resulting system has an extremely complicated form and, for this reason, is not presented
here. An incremental-iterative method based on the Newton—Rapshon method is employed
for solving the non-linear equilibrium equations.

9. Applications and numerical results

In the following numerical results, the shear effect on the thickness y% has been
neglected because its consideration conduces to inaccurate results for thin-walled sections,
as explained Piovan [18]. He showed that the inclusion of thickness shear—deformation
effect increases erroneously the rigidity instead of flexibilizing the beam behavior.
Different cross-sectional shapes, laminate schemes and beam lengths are considered to
perform the numerical analysis. Material properties corresponding to S2-glass/epoxy (M1)
and AS4/3501 graphite/epoxy (M2) were used (see Table 1). The analyzed cross-sections
are shown in Fig. 2.

{a/-a/-a/a} {a/-a/-ala} {a/-al-ala}
e — -
Z T ' z .
-y h h 5 4k
el le— el lle— 5
'L‘ _______ e ]
b b

Fig. 2. Analyzed cross-sectional shapes.
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10. Flexural—torsional stability analysis

Flexural—-torsional buckling and post-buckling of a simply supported beam subjected to
a concentrated axial force applied to the centroid is studied. In order to investigate this
behavior, the following cases are considered.

10.1. Bisymmetric open cross-section

The example considered is a simply supported bisymmetric-I section whose geometric
properties are L=6 m, h=0.6 m, b=0.6 m, e=0.03 m. The analyzed material is graphite-
epoxy (M2). In this example (yp=2z9=0), the equilibrium equations are non-linear but
uncoupled. Therefore, there are three buckling modes corresponding either to bending or
to torsion. Taking into account that the flexural mode corresponding to displacement v
(y-direction) has the smallest buckling load, the post-buckling curves are presented for the
displacement amplitude v,. The load-deflection curves are shown, in Fig. 3, for different
laminate stacking sequences. Moreover, two models are compared: the present theory
(model I) and results obtained by neglecting shear flexibility (model II). It is observed
from the figures that the post-buckling equilibrium paths are stable and symmetric. The
sequence of lamination {0/0/0/0} presents the highest buckling load and also the largest
load carrying capacity after buckling. In addition, the shear—deformation effect is
considerably more important when this one is used. As may be seen in this case, shear
effect reduces the values of the equilibrium path in about 21% with respect to the non-
shearable theory. On the other hand, the sequence of lamination {45/—45/—45/45}
presents limited margins of post-buckling strength due to its flat shape. Besides, both with

P (MN) P (MN)
PR 30
50 -
.- 25
a0\
20
30
{0/0/0/0} {0/90/90/0}
20 15
Vo (M) Vo (M)
005 0.1 015 02 0.25 005 01 015 02 025
P (MN)
12
10 {45/-45/-45/45)
8
6 /
4
Vo (M)

005 0.1 015 0.2 0.25

Fig. 3. Post-buckling paths (P,vy), (—) present theory, (- - -) neglecting shear flexibility.
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Table 2

Buckling loads for I-beam subjected to axial force, L=6 m (P X 10° N)

Lamination Model I Model IT Cosmos/M
{0/0/0/0} 33.18 42.11 30.02
{0/90/90/0} 19.84 22.57 20.02
{45/—45/—45/45} 4.44 445 4.38

and without shear—deformation curves are practically coincident for this last type of
lamination.

In Table 2, the linear buckling loads are given for models I and II, and compared with
the buckling loads calculated using shell finite elements (Shell4L) from the program
Cosmos/M [19]. An acceptable agreement between the present beam theory and Cosmos/
M shell finite element is observed. The simply supported thin-walled I-beam was modeled
by 120 shell elements and its buckled mode shape is shown in Fig. 4, for a lamination
{0/90/90/0}.

10.2. Bisymmetric closed cross-section

In this example, a bisymmetric-Box section is considered with the following geometric
properties: L=6 m, h/=0.6 m, b=0.3 m, e=0.03 m. The analyzed material is the same as
the previous example graphite-epoxy (M2). The non-linear behavior of this box beam
(yo=2z0=0) subjected to an axial force is similar to the previous example. The load—
deflection curves are shown, in Fig. 5, for different laminate stacking sequence. Again, two
models are compared: present theory (model I) and results obtained by neglecting shear
flexibility (model II). The post-buckling equilibrium paths are stable and symmetric. The
beam with unidirectional fibers shows the stiffest post-buckling behavior and then the
highest buckling load with respect to the other laminations. In addition, the shear—
deformation effect is considerably more important for this beam. For the sequence of
lamination {45/—45/—45/45}, there is no influence of the shear—deformation and its
additional load carrying capacity after buckling is limited.

Fig. 4. Buckling mode for a beam I under an axial load, {0/90/90/0}.
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Fig. 5. Post-buckling paths (P,vy), (-) present theory, (- - -) neglecting shear flexibility.

In Table 3, the buckling loads of the present study are given for models I and II, and
compared with the buckling loads calculated using shell finite elements (Shell4L) from the
program Cosmos/M. An acceptable agreement between the present beam theory and
Cosmos/M shell finite element is observed, while results obtained by neglecting shear
flexibility are inaccurate for the lamination {0/0/0/0} and {0/90/90/0}. The simply
supported thin-walled Box-beam was modeled by 160 shell elements and its flexural
buckling mode shape is shown in Fig. 6, for a lamination {45/—45/—45/45}.

10.3. Monosymmetric cross-section

The considered example is a monosymmetric channel section, the geometric properties
are L=6m, h=0.6 m, »=0.6 m, e=0.03 m. The analyzed material is graphite-epoxy
(M2). In this case (zp=0), the equilibrium equations corresponding to y-direction (v
transversal displacement) are, therefore, uncoupled. Thus, the buckling modes can
correspond either to bending in y-direction (v) or to flexural—torsional mode (w and ¢). For
the cross-section analyzed, the flexural-torsional mode presents the smallest buckling

Table 3

Buckling loads for Box-beam, L=6 m (P X 10° N)

Lamination Model 1 Model 11 Cosmos/M
{0/0/0/0} 2491 3741 21.23
{0/90/90/0} 15.80 20.05 14.54

{45/—45/—45/45} 3.88 3.89 4.01
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Fig. 6. Buckling mode for a box beam under an axial load, {45/—45/—45/45}.

load. The load-twisting curves are shown in Fig. 7, for different laminate stacking
sequence, with and without shear flexibility consideration. The post-buckling equilibrium
paths are stable and symmetric. The shear—deformation effect continues being more
significant for the lamination {0/0/0/0}and insignificant for the lamination {45/—45/
—45/45}. The sequence of lamination {0/0/0/0} has the highest buckling load and the
largest additional load carrying capacity after buckling. In Fig. 8, the initial post-buckling
paths of the amplitude displacements ug, wo and 6, are shown, for a sequence of
lamination {0/0/0/0} and considering the models I and II.

In Table 4, the buckling loads of the present study are given for model I and II, and
compared with the buckling loads calculated using shell finite elements (Shell4L) from the
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Fig. 7. Post-buckling paths (P,do), (—) present theory, (- - -) neglecting shear flexibility.
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Fig. 8. Post-buckling paths, (-) present theory, (- - -) neglecting shear flexibility.

Table 4
Buckling loads for channel-beam, L=6 m (P X 10° N)
Lamination Model 1 Model 1T Cosmos/M
{0/0/0/0} 11.79 16.23 11.20
{0/90/90/0} 7.37 8.78 7.31
{45/—45/—45/45} 2.61 2.61 2.83

program Cosmos/M. An acceptable agreement between the present beam theory and
Cosmos/M shell finite element is observed. The simply supported thin-walled channel-
beam is modeled by 120 shell elements and its flexural-torsional buckling mode shape is
shown in Fig. 9, for a lamination {45/—45/—45/45}.

10.4. The case of close buckling loads for monosymmetric sections

The considered example is a simply supported channel section subjected to a
concentrated axial force applied to the centroid. The geometric properties are #=0.6 m,
b=0.3 m, e=0.03 m, and the analyzed material is Glass-epoxy (M1). For this channel
section (zo=0), the buckling loads corresponding to the flexural mode (v) and flexural—
torsional mode (w and ¢), coincide for a particular beam length. The variation of the

Fig. 9. Buckling mode for a channel beam under an axial load, {45/—45/—45/45}.
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Fig. 10. Buckling load variation with the length, lamination {0/0/0/0}.

buckling loads for both modes is shown as a function of the beam length L in Fig. 10, and
for a lamination sequence {0/0/0/0}. As it is clearly shown, the buckling loads coincide for
L=8.85 m. The buckling mode is flexural for length L>8.85 m and is flexural-torsional
for less than this value.

In linear stability and design practice, only the smallest buckling load is considered. In
post-buckling behavior, when a structure presents two close buckling loads, their
interaction must be accounted for. The initial post-buckling path of the channel section
previously investigated is shown in Fig. 11. The post-buckling equilibrium paths are stable
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Fig. 11. Post-buckling paths for a channel-beam, {0/0/0/0}, L=28.85 m.
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Fig. 12. Simply supported beam subjected to uniform moment.

and symmetric. In particular, load—twisting and warping curves (the upper-left curve) are
initially flat and then suddenly stiffen. On the other hand, the secondary paths
corresponding to the displacement amplitudes vo and 6, (the bottom-left curve) show a
stiffer behavior in comparison with the ones corresponding to the displacement amplitudes
wp and 6, (the upper-right curve).

11. Lateral stability analysis

When the beam is loaded in the plane the symmetry this initially deflects. However, at a
certain level of the applied load, the beam may buckle laterally, while the cross-sections of
the beam rotate simultaneously about the beam’s axis. This phenomenon is called lateral
buckling, and the value of the load at which buckling occurs is the critical load. The initial
deflection corresponds to the pre-buckling state, also called ‘the fundamental state’. When
the buckling load is reached, the behavior of the beam is flexural-torsional. In order to
investigate the non-linear lateral stability of three-dimensional beams, we consider a
simply supported beam subjected to concentrated end moments, concentrated forces, or
uniformly distributed load.

11.1. Simply supported I-beam subjected to uniform moments

A simply supported I-beam subjected to uniform bending moment is considered (with
end moments Mo applied about its major axis) as shown in Fig. 12. The geometric

24
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Fig. 13. Lateral post-buckling paths, {0/0/0/0}, L=6 m.



S.P. Machado, V.H. Cortinez / Thin-Walled Structures 43 (2005) 1615-1645 1633

12

11 —Vo(m)
10 - —-0zy(rad) ]
E W (m)
s 9 - — 8y, (rad)A
>

8 — @, (rad)

- -0 d
7 o (rad)
l

01 02 03 04 05 06 07 08

Fig. 14. Lateral post-buckling paths, {0/90/90/0}, L=6 m.

properties are h=0.6 m, b=0.6 m, ¢=0.03 m, and the analyzed material is graphite-
epoxy (M2). The equilibrium equations are completely coupled. The initial post-buckling
paths of the amplitude displacements v, 020, Wo, 0),0, ¢o and 0 are shown in Figs. 13-15,
for a beam length L=6 m and lamination sequence {0/0/0/0}, {0/90/90/0} and
{45/—45/—45/45}, respectively. The post-buckling equilibrium paths are stable and
symmetric. We observe that the initial post-buckling behavior is similar for the different
sequence of lamination analyzed. The lamination {0/0/0/0} presents the highest buckling
load and the largest additional load carrying capacity after buckling. On the other hand, the
lamination {45/—45/—45/45} presents the lowest critical load and the greatest pre-
deflection wq (pre-buckling state). The load—twisting curves are shown in Fig. 16, for
different laminate stacking sequence and L =6 m, considering two models: present theory
(model I) and a non-shearable model (model II). The shear—deformation effect decreases
considerably the values of the equilibrium path curves when the lamination {0/0/0/0} is
used, while this effect has no influence for the lamination {45/—45/—45/45}. Again, the
load—twisting curves for a laminate stacking sequence {0/0/0/0} are shown in Fig. 17, but
now considering three different beam lengths. It is observed from Fig. 16 that the influence

4 .
Y L
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g X - — 0y, (rad)
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15 . - =Bq (rad)
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Fig. 15. Lateral post-buckling paths, {45/—45/—45/45}, L=6 m.
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Fig. 16. Post-buckling paths (P,¢y), (-) present theory, (- - -) neglecting shear flexibility.

of shear—deformation is more significant on the post-buckling paths as the beam length
decreases. On the other hand, the margins of post-buckling strength are smaller as the
beam length increases.

Table 5 shows the buckling moments considering both the linear buckling behavior
(classical linear theory [1,20]) and the present theory (geometrically non-linear theory). In
the former case, buckling is assumed to be independent of the pre-buckling deflections. As
can be seen, the discrepancy between the present buckling moments (considering pre-
buckling deflections) and the linear buckling moments is remarkable. The buckling
moments computed with the linear stability analysis show a very conservative behavior
compared with those computed with the non-linear stability. The influence of the non-
linear deflection on the critical loads remains important for the different laminate stacking
sequences and beam lengths.

60

50

40}

30Ff

Mcr (MNm)

20}

10+

0.2 0.4 0.6 0.8 1

Fig. 17. Post-buckling paths (P,¢¢), (-) present theory, (- - -) neglecting shear flexibility.
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Table 5
Buckling loads for I-beam subjected to end moments, (Mo X 10° N m)
L (m) Buckling analysis {0/0/0/0} {0/90/90/0} {45/ —45/—45/45}
4 Non-linear 26.82 15.96 4.23
Linear 22.61 13.44 3.55
6 Non-linear 13.53 7.71 2.19
Linear 11.42 6.51 1.85
12 Non-linear 3.92 2.12 0.85
Linear 3.21 1.79 0.72

11.2. Simply supported I-beam subjected to distributed load

In this example, a simply supported I-beam under distributed load is considered for
three load positions, as shown in Fig. 18. The load can be applied to the top flange (case a),
on the shear center (case b), and to the bottom flange (case c). Attention is focused on the
importance of the load height parameter effect on the buckling and post-buckling
behavior. The geometrical and material properties are the same as the previous example.
The load-twisting curves are shown in Fig. 19, for a beam length L=6 m and different
laminate stacking sequence. The beam behavior is reported for the three loads heights. The
post-buckling equilibrium paths are stable and symmetric. The bifurcation point depends
on the load height parameter. We observe that the beam resistance to lateral buckling is
larger when the loads are applied on the bottom flange (case c). In Figs. 20-22, the initial
post-buckling paths of the amplitude displacements v, HZO, Wo, Hyo, ¢o and 6, are shown,
for the load applied on the top flange, centroid and bottom flange, respectively. A beam
length L=6 and a sequence of lamination {0/0/0/0} is considered. It is observed from the
figures that the load—twisting and warping curves (¢ and 0,) are similar for the different
load heights. On the other hand, the load—deflection curves v, presents a stiffer behavior
when the load is applied on the top flange. In addition, the pre-buckling displacement wy, is
important in all the cases, but it is quite larger when the load is applied on the bottom
flange (Fig. 22).

In Table 6, the buckling loads of the present study are compared with results obtained
from the linear analysis, for different lamination and considering the three load height
cases. In this case, the influence of the non-linear pre-buckling on the buckling loads is
notable, and it becomes greater when the load is applied to the bottom flange. This last fact
has been also observed in Fig. 22 for the w, pre-buckling behavior.

Fig. 18. Different load heights.
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Fig. 19. Lateral post-buckling paths for a I-beam, L=6 m.

11.3. Simply supported C-beam subjected to end moments

The example considered here is a simply supported channel beam subjected to equal
end moments Mo applied about its major axis, as shown in Fig. 12. The geometric
properties are h=0.6 m, »=0.3 m, ¢=0.03 m. The analyzed material is graphite-epoxy
(M2). The initial post-buckling curves are shown in Figs. 23-25, for a beam length L=6 m
and for the laminate stacking sequences {0/0/0/0}, {0/90/90/0} and {45/—45/—45/45},
respectively. Figs. show that the post-buckling equilibrium paths are stable and
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Fig. 20. Post-buckling paths, load on top flange, {0/0/0/0}, L=6 m.
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Fig. 21. Post-buckling paths, load on centroid, {0/0/0/0}, L=6 m.
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Fig. 22. Post-buckling paths, load on bottom flange, {0/0/0/0}, L=6 m.

symmetric. It is observed that the rate of growth of the twisting rotation with load is greater
than the analogous rates of growth of in-plane and out-of-plane bending rotations. Besides,
the behavior of these last rotations is very similar for the three lamination sequence
analyzed.

Table 7 shows the buckling moments considering both the linear buckling analysis
(classical theory) and the geometrically non-linear analysis (present theory). In this case,

Table 6
Buckling loads for I-beam subjected to distributed load, L=6 m (g,X 10° N m)
Load height Buckling analysis {0/0/0/0} {0/90/90/0} {45/ —45/—45/45}
Top Non-linear 1.99 1.15 0.38
Linear 1.75 1.03 0.36
Centroid Non-linear 3.69 2.03 0.55
Linear 2.87 1.64 0.46
Bottom Non-linear 6.82 3.57 0.81

Linear 4.71 2.61 0.64




1638 S.P. Machado, V.H. Cortinez / Thin-Walled Structures 43 (2005) 1615-1645

— Vg (m) ]
«/ / - —-0z,(rad) |
S | wo(m)
e /| —8yetad)
— @ (rad) |-
S - - -8y (rad)

Mcr (MNm)

0.2 0.4 0.6 0.8 1

Fig. 23. Lateral post-buckling paths for a channel beam, {0/0/0/0}, L=6 m.
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Fig. 24. Lateral post-buckling paths for a channel beam, {0/90/90/0}, L=6 m.
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Fig. 25. Lateral post-buckling paths for a channel beam, {45/—45/—45/45}, L=6 m.
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Table 7

Buckling loads for I-beam subjected to end moments, L=6 m (Mo X 10° N m)

Buckling analysis {0/0/0/0} {0/90/90/0} {45/—45/—45/45}
Non-linear 2.67 1.70 0.70

Linear 2.60 1.65 0.68

the agreement between the linear and non-linear buckling loads is very good, because the
pre-buckling displacements are negligible.

11.4. Simply supported Box-beam subjected to a concentrated load

A simply supported Box-beam loaded by a transverse force Q, at the middle of the span
is considered for two load positions, as shown in Fig. 26. The load can be applied to the top
beam face (case a) and to the bottom beam face (case b). The geometric properties are L=
6m, h=0.6 m, b=0.3 m, e=0.03 m. The analyzed material is the same as the previous
examples graphite-epoxy (M2). In Figs. 27-29, the initial post-buckling paths of the
amplitude displacements vy, 0, wo, 0, , o and 6 are shown, considering both load height,
and for lamination sequences {0/0/0/0}, {0/90/90/0} and {45/—45/—45/45}, respect-
ively. In this case, the lamination {45/—45/—45/45} presents the greatest resistance to
buckling when the load is applied to the upper beam face. Besides, for this last lamination
the pre-deflection wy is considerably larger, as also the rate of growth of the deflection v,
with load is greater than the other lamination sequences, in both load conditions. On the
other hand, the lamination {0/0/0/0} presents the highest critical load when this load is
applied to the bottom beam face.

A
\/

@ ®

Fig. 26. Box-beam subjected to different load heights.
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Fig. 27. Post-buckling paths {0/0/0/0}, left curves, load on top; right curves, load on bottom.
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Fig. 28. Post-buckling paths {0/90/90/0}, left curves, load on top; right curves, load on bottom.

The buckling loads of the present study (pre-buckling behavior) are compared with
those obtained by the classical linear analysis in Table 8. The influence of the pre-
deflection on the buckling loads is very important in this case. It becomes greater when the
load is applied to the bottom face. On the other hand, the beam with unidirectional fibres
shows a notable difference in the pre-buckling effect when the load position is changed (as
can also be observed in the pre-buckling state, Fig. 27).

12. Conclusions

In this paper, a geometrically non-linear theory of thin-walled composite beams is
presented to investigate numerically the buckling and post-buckling behavior of simply
supported beams. The theory is formulated in the context of large displacements and
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Fig. 29. Post-buckling paths {45/—45/—45/45}, left curves, load on top; right curves, load on bottom.

Table 8
Buckling loads for Box-beam subjected to a concentrated load, L=6 m (Q,X 10° N)
Load height Buckling analysis {0/0/0/0} {0/90/90/0} {45/ —45/—45/45}
Top Non-linear 14.37 11.70 21.60
Linear 12.11 9.63 15.57
Bottom Non-linear 31.93 21.27 23.84

Linear 2343 15.70 16.76
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rotations, through the adoption of a shear—deformable displacement field (accounting for
bending and warping shear) considering moderate bending rotations and large twist.
The beam model is valid for arbitrary cross-sections, either open or closed. Based on the
Ritz’s method, an algebraic system is obtained and then solved by an incremental
Newton—Raphson algorithm.

From the numerical examples studied, it is found that the agreement between the non-
linear buckling loads of the present study and the linear buckling loads obtained with the
classical theory are very good when the pre-buckling displacements are small. However,
for cases with large pre-buckling displacements, the buckling loads obtained by means of
the classical linear theory are very conservative. Thus, when the pre-buckling
displacements are not negligible, a non-linear buckling analysis may be required for
reliable solutions. From the analysis of laterally loaded beams, it has been established that
the buckling loads and the pre-buckling behavior is highly dependent on the load height
parameter. On the other hand, the post-buckling curves of the beam showed a stable and
symmetric behavior in all the cases analyzed.

Moreover, the shear—deformation effect has been investigated, showing a significant
influence for certain laminations, in fact when the beam presents longitudinal fibers. The
shear—deformation may significantly decrease the buckling loads and the values of the
equilibrium path (post-buckling) of short beams.

Finally, in future works we will extend the application of the present model, for
analyzing beams with different boundary conditions.
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Appendix A

The following displacement field corresponding to the one developed by Fraternali and
Feo [18], but referred to our Cartesian co-ordinate system is given by (see Fig. 1):

/) I/

1
u, =uyg—Vy—wzi+¢pvz—ow'y +w qﬁ/—z(w v —w'v'")

1
uy = v=gz+ o (= —v'w'2) (A1)

1
u, =w+ ¢y + 5 (—p*z — w2 —V'W'y)

This last is based on the principle of semi-tangential rotation defined by Argyris [21] to
avoid the difficulty due to the non-commutative nature of rotations. A remarkable
characteristic of this displacement field is the calculation of the warping function carried
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out on the bases of two assumptions:
em =0, &ylimo =0 (A2)

Finally, these last assumptions are not taken into account in the expression (4).

Appendix B

The constitutive law for a bisymmetric beam is defined in the following form
{fo} = [K1{4} (B1)
=[N M, M. B 0, Q. T, T, B P, P, P.|' (B2
where {f,} is the vector of generalized forces, {4} is the vector of the generalized strains.

The elements of the symmetric matrix [K] (12X 12) are given by the following contour
integrals, being null the matrix elements that are not indicated below

Kl,l = JA“ dS, K1,9 = JA“(YZ —i—Zz)ds, Kl,lO = JA“Zz dS,
Kin = JA11Y2 ds; Ky = JAIIYZ ds;  Kyp = J(AHZ2 + Dy Y?)ds;
K279 = J[AHZ(YZ + Zz)_leer/]dS; KZ,IO = J(AIIZ3 + ZDHZYIZ)dS;

sz” = J(AIIYZZ_ZD]]YY/ZI)dS; sz]z = J[A]]YZZ +D]1(YY/ _ZZ/)Y/]dS,

Ks3 = J(AHYZ + D Z%ds; Kz = J[AHY(Y2 + 7% +2D,,rZ'\ds;
Ky = J(A“?z—m“zwz'ms; Ky = J(A“fﬁ 2Dy, FZ7)ds:

Ksnn = J[A”YZZ—D”()_’Y/—ZZ’)Z/]ds; Kyq = J(Allwlzn + Dy, P)ds;
Ky = J[Anwp(ﬁ +2Z%) + 2Dy rllds; Ky = J(Anwpzz —2D,,ZY'Dds;

K4|] = (A]l(i) Y"‘ZD]]YZ/l)dS, K412 = [A]]YCL) Z_D”(YYI_ZZ/)I]dS,
> p > p



K9,11 =
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(Asszlz +A66Y/2)ds; K5,6 = J(A66 _Ass)Z/Yl ds,

[AgY' (r—¥) —AssZ'llds;  Ksg = JA66‘//Y/ ds;

(AssY? +AgZ®)ds; Ko7 = J[Asszl(r—l//) + AssY'1ds;

Ag¥Z ds;  Kyy = J[A66<r—¢)2 + AssP1ds:

Ae¥(r—y)ds;  Kgg = j(AW + 4Dgg)ds;

[A”(Y2 + ZZ)Z + 4D”r2]ds;

[A,,(Y? +Z%)Z* —4D,,ZY'r\ds;

[A,(Y? 4+ Z)Y* 4 4D,,YZ'r]ds;

[A,,(Y? +Z)YZ —2D,,(YY' —ZZ')r)ds;

Ko 10 = (A Z* + 4Dy, Z°YP)ds;

KlO,ll = J (A“ZZ?Z _4D112YlYZ/)dS;

K]O,IZ = [A]] 3Y+2D”(YY/_ZZI)ZYI]dS,

K= J (A Y —4D, 77 Z)ds;

K10!12 = [A11Y3Z_2D11(YYI_ZZ/)YZI]dS;

K = [A,Z° 7 + Dy (YY' —ZZ))ds;

oo _dz,

ds’ ds’

1643

(B3)

(B4)
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Appendix C

The resultants of the applied wall surface tractions appearing in (27) are defined below:

q, = qu ds + fo dsdn qy = qu ds + ”f) dsdn
g, ds + JJfZ dsdn b= quwp ds + ”fxw dsdn

/

rm::J}Yds+JIﬂydMn ;m;zj%st+J1ﬂzwmz
J
|

(ChH
m, = (qu_ _yZ)ds + J.J(fzy —f)Z)dsdn + q:Y0 —4y20
@z-Jm+”mmm @=F2m+ﬂﬁwm
e = J@Z +§.¥)ds + JJ(fyz + f.Pdsdn
The resultants of the applied end tractions are:
N = J Py dsdn Qy = JJ Py dsdn 0. = JJ p, dsdn
M, = Jﬁxy dsdn My = ”ﬁxi dsdn B = ”ﬁxw dsdn
M, = JJ@@ +y0) =P, G+ z)dsdn %, = ”ﬁyy_ dsdn (C2)
ZZ = J p.z dsdn Aoy = ”(ﬁyz" + p.y)dsdn

B, = H(ﬁy@ + y0) + P.(Z + 2p))dsdn
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