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Algebra Universalis

Varieties with equationally definable
factor congruences II

Mariana Badano and Diego J. Vaggione

Abstract. We study four types of equational definability of factor congruences in
varieties with �0 and �1. The paper completes the work of a previous paper on left
equational definability of factor congruences.

1. Introduction

A variety with �0 and �1 is a variety V for which there are 0-ary terms

01, . . . , 0N , 11, . . . , 1N such that

V |= �0 = �1 → x = y,

where �0 = (01, . . . , 0N ) and �1 = (11, . . . , 1N ). (If �a = (a1, . . . , an) and
�b = (b1, . . . , bn) we write �a = �b to express

∧n
i=1 ai = bi.) This condition is

equivalent to the fact that there is a nullary operation in the language of V
and no non-trivial algebra in V has a trivial subalgebra. Classical examples of

this type of varieties are the variety S∨
01 of bounded join semilattices and the

variety R of rings with identity (in both cases N = 1). If �a ∈ AN and �b ∈ BN ,

then we use [�a,�b] to denote the N -tuple ((a1, b1), . . . , (aN , bN )) ∈ (A × B)N .

If A ∈ V, then we say that �e ∈ AN is a central element of A if there exists an

isomorphism A → A1×A2 such that �e → [�0,�1]. Also, we say that �e and �f are

a pair of complementary central elements of A if there exists an isomorphism

A → A1×A2 such that �e → [�0,�1] and �f → [�1,�0]. As is well known, the direct

product representations A → A1 ×A2 of an algebra A are closely related to

the concept of factor congruence. A pair of congruences (θ, δ) of an algebra A

is a pair of complementary factor congruences of A if θ∩ δ = ∆ and θ ◦ δ = ∇
and in such a case θ and δ are called factor congruences.

Consider the following property.

(L) There is a first order formula λ(�z, x, y) such that for every A,B ∈ V,

A×B |= λ([�0,�1], (a, b), (a′, b′)) iff a = a′.
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If V = S∨
01 observe that for every A1,A2 ∈ S∨

01 and a, a′ ∈ A1, b, b
′ ∈ A2 we

have

(a, b) ∨ (0, 1) = (a′, b′) ∨ (0, 1) iff (a, b ∨ 1) = (a′, b′ ∨ 1)

iff (a, 1) = (a′, 1) iff a = a′.

Then for the variety S∨
01, we can take λ := x∨z1 = y∨z1 in order to satisfy (L).

Similarly, we can see that if V = R, we can take λ := x · (1− z1) = y · (1− z1).

Assume that (L) holds and θ is any factor congruence of an algebra A ∈ V, and
take �e to be the unique �u ∈ AN such that �u ≡ �0(θ) and �u ≡ �1(δ), where δ is

any factor complement of θ, and we write �a ≡ �b(θ) to express that (ai, bi) ∈ θ,

with i = 1, . . . , N . Then we have that θ = {(a, b) ∈ A2 : A |= λ(�e, a, b)}.
So, condition (L) says that every factor congruence θ can be defined by λ

parameterized with an adequate central element (which we will see is uniquely

determined by θ). Since A ×B is isomorphic to B ×A via (a, b) �→ (b, a), it

is trivial that a formula λ satisfying (L) also satisfies

A×B |= λ([�1,�0], (a, b), (a′, b′)) iff b = b′,

for any A,B ∈ V. Observe that this condition not only states the equality of

the second coordinate but also �0 and �1 have been interchanged in the formula

λ. Since in general �0 and �1 are not interchangeable, it is not obvious that (L)

is equivalent to the following condition.

(R) There is a first order formula ρ(�z, x, y) such that for every A,B ∈ V,

A×B |= ρ([�0,�1], (a, b), (a′, b′)) iff b = b′.

If V = S∨
01, the reader can easily check that

ρ := ∀u (x ∨ u ∨ z1 = y ∨ u ∨ z1 → x ∨ u = y ∨ u)

satisfies (R). Moreover, in [1], it is proved that for the variety S∨
01, there is no

positive nor existential formula satisfying (R), which says that the above ρ is

as good as possible in the sense of its complexity. So, for S∨
01, the best options

are λ := x ∨ z1 = y ∨ z1 for property (L) and the above ρ for property (R).

A third definability condition is the following.

(W) There is a first order formula ω(�z, �w, x, y) such that for everyA,B ∈ V,

A×B |= ω([�0,�1], [�1,�0], (a, b), (a′, b′)) iff a = a′.

Of course, (W) is implied by (L) and (R), taking ω(�z, �w, x, y) = λ(�z, x, y) and

ω(�z, �w, x, y) = ρ(�w, x, y), respectively. Further, we note that as was shown

above for (L), (W) guarantees that every factor congruence can be defined by

ω parameterized with an adequate pair of complementary central elements.

In [6], the following theorem is proved.

Theorem 1.1. For a variety V with �0 and �1, each of the properties (L), (R),

and (W) are equivalent to that V has Boolean factor congruences, i.e., the

set of factor congruences of any algebra in V is a distributive sublattice of its
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congruence lattice. Moreover the formulas in (L), (R), and (W) can be chosen

to be preserved by direct products and direct factors.

When a variety V with �0 and �1 satisfies the equivalent conditions (L), (R),

and (W), we say that V has definable factor congruences (DFC, for short).

As we exemplified with the semilattice case, the equivalence of (L), (R), and

(W) does not preserve the complexity of the defining formula. So, several

definitions arise, which we state now (we abbreviate with EDFC the phrase

“equationally definable factor congruences”). We say that a variety V with �0

and �1 has left (resp. right, weak) EDFC if (L) (resp. (R), (W)) holds with λ

(resp. ρ, ω) a conjunction of equations. We say that V has twice EDFC if V
has left and right EDFC.

Examples of varieties with some type of EDFC abound. If V is a congruence

modular variety with �0 and �1, then V has twice EDFC (see [7]). If V is a

variety of bounded lattice expansions, then V has twice EDFC (folklore). If

V is a variety of bounded join semilattice expansions, then V has left EDFC

(see [1]), but does not necessarily have right EDFC. In [1], we extensively

studied varieties with left EDFC, and the main theorem in [1] gives several

equivalent properties for left EDFC. Also, first order axiomatizations of the

properties “�e is a central element” and “�e and �f are complementary central

elements” are given, for the case of a variety with left EDFC. Furthermore, it

is proved that such axiomatizations are optimal, in the sense of the complexity

of the involved formulas.

In this paper, we make a similar study for the right, weak and twice cases,

and new properties which are equivalent to left EDFC are added by means of

two definability results proved in [3].

2. Notation and basic results

As usual, I(K), S(K), and Pu(K) denote the classes of isomorphic images,

substructures, and ultraproducts of elements of K. If V is a variety, we use

VSI (resp. VDI) to denote the class of subdirectly irreducible (resp. directly

indecomposable) members of V. If A,B are algebras, we write A ≤ B to

express that A is a subalgebra of B. By Con(A), we denote the congruence

lattice of A. As usual, the join operation of Con(A) is denoted by ∨. We use

∇A to denote the universal congruence on A and ∆A to denote the identity

congruence on A, or simply ∇ and ∆ when the context is clear. If �a,�b ∈ An,

then θA(�a,�b) denotes the congruence generated by {(ak, bk) : 1 ≤ k ≤ n}. If

�a,�b ∈ An and θ ∈ Con(A), we write �a ≡ �b(θ) to express that (ai, bi) ∈ θ,

i = 1, . . . , n. We use FC(A) to denote the set of factor congruences of A. A

variety V has Boolean factor congruences if for every A ∈ V, the set FC(A)

is a distributive sublattice of Con(A). If θ ∈ FC(A), we use θ∗ to denote

the factor complement of θ. Observe that in a variety with Boolean factor
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congruences, (FC(A),∨,∩,∗ ,∆A,∇A) is a Boolean algebra. If S ≤ A and

θ ∈ Con(A), we use θ|S to denote θ ∩ (S × S).

A decomposition operation on A is a homomorphism d : A×A → A with

d(x, x) = x and d(d(x, y), z) = d(x, z) = d(x, d(y, z)).

With each pair (θ, δ) of complementary factor congruences, we associate a

decomposition operation defined by

d(a, b) = the unique c ∈ A such that (c, a) ∈ θand (c, b) ∈ δ.

Reciprocally, given a decomposition operation d, the relations

θ = {(x, y) : d(x, y) = y} and δ = {(x, y) : d(x, y) = x}

are a pair of complementary factor congruences. The above maps (θ, δ) �→ d

and d �→ (θ, δ) are mutually inverse ([4, Theorem 4.33]).

Given a variety V and a set of variables X, we use FV(X) to denote the

free algebra of V freely generated by X. If X = {x1, . . . , xn}, then we use

FV(x1, . . . , xn) instead of FV({x1, . . . , xn}).

Lemma 2.1. Let V be a variety and let X be a set of variables. Let r1, . . . , rm,

s1, . . . , sm, r, s be terms with variables in X. The following are equivalent:

(1) (r, s) ∈ θFV(X)(
r,
s);

(2) V |= 
r = 
s → r = s.

Lemma 2.2. Let A and B be any algebras and let σ : A → B be a homomor-

phism. Then (c, d) ∈ θA(
a,
b) implies (σ(c), σ(d)) ∈ θB(σ(
a), σ(
b)).

If S ≤ A1×A2 and T ≤ B1×B2, we say that a homomorphism σ : S → T is

left factorable if there are homomorphisms σ1 : π1(S) → B1 and σ2 : S → B2

such that for every (a1, a2) ∈ S, we have σ(a1, a2) = (σ1(a1), σ2(a1, a2)).

Similarly, we say that σ : S → T is right factorable if there are homomorphisms

σ1 : S → B1 and σ2 : π2(S) → B2 such that for every (a1, a2) ∈ S, we have

σ(a1, a2) = (σ1(a1, a2), σ2(a2)). We say that σ : S → T is twice factorable if

there are homomorphisms σ1 : π1(S) → B1 and σ2 : π2(S) → B2 such that for

every (a1, a2) ∈ S, we have σ(a1, a2) = (σ1(a1), σ2(a2)). Observe that σ is left

factorable iff

(s1, s2) ∈ kerπ1|S implies (σ(s1), σ(s2)) ∈ kerπ1|T .

Similarly, σ is twice factorable iff for i = 1, 2, we have that

(s1, s2) ∈ kerπi|S implies (σ(s1), σ(s2)) ∈ kerπi|T .

Basic facts on varieties with DFC. Let V be a variety with 
0 and 
1 and

suppose V has DFC, i.e., V satisfies the equivalent conditions (L), (R), and (W)

from the introduction. We use Z(A) to denote the set of central elements of an

algebra A ∈ V and 
e �A 
f to denote that 
e and 
f are a pair of complementary
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central elements of A. It is obvious from the definition that �e ∈ Z(A) iff there

is a pair of complementary factor congruences (θ, δ) satisfying

�e ≡ �0(θ) and �e ≡ �1(δ). (∗)

Note that Theorem 1.1 implies that the central element �e determines a unique

pair of complementary factor congruences satisfying (∗) since (L) implies that

λ(�e, –, –) defines θ and (R) implies that ρ(�e, –, –) defines δ. We denote this

pair by (θA�0�e, θ
A
�1�e
). Thus, Z(A) is naturally identified with the set of pairs of

complementary factor congruences of A. Since V has Boolean factor congru-

ences (Theorem 1.1), factor complements are unique, and hence we obtain the

following fundamental result.

Theorem 2.3. Let V be a variety with DFC and A ∈ V. The maps

Z(A) → FC(A) given by �e �→ θA�0�e, and

FC(A) → Z(A) given by θ �→ unique �e satisfying �e ≡ �0(θ) and �e ≡ �1(θ∗)

are mutually inverse bijections.

Thus, we can define

�e ∨Z(A) �f = the only �g ∈ Z(A) satisfying θA�0�g = θA�0�e ∨ θA�0�f ,

�e ∧Z(A) �f = the only �g ∈ Z(A) satisfying θA�0�g = θA�0�e ∩ θA�0�f ,

cZ(A)(�e) = the only �g ∈ Z(A) satisfying θA�0�g = (θA�0�e)
∗,

to obtain a Boolean algebra Z(A) = (Z(A),∨Z(A),∧Z(A), cZ(A),�0,�1), which

is naturally isomorphic to (FC(A),∨,∩,∗ ,∆A,∇A). When no confusion is

possible, we will write �e ∨ �f in place of �e ∨Z(A) �f , c(�e) in place of cZ(A)(�e),

etc. The following proposition states some basic properties involving central

elements.

Proposition 2.4. Let V be a variety with DFC and A ∈ V. The following

properties hold.

(a) θA�0�e = {(a, b) : A |= λ(�e, a, b)} for any λ satisfying (L).

(b) θA�1�e = {(a, b) : A |= ρ(�e, a, b)} for any ρ satisfying (R).

(c) θA�0�e = {(a, b) : A |= ω(�e, c(�e), a, b)} for any ω satisfying (W).

(d) θA�1�e = {(a, b) : A |= ω(c(�e), �e, a, b)} for any ω satisfying (W).

(e) �e ≤Z(A) �f iff θA�0�e ⊆ θA�0�f .

(f) θA�0�e = θA�1c(�e).

(g) θA�0�0 = ∆A and θA�0�1 = ∇A.

(h) The map Z(A1) × Z(A2) → Z(A1 ×A2) given by (�e1, �e2) �→ [�e1, �e2]

is a Boolean algebra isomorphism.

(i) θA1×A2

[�0,�0][�e1,�e2]
= θA1

�0�e1
× θA2

�0�e2
.

(j) θA(�0, �e) ⊆ θA�0�e and θA(�1, �e) ⊆ θA�1�e.
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In [6], we give an example to show that the converse inclusion in (j) of the

previous proposition is not true in general since the congruences θA�0�e and θA�1�e
fail to be finitely generated.

If V is a variety with DFC, we say that a formula ϕ(�z, x, y) defines θA�0�e
in V (resp. defines θA�1�e in V) if for every A ∈ V and �e ∈ Z(A), we have that

θA�0�e = {(a, b) ∈ A2 : A |= ϕ(�e, a, b)} (resp. θA�1�e = {(a, b) ∈ A2 : A |= ϕ(�e, a, b)}),
i.e., ϕ satisfies (L) (resp. (R)) of the introduction. Analogously, we say that

a formula ϕ(�z, �w, x, y) defines θA�0�e in V if for every A ∈ V and �e ∈ Z(A), we

have that θA�0�e = {(a, b) ∈ A2 : A |= ϕ(�e, c(�e), a, b)}, i.e., ϕ satisfies (W) of the

introduction.

We conclude the section with some examples showing that the notions of

weak, left, right, and twice EDFC are in fact different one from the other. First,

we note that the variety S∨
01 of bounded join semilattices has left EDFC and

S∨
01 does not have right EDFC since by [1, Lemma 4.3], there is no positive

formula satisfying (R) in S∨
01. Similarly, the variety S∧

01 of bounded meet

semilattices has right EDFC and S∧
01 does not have left EDFC.

We will give an example of a variety W with weak EDFC which does not

have either left or right EDFC. Let W be the variety given by the identities

p(0, 1, x, y) ≈ x and p(1, 0, x, y) ≈ p(1, 0, y, x).

It is easy to check that the formula

ω(z1, w1, x, y) := p(z1, w1, x, y) = p(z1, w1, y, x)

satisfies (W) and so W has weak EDFC. We note that there is a subvariety of

W which is equivalent to S∨
01 (axiomatize this subvariety by taking identities

assuring that p(x, y, z, w) := x ∨ w, for some join operation ∨ for which 0

is a bottom and 1 is a top). Similarly, there is a subvariety of W which is

equivalent to S∧
01, and hence W does not have either left or right EDFC.

3. Characterizations of left, right, weak and twice EDFC

In this section, we prove theorems characterizing the different types of

EDFC. First we complete the left case with some new equivalences which

follow from two definability results proved in [3]. Then we approach the weak

and twice cases. Since the concept of right EDFC is dual to that of left EDFC,

we state without proof the corresponding theorem characterizing varieties with

right EDFC.

Lemma 3.1 ([3]). Let L be a first order language and let R be a n-ary relation

symbol not belonging to L. Let K be a class of (L ∪ {R})-structures which is

closed under the formation of ultraproducts.

(1) The following are equivalent.

(a) There is an open L-formula ϕ such that K |= R(�x) ↔ ϕ(�x).
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(b) If 〈A, RA〉, 〈B, RB〉 ∈ K, A0 ≤ A, B0 ≤ B, and σ : A0 → B0

is an isomorphism, then for every a1, . . . , an ∈ A0, we have that

(a1, . . . , an) ∈ RA implies (σ(a1), . . . , σ(an)) ∈ RB.

(2) The following are equivalent.

(a) There is an existential L-formula ϕ such that K |= R(�x) ↔ ϕ(�x).

(b) If 〈A, RA〉, 〈B, RB〉 ∈ K and σ : A → B is an embedding, then

for every a1, . . . , an ∈ A, we have that (a1, . . . , an) ∈ RA implies

(σ(a1), . . . , σ(an)) ∈ RB.

Lemma 3.2. Let V be a variety with �0 and �1 for which there is a positive

formula satisfying (L) of the introduction. Then, for every A ∈ V and every

�e ∈ Z(A), we have that θA�0�e = θA(�0, �e).

Proof. This is proved in Claim 2 of [6, Proposition 18]. �

Those items of the following theorem which have a word in parentheses are

double items, in the sense that both ways of reading them are equivalent to

all the other items of the theorem. The same will happen with Theorems 3.5,

3.7, and 3.9.

Since in [1] the characterization of left EDFC is made under the assumption

that V has DFC and in this paper we can drop this hypothesis, we include a

detailed proof of the left case.

Theorem 3.3 (Left EDFC). Let V be a variety with �0 and �1. The following

are equivalent.

(L1) V has left EDFC.

(L2) There is an open formula λ(�z, x, y) which satisfies (L) of the introduc-

tion.

(L3) There are terms pi, qi, i = 1, . . . , n such that

V |= (
∧

pi(�0, x, y) = qi(�0, x, y)) ↔ x = y,

V |=
∧

pi(�1, x, y) = qi(�1, x, y).

(L4) There is a (
∧
p = q)-formula ϕ(�z, x, y) such that if A ∈ V, �e ∈ AN ,

and θA(�0, �e)∩θA(�1, �e) = ∆A, then θA(�0, �e) = {(a, b) : A |= ϕ(�e, a, b)}.
(L5) There are terms vi, for i = 0, . . . , k with k even, such that the following

identities hold in V:

v0(�z, x, y) = x,

vk(�z, x, y) = y,

vi(�0, x, y) = vi+1(�0, x, y), i even,

vi(�1, x, y) = vi+1(�1, x, y), i odd,

vi(�0, x, x) = x, i = 0, . . . , k.

(L6) (x, y) ∈ θF(�0, �z)∨((θF(�0, �z)∨θF(x, y))∩θF(�1, �z)), where we abbreviate

F = FV(�z, x, y).
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(L7) The following conditions hold in V.
(i) If σ : A1 ×A2 → B1 ×B2 is a homomorphism (embedding) such

that σ([�0,�1]) = [�0,�1], then σ is left factorable.

(ii) If S ≤ A1 ×A2 and [�0,�1] ∈ SN , then

θS([�0,�0], [�0,�1]) = θA1×A2([�0,�0], [�0,�1])
∣∣∣
S
.

(L8) If S ≤ A1 ×A2 and [�0,�1] ∈ SN , then θS([�0,�0], [�0,�1]) = kerπ1|S.
(L9) If S ≤ A1 × A2, T ≤ B1 × B2, [�0,�1] ∈ SN , and σ : S → T is a

homomorphism (isomorphism) such that σ([�0,�1]) = [�0,�1], then σ is

left factorable.

Moreover, when the above equivalent conditions hold, θA�0�e = θA(�0, �e) whenever

�e ∈ Z(A).

Proof. (L1)⇒(L2): This is trivial.

(L2)⇒(L3): This is proved in the proof of (1)⇒(2) of [1, Theorem 3.2] under

the hypothesis of V having DFC. Nevertheless, the exact same proof works for

the more general case of a variety V with �0 and �1.

(L3)⇒(L1): Take λ(�z, x, y) :=
∧
pi(�z, x, y) = qi(�z, x, y). It is easy to check

that λ satisfies (L).

(L3)⇒(L4): This is proved in the proof of (2)⇒(3) of [1, Theorem 3.2] under

the hypothesis of V having DFC. Nevertheless, the exact same proof works for

the more general case of a variety V with �0 and �1.

(L4)⇒(L3): Let ϕ(�z, x, y) :=
∧
pi(�z, x, y) = qi(�z, x, y) be such that if we

have that A ∈ V, �e ∈ AN , and θA(�0, �e) ∩ θA(�1, �e) = ∆A, then we have that

θA(�0, �e) = {(a, b) : A |= ϕ(�e, a, b)}. Taking �e = �0, we obtain that

V |= (
∧

pi(�0, x, y) = qi(�0, x, y)) ↔ x = y.

Taking �e = �1, we obtain V |=
∧
pi(�1, x, y) = qi(�1, x, y) (since θA(�0,�1) = ∇).

(L1)⇒(L5): Since (L1) holds, we have that V has DFC, and hence we can

apply [1, Theorem 3.2].

(L5)⇒(L1): Take λ(�z, x, y) :=
∧

i odd vi(�z, x, y) = vi+1(�z, x, y).

(L5)⇔(L6): Of course, (x, y) ∈ θF(�0, �z) ∨ ((θF(�0, �z) ∨ θF(x, y)) ∩ θF(�1, �z))

iff there are terms v0(�z, x, y), . . . , vk(�z, x, y), with k even such that

v0(�z, x, y) = x, and vk(�z, x, y) = y,

(vi(�z, x, y), vi+1(�z, x, y)) ∈ θF(�0, �z), i even,

(vi(�z, x, y), vi+1(�z, x, y)) ∈ (θF(�0, �z) ∨ θF(x, y)) ∩ θF(�1, �z), i odd.

Thus, Lemma 2.1 naturally produces the equivalence (L5)⇔(L6).

(L1)⇒(L7). Let λ(�z, x, y) be a (
∧
p = q)-formula satisfying (L). First we

will prove (i). Given that σ([�0,�1]) = [�0,�1], we have that

A1 ×A2 |= λ([�0,�1], x, y) implies B1 ×B2 |= λ([�0,�1], σ(x), σ(y)),

which means that (x, y) ∈ kerπ1 implies (σ(x), σ(y)) ∈ kerπ1. Therefore, σ

is left factorable. Next we will prove (ii). Since (L1) implies (L5), we may
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assume that there is a (
∧
p = q)-formula ϕ(�z, x, y) which defines θA(�0, �e), for

every A ∈ V and �e ∈ AN whenever θA(�0, �e) ∩ θA(�1, �e) = ∆. Given that

θA1×A2([�0,�0], [�0,�1]) ⊆ kerπ1 and θA1×A2([�1,�1], [�0,�1]) ⊆ kerπ2, we have that

θA1×A2([�0,�0], [�0,�1]) ∩ θA1×A2([�1,�1], [�0,�1]) = ∆

and θS([�0,�0], [�0,�1]) ∩ θS([�1,�1], [�0,�1]) = ∆,

hence ϕ defines both θS([�0,�0], [�0,�1]) and θA1×A2([�0,�0], [�0,�1]). Now (ii) easily

follows.

(L7)⇒(L8): Assume that the following condition, i.e., the embedding case

of (L7)(i), holds.

(i)e For every A1,A2,B1,B2 ∈ V, if σ : A1 ×A2 → B1 ×B2 is an embed-

ding such that σ([�0,�1]) = [�0,�1], then σ is left factorable.

First we will prove that there is an existential formula λ(�z, x, y) which satis-

fies (L) of the introduction. Let L be the expansion of the language of V with

new constant symbols c1, . . . , cN . Let R be a new binary relation symbol. Let

K be the following class of (L ∪ {R})-structures:

K = {〈A×B, (01, 11), . . . , (0N , 1N ), kerπ1〉 : A,B ∈ V}.

We will prove that I(K) is closed under ultraproducts. Let {Ax×Bx : x ∈ X}
be an indexed family such that Ax,Bx ∈ V and let π1x : Ax × Bx → Ax be

the canonical projection. It is easy to check that for any ultrafilter u on X,
∏

x∈X
〈Ax ×Bx, (01, 11), . . . , (0N , 1N ), kerπ1x〉

/
u

is naturally isomorphic to 〈U × W, (01, 11), . . . , (0N , 1N ), kerπ1〉, such that

U =
∏

x∈X Ax

/
u and W =

∏
x∈X Bx

/
u. Thus, I(K) is closed under ultra-

products. Note that (i)e says that K satisfies (2)(b) of Lemma 3.1 and clearly

I(K) satisfies it too. Then there is an existential L-formula ϕ(x, y) such that

I(K) |= R(x, y) ↔ ϕ(x, y). Let λ(�z, x, y) be a formula of the language of V
such that λ(�c, x, y) = ϕ(x, y). Note that λ(�z, x, y) is existential and since

K |= R(x, y) ↔ λ(�c, x, y),

we have that λ(�z, x, y) satisfies (L) of the introduction.

Now by [5], we have that there is a positive formula satisfying (L) of the

introduction. By Lemma 3.2, we have that θA�0�e = θA(�0, �e), for every A ∈ V,
�e ∈ Z(A). In particular, we have kerπ1 = θA1×A2([�0,�0], [�0,�1]). Now (L8)

easily follows from (L7)(ii).

(L8)⇒(L9): By Lemma 2.2 and the fact that σ([�0,�1]) = [�0,�1], we have that

(x, y) ∈ θS([�0,�0], [�0,�1]) implies (σ(x), σ(y)) ∈ θT([�0,�0], [�0,�1]).

Therefore, by (L8), we have that

(x, y) ∈ kerπ1|S implies (σ(x), σ(y)) ∈ kerπ1|T ,

and then σ is left factorable.
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(L9)⇒(L2): Assume that the following condition, i.e., the isomorphism case

of (L9), holds.

(L9)i If S ≤ A1 × A2, T ≤ B1 × B2, [�0,�1] ∈ SN , and σ : S → T is an

isomorphism such that σ([�0,�1]) = [�0,�1], then σ is left factorable.

Let L be the expansion of the language of V with new constant symbols

c1, . . . , cN . Let R be a new binary relation symbol. Let K be the following

class of (L ∪ {R})-structures:

K = {〈A×B, (01, 11), . . . , (0N , 1N ), kerπ1〉 : A,B ∈ V}.

As in the proof of (L7)⇒(L8), we can prove that I(K) is closed under ul-

traproducts. By (L9)i, we have that K satisfies (1)(b) of Lemma 3.1, and

clearly I(K) satisfies it too. Then there is an open L-formula ϕ(x, y) such that

I(K) |= R(x, y) ↔ ϕ(x, y). Let λ(�z, x, y) be an open formula of the language

of V such that λ(�c, x, y) = ϕ(x, y). Note that λ(�z, x, y) satisfies (L) of the

introduction.

The last observation that θA�0�e = θA(�0, �e), whenever �e ∈ Z(A), follows from

Lemma 3.2. �

Remark 3.4. If a variety V has terms 01, . . . , 0N , 11, . . . , 1N , and v0, . . . , vk
for k even, satisfying the identities in (L5), then V |= �0 = �1 → x = y and the

formula

λ(�z, x, y) :=
∧

i odd

vi(�z, x, y) = vi+1(�z, x, y)

satisfies (L) from the introduction. Thus, the existence of terms 01, . . . , 0N ,

11, . . . , 1N , and v0, . . . , vk for k even, satisfying the identities in (L5), is a

Maltsev condition for the property of being a variety with �0 and �1 which has

left EDFC.

We state the analogue of the above theorem for the right EDFC case. The

proof of this theorem is analogous to the proof of Theorem 3.3.

Theorem 3.5 (Right EDFC). Let V be a variety with �0 and �1. The following

are equivalent.

(R1) V has right EDFC.

(R2) There is an open formula ρ(�z, x, y) which satisfies (R) of the introduc-

tion.

(R3) There are terms pi, qi, i = 1, . . . , n such that

V |= (
∧

pi(�1, x, y) = qi(�1, x, y)) ↔ x = y,

V |=
∧

pi(�0, x, y) = qi(�0, x, y).

(R4) There is a (
∧
p = q)-formula ϕ(�z, x, y) such that if A ∈ V, �e ∈ AN

and θA(�0, �e)∩θA(�1, �e) = ∆A, then θA(�1, �e) = {(a, b) : A |= ϕ(�e, a, b)}.
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(R5) There are terms, vi for i = 0, . . . , k with k even, such that the following

identities hold in V:

v0(�z, x, y) = x, and vk(�z, x, y) = y,

vi(�1, x, y) = vi+1(�1, x, y) for i even,

vi(�0, x, y) = vi+1(�0, x, y) for i odd,

vi(�1, x, x) = x for i = 0, . . . , k.

(R6) (x, y) ∈ θF(�1, �z)∨((θF(�1, �z)∨θF(x, y))∩θF(�0, �z)), where we abbreviate

F = FV(�z, x, y).

(R7) The following conditions hold in V.
(i) If σ : A1 ×A2 → B1 ×B2 is a homomorphism (embedding) such

that σ([�0,�1]) = [�0,�1], then σ is right factorable.

(ii) If S ≤ A1 ×A2 and [�0,�1] ∈ SN , then

θS([�1,�1], [�0,�1]) = θA1×A2([�1,�1], [�0,�1])
∣∣∣
S
.

(R8) If S ≤ A1 ×A2 and [�0,�1] ∈ SN , then θS([�1,�1], [�0,�1]) = kerπ2|S.
(R9) If S ≤ A1 × A2, T ≤ B1 × B2, [�0,�1] ∈ SN , and σ : S → T is a

homomorphism (isomorphism) such that σ([�0,�1]) = [�0,�1], then σ is

right factorable.

Moreover, when the above equivalent conditions hold, we have θA�1�e = θA(�1, �e)

whenever �e ∈ Z(A).

Remark 3.6. If a variety V has terms 01, . . . , 0N ,11, . . . , 1N , and v0, . . . , vk
for k even, satisfying the identities in (R5), then V |= �0 = �1 → x = y and the

formula

ρ(�z, x, y) :=
∧

i odd

vi(�z, x, y) = vi+1(�z, x, y)

satisfies (R) from the introduction. Thus, the existence of terms 01, . . . , 0N ,

11, . . . , 1N , and v0, . . . , vk for k even, satisfying the identities in (R5), is a

Maltsev condition for the property of being a variety with �0 and �1 which has

right EDFC.

Let V be a variety with �0 and �1 and suppose that V has DFC. Given an

algebra A ∈ V and �e ∈ Z(A), we define dA�e : A×A → A as follows:

dA�e (x, y) = the only z ∈ A satisfying (x, z) ∈ θA�0�e and (z, y) ∈ θA�0c(�e).

If A and B are any algebras, define dA×B : (A × B) × (A × B) → A × B

as dA×B((a1, b1), (a2, b2)) = (a1, b2). Of course, dA×B is a decomposition

operation on A×B and every decomposition operation on an algebra A is of

this form via the isomorphism A → A/θd ×A/δd, where

θd = {(x, y) ∈ A2 : d(x, y) = y} and δd = {(x, y) ∈ A2 : d(x, y) = x}.

We say that V has equationally definable decomposition operations if there is

a (
∧
p = q)-formula δ(�z, x, y, z) such that the following condition holds.
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(D) For every A,B ∈ V,

A×B |= δ([�0,�1], x, y, z) iff dA×B(x, y) = z.

We say that V has weak equationally definable decomposition operations if there

is a (
∧
p = q)-formula δ(�z, �w, x, y, z) such that the following condition holds.

(Dw) For every A,B ∈ V,

A×B |= δ([�0,�1], [�1,�0], x, y, z) iff dA×B(x, y) = z.

Of course, the best case of definability of decomposition operations is where

there is a term u(�z, x, y) such that for A,B ∈ V, dA×B(x, y) = u([�0,�1], x, y).

For basic facts on this type of variety, we refer the reader to [2].

Theorem 3.7. (Weak EDFC) Let V be a variety with �0 and �1. The following

are equivalent.

(W1) V has weak EDFC.

(W2) There is an open formula ω(�z, �w, x, y) satisfying (W) of the introduc-

tion.

(W3) There are terms pi, qi, for i = 1, . . . , n, such that

V |= (
∧

pi(�0,�1, x, y) = qi(�0,�1, x, y)) ↔ x = y,

V |=
∧

pi(�1,�0, x, y) = qi(�1,�0, x, y).

(W4) There is a (
∧
p = q)-formula ϕ(�z, �w, x, y) such that if �e, �f ∈ AN and

(θA(�0, �e) ∨ θA(�1, �f)) ∩ (θA(�1, �e) ∨ θA(�0, �f)) = ∆A, then

θA(�0, �e) ∨ θA(�1, �f) = {(a, b) : A |= ϕ(�e, �f, a, b)}.

(W5) There are terms, vi for i = 0, . . . , k with k even, such that the following

identities hold in V:

v0(�z, �w, x, y) = x, and vk(�z, �w, x, y) = y,

vi(�0,�1, x, y) = vi+1(�0,�1, x, y), for i even,

vi(�1,�0, x, y) = vi+1(�1,�0, x, y), for i odd,

vi(�0,�1, x, x) = x, for i = 0, . . . , k.

(W6) If F = FV(�z, �w, x, y) and θ = θF(�0, �z) ∨ θF(�1, �w), then

(x, y) ∈ θ ∨ ((θ ∨ θF(x, y)) ∩ (θF(�1, �z) ∨ θF(�0, �w))).

(W7) The following conditions hold in V.
(i) If σ : A1 ×A2 → B1 ×B2 is a homomorphism (embedding) such

that σ([�0,�1]) = [�0,�1] and σ([�1,�0]) = [�1,�0], then σ is left factorable.

(ii) If S ≤ A1 ×A2 and �e = [�0,�1], �f = [�1,�0] are in SN , then

θS(�0, �e) ∨ θS(�1, �f) = (θA1×A2(�0, �e) ∨ θA1×A2(�1, �f))
∣∣∣
S
.

(W8) If S ≤ A1 × A2 and �e = [�0,�1], �f = [�1,�0] are in SN , then we have

θS(�0, �e) ∨ θS(�1, �f) = kerπ1|S.
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(W9) If S ≤ A1 ×A2, if T ≤ B1 ×B2, [�0,�1], [�1,�0] ∈ SN , and if σ : S → T

is a homomorphism (isomorphism) such that σ([�0,�1]) = [�0,�1] and

σ([�1,�0]) = [�1,�0], then σ is left factorable.

(W10) V has weak equationally definable decomposition operations.

(W11) There is an open formula satisfying (Dw).

(W12) There are terms, pi, qi for i = 1, . . . , n, such that

V |= (
∧

pi(�0,�1, x, y, z) = qi(�0,�1, x, y, z)) ↔ z = x,

V |= (
∧

pi(�1,�0, x, y, z) = qi(�1,�0, x, y, z)) ↔ z = y.

(W13) If S ≤ A1 × A2, T ≤ B1 × B2, [�0,�1], [�1,�0] ∈ SN and σ : S → T

is a homomorphism (isomorphism) such that σ([�0,�1]) = [�0,�1] and

σ([�1,�0]) = [�1,�0], then

x, y, dA1×A2(x, y) ∈ S implies σ(dA1×A2(x, y)) = dB1×B2(σ(x), σ(y)).

Moreover, when the above equivalent conditions hold, we have that

θA�0�e = θA(�0, �e) ∨ θA(�1, �f), whenever �e �A �f .

Proof. The proof of the equivalence of (W1)-(W9): This is completely analo-

gous to the proof of Theorem 3.3. The results quoted from [1] in the proof of

Theorem 3.3 also are completely analogous to the ones required for the proof

of the equivalence of (W1)-(W9).

(W1)⇒(W10): Let ω(�z, �w, x, y) be a (
∧
p = q)-formula satisfying (W) of

the introduction. Since ω([�0,�1], [�1,�0], –, –) defines π1 for every product A×B,

we have that ω([�1,�0], [�0,�1], –, –) defines π2 for every product A × B. Thus,

δ(�z, �w, x, y, z) := ω(�z, �w, x, z) ∧ ω(�w, �z, z, y) is a (
∧
p = q)-formula satisfying

(Dw).

(W10)⇒(W11): This is rivial.

(W11)⇒(W12): Suppose δ(�z, �w, x, y, z) is an open formula satisfying (Dw).

Note that ω(�z, �w, x, y) := δ(�z, �w, x, y, y) is an open formula which satisfies

(W) of the introduction. Thus, by (W2)⇒(W1), there is a (
∧
p = q)-formula

ω̃(�z, �w, x, y) which satisfies (W) of the introduction. Hence, we have that

δ̃(�z, �w, x, y, z) := ω̃(�z, �w, x, z) ∧ ω̃(�w, �z, z, y) satisfies (Dw). Let pi, qi be such

that δ̃(�z, �w, x, y, z) :=
∧
pi(�z, �w, x, y, z) = qi(�z, �w, x, y, z). We will prove that

V |= (
∧

pi(�0,�1, x, y, z) = qi(�0,�1, x, y, z)) ↔ z = x.

Let A ∈ V and let T be a trivial algebra. Let a ∈ T and �a = (a, . . . , a) ∈ TN .

We have that

A |= δ̃(�0,�1, x, y, z) iff A×T |= δ̃([�0,�a], [�1,�a], (x, a), (y, a), (z, a))

iff A×T |= δ̃([�0,�1], [�1,�0], (x, a), (y, a), (z, a))

iff (z, a) = dA×T((x, a), (y, a))

iff (z, a) = (x, a) iff z = x.

Similarly, we can prove that V |= (
∧
pi(�1,�0, x, y, z) = qi(�1,�0, x, y, z)) ↔ z = y.
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(W12)⇒(W13): It is easy to check that

δ(�z, �w, x, y, z) :=
∧

pi(�z, �w, x, y, z) = qi(�z, �w, x, y, z)

satisfies (Dw). So, (W13) holds since homomorphisms preserve (
∧
p = q)-

formulas.

(W13)⇒(W9): Note that the condition

x, y, dA1×A2(x, y) ∈ S implies σ(dA1×A2(x, y)) = dB1×B2(σ(x), σ(y))

guarantees that σ is left factorable. �

Remark 3.8. We note that the existence of terms 01, . . . , 0N , 11, . . . , 1N , and

v0, . . . , vk for k even, satisfying the identities in (W5), is a Maltsev condition

for the property of being a variety with �0 and �1 having weak EDFC.

If �a ∈ AN , �b ∈ BN , and �c ∈ CN , then we use [�a,�b,�c] to denote the N -tuple

((a1, b1, c1), . . . , (aN , bN , cN )) ∈ (A×B × C)N .

Theorem 3.9 (Twice EDFC). Let V be a variety with �0 and �1. The following

are equivalent.

(T1) V has twice EDFC.

(T2) There are terms, pi, qi for i = 1, . . . , n, such that

V |= (
∧

pi(�0,�1, x, y) = qi(�0,�1, x, y)) ↔ x = y,

V |=
∧

pi(�1,�0, x, y) = qi(�1,�0, x, y),

V |=
∧

pi(�0,�0, x, y) = qi(�0,�0, x, y),

V |=
∧

pi(�1,�1, x, y) = qi(�1,�1, x, y).

(T3) There is a (
∧
p = q)-formula (open formula) ϕ(�z, �w, x, y) such that

ϕ(�z,�1, x, y) satisfies (L), ϕ(�0, �z, x, y) satisfies (R), and ϕ(�z, �w, x, y)

satisfies (W) in V.
(T4) There is a (

∧
p = q)-formula ϕ(�z, �w, x, y) such that

θA(�0, �e) ∨ θA(�1, �f) = {(a, b) : A |= ϕ(�e, �f, a, b)},

whenever A ∈ V, �e, �f ∈ AN and

(θA(�0, �e) ∨ θA(�1, �f)) ∩ (θA(�0, �e) ∨ θA(�0, �f))

∩ (θA(�1, �e) ∨ θA(�1, �f)) ∩ (θA(�1, �e) ∨ θA(�0, �f)) = ∆.

(T5) There is a (
∧
p = q)-formula (open formula) ϕ(�z, �w, x, y) such that,

for any A1,A2,A3 ∈ V,

A1 ×A2 ×A3 |= ϕ([�0,�0,�1], [�0,�1,�1], x, y) iff (x, y) ∈ kerπ2.
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(T6) There are terms vi, i = 0, . . . , k, k even, such that the following iden-

tities hold in V:

v0(�z, �w, x, y) = x, and vk(�z, �w, x, y) = y,

vi(�0,�1, x, y) = vi+1(�0,�1, x, y), for i even,

vi(�1,�0, x, y) = vi+1(�1,�0, x, y), for i odd,

vi(�0,�0, x, y) = vi+1(�0,�0, x, y), for i odd,

vi(�1,�1, x, y) = vi+1(�1,�1, x, y), for i odd,

vi(�0,�1, x, x) = x, for i = 0, . . . , k.

(T7) If F = FV(�z, �w, x, y), θ01 = θF(�0, �z) ∨ θF(�1, �w),

θ10 = θF(�1, �z) ∨ θF(�0, �w), θ00 = θF(�0, �z) ∨ θF(�0, �w),

and θ11 = θF(�1, �z) ∨ θF(�1, �w), then

(x, y) ∈ θ01 ∨ ((θ01 ∨ θF(x, y)) ∩ θ10 ∩ θ00 ∩ θ11).

(T8) The following conditions hold in V.
(i) If σ : A1 ×A2 → B1 ×B2 is a homomorphism (embedding) such

that σ([�0,�1]) = [�0,�1], then σ is twice factorable.

(ii) If S ≤ A = A1 × A2 × A3 and �e = [�0,�0,�1], �f = [�0,�1,�1] are in

SN , then

θS(�0, �e) ∨ θS(�1, �f) = (θA(�0, �e) ∨ θA(�1, �f))
∣∣∣
S
.

(T9) If S ≤ A1 × A2 × A3 and �e = [�0,�0,�1], �f = [�0,�1,�1] are in SN , then

θS(�0, �e) ∨ θS(�1, �f) = kerπ2|S.
(T10) If S ≤ A1 × A2, T ≤ B1 × B2, and σ : S → T is a homomorphism

(isomorphism) such that [�0,�1] ∈ SN and σ([�0,�1]) = [�0,�1], then σ is

twice factorable.

(T11) V has equationally definable decomposition operations.

(T12) There is an open formula satisfying (D).

(T13) There are terms, pi, qi for i = 1, . . . , n, such that

V |= (
∧

pi(�0, x, y, z) = qi(�0, x, y, z)) ↔ z = x,

V |= (
∧

pi(�1, x, y, z) = qi(�1, x, y, z)) ↔ z = y.

(T14) If S ≤ A1 × A2, T ≤ B1 × B2, [�0,�1] ∈ SN , and σ : S → T is a

homomorphism (isomorphism) such that σ([�0,�1]) = [�0,�1], then

x, y, dA1×A2(x, y) ∈ S implies σ(dA1×A2(x, y)) = dB1×B2(σ(x), σ(y)).

Moreover, when the above equivalent conditions hold, if �e, �f ∈ Z(A), then

θA�0(�e∨c(�f))
= θA(�0, �e) ∨ θA(�1, �f).
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Proof. (T1)⇒(T2): By (L3) and (R3), we know there are terms ul, vl, rj , sj
such that

V |= (
∧

ul(�0, x, y) = vl(�0, x, y)) ↔ x = y, V |=
∧

ul(�1, x, y) = vl(�1, x, y),

V |= (
∧

rj(�1, x, y) = sj(�1, x, y)) ↔ x = y, V |=
∧

rj(�0, x, y) = sj(�0, x, y).

Let

ψ(�z, �w, x, y) :=
∧
j,l

ul(�z, rj(�w, x, y), sj(�w, x, y)) = vl(�z, rj(�w, x, y), sj(�w, x, y))

and observe that

V |= ψ(�0, �w, x, y) ↔
∧

rj(�w, x, y) = sj(�w, x, y), V |= ψ(�1, �w, x, y).

So (T2) easily follows by taking pi, qi such that

ψ(�z, �w, x, y) :=
∧

pi(�z, �w, x, y) = qi(�z, �w, x, y).

(T2)⇒(T3): Take ϕ(�z, �w, x, y) :=
∧
pi(�z, �w, x, y) = qi(�z, �w, x, y).

(T3)⇒(T1): Assume that the following condition, i.e., the open case of

(T3), holds.

(T3)o There is an open formula ψ(�z, �w, x, y) such that ψ(�z,�1, x, y) satisfies

(L), ψ(�0, �z, x, y) satisfies (R), and ψ(�z, �w, x, y) satisfies (W) in V.
By (L2)⇒(L1) of Theorem 3.3 and (R2)⇒(R1) of Theorem 3.5, we have that

(T1) holds.

(T2)⇒(T4): By (T2), there is a (
∧
p = q)-formula ϕ(�z, �w, x, y) such that

V |= ϕ(�0,�1, x, y) ↔ x = y, (3.1)

V |= ϕ(�0,�0, x, y) ∧ ϕ(�1,�0, x, y) ∧ ϕ(�1,�1, x, y). (3.2)

Let �e, �f ∈ AN and define

θ01 = θA(�0, �e) ∨ θA(�1, �f), θ00 = θA(�0, �e) ∨ θA(�0, �f),

θ11 = θA(�1, �e) ∨ θA(�1, �f), θ10 = θA(�1, �e) ∨ θA(�0, �f).

Let θ01 ∩ θ00 ∩ θ11 ∩ θ10 = ∆. We claim θ01 = {(a, b) : A |= ϕ(�e, �f, a, b)} holds.

Let A |= ϕ(�e, �f, a, b). So we have A/θ01 |= ϕ(�e/θ01, �f/θ01, a/θ01, b/θ01), and

thereforeA/θ01 |= ϕ(�0,�1, a/θ01, b/θ01), which by (3.1) implies that (a, b) ∈ θ01.

Now assume (a, b) ∈ θ01. By (3.1), we have that A |= ϕ(�0,�1, a, a), and hence

A/θ01 |= ϕ(�e/θ01, �f/θ01, a/θ01, b/θ01). Similarly, we can use (3.2) to prove that

A/δ |= ϕ(�e/δ, �f/δ, a/δ, b/δ), for δ = θ00, θ11, θ10. Since θ01∩θ00∩θ11∩θ10 = ∆

and ϕ is a conjunction of equations, we have that A |= ϕ(�e, �f, a, b).

(T4)⇒(T1): Let ϕ(�z, �w, x, y) be an open formula satisfying (T4). Note that

ϕ(�z,�1, x, y) satisfies (L4), and hence V has left EDFC. Similarly, we have that

ϕ(�0, �z, x, y) satisfies (R4), and hence V has right EDFC.

(T5)⇒(T1): Assume the open version of (T5) holds, i.e., there is an open

formula ϕ(�z, �w, x, y) such that for any A1,A2,A3 ∈ V,

A1 ×A2 ×A3 |= ϕ([�0,�0,�1], [�0,�1,�1], (a1, a2, a3), (b1, b2, b3)) iff a2 = b2.
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Taking A1 to be a trivial algebra, we obtain that for any A2,A3 ∈ V,

A2 ×A3 |= ϕ([�0,�1], [�1,�1], (a2, a3), (b2, b3)) iff a2 = b2,

which says that (L2) of Theorem 3.3 holds, and hence V has left EDFC. Taking

A3 to be a trivial algebra, we obtain that for any A1,A2 ∈ V,

A1 ×A2 |= ϕ([�0,�0], [�0,�1], (a1, a2), (b1, b2)) iff a2 = b2,

which says that (R2) of Theorem 3.5 holds, and hence V has right EDFC.

(T2)⇒(T5): Take ϕ(�z, �w, x, y) :=
∧
pi(�z, �w, x, y) = qi(�z, �w, x, y).

(T6)⇒(T3): Take ϕ(�z, �w, x, y) :=
∧

i odd vi(�z, �w, x, y) = vi+1(�z, �w, x, y).

(T1)⇒(T6): By (L5) of Theorem 3.3 and (R5) of Theorem 3.5, there are

terms pi, qj , i = 0, . . . , k, j = 0, . . . ,m, with k and m even, such that the

following identities hold in V:

p0(�z, x, y) = x, q0(�z, x, y) = x,

pk(�z, x, y) = y, qm(�z, x, y) = y,

pi(�0, x, y) = pi+1(�0, x, y) for i even, qi(�1, x, y) = qi+1(�1, x, y) for i even,

pi(�1, x, y) = pi+1(�1, x, y) for i odd, qi(�0, x, y) = qi+1(�0, x, y) i odd,

pi(�0, x, x) = x for i = 0, . . . , k, qi(�1, x, x) = x for i = 0, . . . ,m.

Let vi be the terms defined as follows:

v0(�z, �w, x, y) = x,

vi(�z, �w, x, y) = pi(�z, q1(�w, x, y), q2(�w, x, y)) for i = 1, . . . , k,

vk+i(�z, �w, x, y) = pi(�z, q3(�w, x, y), q4(�w, x, y)) for i = 1, . . . , k,

v2k+i(�z, �w, x, y) = pi(�z, q5(�w, x, y), q6(�w, x, y)) for i = 1, . . . , k,...
v(m

2 −1)k+i(�z, �w, x, y) = pi(�z, qm−1(�w, x, y), qm(�w, x, y)) for i = 1, . . . , k.

It is easy to check that the terms v0, . . . , vm
2 k satisfy the equations in (T6).

(T6)⇔(T7): This is similar to (L5)⇔(L6) of Theorem 3.3.

(T8)⇒(T1): Note that taking in (T8)(ii) the factor A1 to be a trivial alge-

bra, we obtain (L7), and hence by Theorem 3.3, (T8) implies (L1). Similarly,

taking in (T8)(ii) the factor A3 to be a trivial algebra, we obtain (R7), and

hence by Theorem 3.5, (T8) implies (R1).

(T4)⇒(T8): This is similar to the proof of (T4)⇒(T9) (see below).

(T9)⇒(T1): This is similar to the proof of (T8)⇒(T1).

(T4)⇒(T9): Let ϕ(�z, �w, x, y) be a (
∧
p = q)-formula witnessing (T4). Since

θS(�0, �e)∨θS(�0, �f) ⊆ kerπ1, θ
S(�0, �e)∨θS(�1, �f) ⊆ kerπ2, and θS(�1, �e)∨θS(�1, �f) ⊆

kerπ3, we have that

(θS(�0, �e) ∨ θS(�1, �f)) ∩ (θS(�0, �e) ∨ θS(�0, �f))∩

(θS(�1, �e) ∨ θS(�1, �f))∩(θS(�1, �e) ∨ θS(�0, �f)) = ∆,

and hence

θS(�0, �e) ∨ θS(�1, �f) = {(a, b) : S |= ϕ(�e, �f, a, b)}.
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Similarly, we can prove that

θA(�0, �e) ∨ θA(�1, �f) = {(a, b) : A |= ϕ(�e, �f, a, b)}.

Of course, this assures that θS(�0, �e) ∨ θS(�1, �f) = θA(�0, �e) ∨ θA(�1, �f)
∣∣∣
S
. Thus,

we only need to prove that θA(�0, �e)∨ θA(�1, �f) = kerπ2. Since we have proved

that (T4)⇒(T1), Theorems 3.3 and 3.5 say that θA�0�g = θA(�0, �g) and θA�1�g =

θA(�1, �g), whenever �g ∈ Z(A). Also, we note that �e, �f ∈ Z(A). Thus, we have

θA(�0, �e) ∨ θA(�1, �f) = θA([�0,�0,�0], [�0,�0,�1]) ∨ θA([�1,�1,�1], [�0,�1,�1])

= θA
[�0,�0,�0][�0,�0,�1]

∨ θA
[�1,�1,�1][�0,�1,�1]

= (θA1

�0�0
× θA2

�0�0
× θA3

�0�1
) ∨ (θA1

�1�0
× θA2

�1�1
× θA3

�1�1
)

= (∆×∆×∇) ∨ (∇×∆×∆) = kerπ2.

(T10)⇔(T1): Note that (T10) is the conjunction of (L9) and (R9). Thus,

Theorems 3.3 and 3.5 say that (T10) and (T1) are equivalent conditions.

(T1)⇒(T11): Let λ(�z, x, y) be a (
∧
p = q)-formula satisfying (L) of the

introduction and let ρ(�z, x, y) be a (
∧
p = q)-formula satisfying (R) of the

introduction. Note that δ(�z, x, y, z) := λ(�z, x, z) ∧ ρ(�z, z, y) is a (
∧
p = q)-

formula satisfying (D).

(T11)⇒(T12): This is trivial.

(T12)⇒(T13): This is similar to the proof of (W11)⇒(W12) of Theo-

rem 3.7.

(T13)⇒(T14): It is easy to check that

δ(�z, x, y, z) :=
∧

pi(�z, x, y, z) = qi(�z, x, y, z)

satisfies (D). So, (T14) holds as homomorphisms preserve (
∧
p = q)-formulas.

(T14)⇒(T10): Note that the condition

x, y, dA1×A2(x, y) ∈ S implies σ(dA1×A2(x, y)) = dB1×B2(σ(x), σ(y))

guarantees that σ is twice factorable.

The proof that (T1) implies θA�0(�e∨c(�f))
= θA(�0, �e) ∨ θA(�1, �f) whenever we

have �e, �f ∈ Z(A) is left to the reader. �

Remark 3.10. It is easy to check that if a variety V has terms 01, . . . , 0N ,

11, . . . , 1N , and v0, . . . , vk for k even, satisfying the identities in (T6), then

V |= �0 = �1 → x = y and the formula

α(�z, �w, x, y) :=
∧

i odd

vi(�z, �w, x, y) = vi+1(�z, �w, x, y)

is such that α(�z,�1, x, y) satisfies (L) and α(�0, �z, x, y) satisfies (R). Thus, the

existence of terms 01, . . . , 0N , 11, . . . , 1N , and v0, . . . , vk for k even, satisfying

the identities in (T6), is a Maltsev condition for the property of being a variety

with �0 and �1 having twice EDFC.
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Under the assumption that the variety V has DFC, some of the conditions

in Theorems 3.3, 3.5, 3.7, and 3.9 can be written in an intrinsic manner, which

could be useful in some circumstances. For example, the intrinsic versions of

(L1), (L7), and (L9) can be written as follows.

(L1)′ There is a (
∧
p = q)-formula which defines θA�0�e in V.

(L7)′ The following conditions hold in V.
(i) If σ : A → B is a homomorphism, �e ∈ Z(A), and σ(�e) ∈ Z(B),

then (x, y) ∈ θA�0�e implies (σ(x), σ(y)) ∈ θB�0σ(�e).

(ii) If S ≤ A and �e ∈ Z(A) with �e ∈ SN , then

θS(�0, �e) = θA(�0, �e)
∣∣∣
S
.

(L9)′ If S ≤ A, T ≤ B, �e ∈ Z(A), with �e ∈ SN and σ : S → T is an

homomorphism such that σ(�e) ∈ Z(B), then (x, y) ∈ θA�0�e

∣∣∣
S

implies

(σ(x), σ(y)) ∈ θB�0σ(�e).

4. Definability of “�e ∈ Z(A)” and “�e �A �f”

Let V be a variety with �0 and �1 and let L be the language of V. We say that

a set of first order L-formulas {ϕr(�z) : r ∈ R} defines the property “�e ∈ Z(A)”

in V if for every A ∈ V and �e ∈ AN , we have that �e ∈ Z(A) iff A |= ϕr(�e), for

every r ∈ R. We say that a set {ϕr(�z, �w) : r ∈ R} defines the property “�e�A �f”

in V if for every A ∈ V and �e, �f ∈ AN , we have that �e �A �f iff A |= ϕr(�e, �f),

for every r ∈ R. In [1, Proposition 3.4], we give, for the case of a variety

with left EDFC, sets of formulas which define the properties “�e ∈ Z(A)” and

“�e �A �f”. In such work, we also show that these axiomatizations are optimal

in the sense of the complexity of the formulas. In this section, we will do the

same thing for the weak and twice cases. Since left EDFC and right EDFC

are notions which are each dual of the other, a simple translation produces

optimal axiomatizations for the properties “�e ∈ Z(A)” and “�e �A �f” in the

right case.

Definability of “�e �A �f” for the weak EDFC case. Let ω(�z, �w, x, y) be

an L-formula. Define

RefL(�z, �w) = ∀x ω(�z, �w, x, x),

SymL(�z, �w) = ∀x, y (ω(�z, �w, x, y) → ω(�z, �w, y, x)),

T raL(�z, �w) = ∀x, y, z (ω(�z, �w, x, y) ∧ ω(�z, �w, y, z) → ω(�z, �w, x, z)),

Exis(�z, �w) = ∀x, y∃z ω(�z, �w, x, z) ∧ ω(�w, �z, z, y),

Int(�z, �w) = ∀x, y (ω(�z, �w, x, y) ∧ ω(�w, �z, x, y) → x = y),

Bel(�z, �w) =
N∧
i=1

ω(�z, �w, 0i, zi) ∧ ω(�z, �w, 1i, wi) ∧ ω(�w, �z, 0i, wi) ∧ ω(�w, �z, 1i, zi).
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For each n-ary function symbol F ∈ L, define

PresLF (�z) = ∀x1, y1, . . . , xn, yn

n∧
j=1

ω(�z, �w, xj , yj) → ω(�z, �w, F (�x), F (�y)).

Finally, define RefR, SymR, TraR, and PresRF to be the result of interchang-

ing ω(�z, �w, –, –) with ω(�w, �z, –, –) in RefL, SymL, TraL, and PresLF , respec-

tively. Let Σω denote the set consisting of the following formulas

Bel, Exis, Int, RefL, SymL, T raL, RefR, SymR, T raR,

P resLF , P resRF , for F ∈ L.

Proposition 4.1. Let V be a variety with �0 and �1 and let L be the language

of V. Suppose that ω(�z, �w, x, y) satisfies (W) of the introduction. The set Σω

defines “�e �A �f” in V. So if V has weak EDFC, then the property “�e �A �f” is

definable in V by a set of ∀∃-formulas.

Proof. We note that ω(�w, �z, x, y) defines (θA�0�e)
∗ = θA�1�e in V. Thus, �e �A �f iff

L = {(x, y) : A |= ω(�e, �f, x, y)} and R = {(x, y) : A |= ω(�f,�e, x, y)} are a pair

of complementary factor congruences and �e ≡ �0(L), �e ≡ �1(R), �f ≡ �1(L), and
�f ≡ �0(R). The axioms

RefL(�e, �f), SymL(�e, �f), T raL(�e, �f), RefR(�e, �f), SymR(�e, �f), T raR(�e, �f)

PresLF (�e,
�f), P resRF (�e,

�f), for F ∈ L

say that L and R are congruences. Also, Exis(�e, �f) says that L ◦ R = ∇A,

Int(�e, �f) says that L ∩ R = ∆A, and Bel(�e, �f) says that �e ≡ �0(L), �e ≡ �1(R),
�f ≡ �1(L), and �f ≡ �0(R). �

As defined in Section 2, we use VDI to denote the class of directly indecom-

posable algebras in V.

Corollary 4.2. If V has DFC (resp. weak EDFC ) and the language of V is

finite, then VDI is a first order class (resp. ∀∃∀-first order class).

Proof. Suppose that ω(�z, �w, x, y) satisfies (W) of the introduction. Since the

language of V is finite, so is Σω. By the above proposition, Σω defines “�e�A �f”

in V and hence

�0 �= �1 ∧ ∀�z, �w (
∧

Σω → (�z = �0 ∨ �z = �1))

says “A is directly indecomposable”. When ω is a conjunction of equations,

the above formula is ∀∃∀. �

The axiomatization of Proposition 4.1 is in fact optimal, as it will be shown

in Lemma 4.5.

Author's personal copy



	 Equationally definable factor congruences II	Vol. 00, XX Equationally definable factor congruences II 21

Definability of “�e ∈ Z(A)” for the weak EDFC case. Let V be a variety

with �0 and �1 and let L be the language of V. Suppose that ω(�z, �w, x, y) is a

conjunction of equations satisfying (W) in the introduction. When L is finite,

Proposition 4.1 gives a finite set of ∀∃-formulas axiomatizing “�e �A �f” and

hence we can use the fact that �e ∈ Z(A) iff ∃�f ∈ AN �e �A �f to give a formula

defining the property “�e ∈ Z(A)”. The formula obtained is ∃∀∃ and it is not

optimal in the sense of its quantificational complexity. As we will see, the

property “�e ∈ Z(A)” can be defined using a set of formulas which are either

∀∃ or ∃∀, even for the case in which the language is infinite.

In order to give the optimal axiomatization of “�e ∈ Z(A)”, we shall need

formulas λ(�z, x, y) and ρ(�z, x, y) defining θA�0�e and θA�1�e, respectively. Of course,

if L is finite, we can take λ(�z, x, y) to be a formula saying

∃�w(�z � �w ∧ ω(�z, �w, x, y))

and ρ(�z, x, y) to be a formula saying

∃�w(�z � �w ∧ ω(�w, �z, x, y)).

However, λ and ρ are ∃∀∃-formulas and things can be done much better, as is

shown in the following proposition which holds for an arbitrary language.

Proposition 4.3. Let V be a variety with weak EDFC and suppose that

ω(�z, �w, x, y) :=
∧n

i=1
pi(�z, �w, x, y) = qi(�z, �w, x, y)

defines θA�0�e in V. Define

β(�z, �w, �x, �y, x, y) :=
∧n

i=1
ω(�z, �w, pi(�x, �y, x, y), qi(�x, �y, x, y)).

Then the formula

λ(�z, x, y) := ∀�w β(�z, �w, �z,�1, x, x) ∧ β(�z, �w,�1, �z, x, y) → β(�z, �w, �z,�1, x, y)

defines θA�0�e in V and the formula

ρ(�z, x, y) := ∀�w β(�w, �z,�0, �z, x, x) ∧ β(�w, �z, �z,�0, x, y) → β(�w, �z,�0, �z, x, y)

defines θA�1�e in V.

Proof. We will prove that ρ defines θA�0�e in V i.e., that ρ satisfies (R) of the

introduction. Let A,B ∈ V. Since ρ is preserved by direct products, it is easy

to check that A × B |= ρ([�0,�1], (a, b), (a′, b)), for every a, a′ ∈ A and b ∈ B.

Using that V |= ω(�0,�1, x, x) ∧ ω(�1,�0, x, y), we can easily prove the following

result.

(1) For every a, a′ ∈ A and b, b′ ∈ B, we have that

A×B |= β([�1,�0], [�0,�1], [�0,�0], [�0,�1], (a, b), (a, b)),

A×B |= β([�1,�0], [�0,�1], [�0,�1], [�0,�0], (a, b), (a′, b′)).
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Now suppose thatA×B |= ρ([�0,�1], (a, b), (a′, b′)). We will prove that b = b′.

Note that (1) says that the antecedent in ρ, for �w = [�1,�0], holds, which implies

that A×B |= β([�1,�0], [�0,�1], [�0,�0], [�0,�1], (a, b), (a′, b′)). In particular we obtain

that B |= β(�0,�1,�0,�1, b, b′). Now using that V |= ω(�0,�1, x, y) → x = y, we can

easily prove that b = b′.

By using an analogous argument, we can prove that λ defines θA�0�e in V. �

Proposition 4.4. Let V be a variety with weak EDFC.

(a) There is a set of ∀∃∀-formulas which defines “�e ∈ Z(A)” in V.
(b) There is a set Σ1 of ∀∃-formulas and a set Σ2 of ∃∀-formulas such

that Σ1 ∪ Σ2 defines “�e ∈ Z(A)” in V.

Proof. Let ω(�z, �w, x, y) be a (
∧
p = q) -formula satisfying (W) of the introduc-

tion. Let λ and ρ be the formulas defined in the statement of Proposition 4.3.

For �e, �f ∈ AN let

L�e = {(x, y) : A |= λ(�e, x, y)}, R�e = {(x, y) : A |= ρ(�e, x, y)},

L�e�f = {(x, y) : A |= ω(�e, �f, x, y)}, R�e�f = {(x, y) : A |= ω(�f,�e, x, y)}.

(a) Note that �e ∈ Z(A) iff L�e and R�e are a pair of complementary factor

congruences such that �e ≡ �0(L�e) ∧ �e ≡ �1(R�e).

(b) Note that �e ∈ Z(A) iff the following conditions hold.

∀�f ((�f ≡ �1(L�e) ∧ �f ≡ �0(R�e)) → L�e�f is a equivalence relation),

∀�f ((�f ≡ �1(L�e) ∧ �f ≡ �0(R�e)) → FA preserves L�e�f ), for each F ∈ L,

∀�f ((�f ≡ �1(L�e) ∧ �f ≡ �0(R�e)) → R�e�f is a equivalence relation),

∀�f ((�f ≡ �1(L�e) ∧ �f ≡ �0(R�e)) → FA preserves R�e�f ), for each F ∈ L,

∀�f ((�f ≡ �1(L�e) ∧ �f ≡ �0(R�e)) → L�e�f ∩R�e�f = ∆A),

∀�f ((�f ≡ �1(L�e) ∧ �f ≡ �0(R�e)) → L�e�f ◦R�e�f = ∇A),

∀�f ((�f ≡ �1(L�e) ∧ �f ≡ �0(R�e)) → (�e ≡ �0(L�e�f ) ∧ �e ≡ �1(R�e�f ))),

∃�f (�f ≡ �1(L�e) ∧ �f ≡ �0(R�e)).

It is easy to check that all the above conditions are expressible by ∀∃-formulas

except the last one, which is expressible with a ∃∀-formula. �

The following lemma guarantees that the axiomatizations of Propositions

4.1 and 4.4 for the weak EDFC case are as good as possible.

Lemma 4.5. ([1]) Let S∨
01 denote the variety of bounded join semilattices.

(a) “e ∈ Z(A)” is not definable in S∨
01 by a set of positive formulas.

(b) “e ∈ Z(A)” is not definable in S∨
01 by a set of ∀∃-formulas.

(c) “e ∈ Z(A)” is not definable in S∨
01 by a set of ∃∀-formulas.

(d) “e �A f” is not definable in S∨
01 by a set of positive formulas.

(e) “e �A f” is not definable in S∨
01 by a set of ∃∀-formulas.
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Definability of “�e ∈ Z(A)” and “�e �A �f” for the twice EDFC case.

We conclude the paper by giving optimal axiomatizations for “�e ∈ Z(A)” and

“�e �A �f” for the case of V having twice EDFC.

Proposition 4.6. Let V be a variety with twice EDFC.

(a) There is a set of ∀∃-formulas which defines “�e ∈ Z(A)” in V.
(b) There is a set of ∀∃-formulas which defines “�e �A �f” in V.

Proof. This is a straightforward argument. �

In order to prove that the axiomatizations of the above proposition are

optimal, we introduce an example. Let L = {0, 1,c ,∨} where 0 and 1 are

constant symbols, c is a unary function symbol, and ∨ is a binary function

symbol. Let S∨c
01 be the variety of L-algebras defined by the identities of

bounded join semilattices together with the identities 0c = 1 and 1c = 0.

The following lemma guarantees that the axiomatizations of Proposition

4.6 are as good as possible.

Lemma 4.7. The variety S∨c
01 has twice EDFC and has the following proper-

ties.

(a) “e ∈ Z(A)” is not definable in S∨c
01 by a set of positive formulas.

(b) “e ∈ Z(A)” is not definable in S∨c
01 by a set of ∃∀-formulas.

(c) “e �A f” is not definable in S∨c
01 by a set of positive formulas.

(d) “e �A f” is not definable in S∨c
01 by a set of ∃∀-formulas.

Proof. It is easy to check that the formulas x∨ z1 = y ∨ z1 and x∨ zc1 = y ∨ zc1
satisfy (L) and (R) of the introduction, respectively. Thus, S∨c

01 has twice

EDFC.

(a): Since positive formulas are preserved by quotients, in order to prove

(a), we will give a central element e and a congruence θ such that e/θ is

not central. Let T = 〈{0, 1/2, 1}, 0, 1,c ,max〉, where 0c = 1 and (1/2)c =

1c = 0. Let S be the subalgebra of T with universe equal to {0, 1}. Let

A = T × S and let θ be the binary relation on A given by the following

partition: {{(1/2, 1), (1, 1)}, {(0, 0)}, {(0, 1)}, {(1/2, 0)}, {(1, 0)}}. It can be

easily checked that θ is a congruence of A. Note that |Z(A/θ)| = 2 since

|A/θ| = 5 is a prime number. Thus, we have that (0, 1) ∈ Z(A) and (0, 1)/θ /∈
Z(A/θ).

(b): Let C = 〈[0, 1], 0, 1,c ,max〉 where

ac =

{
1, if a = 0;

0, otherwise.

Clearly, C is in S∨c
01 . Suppose “e ∈ Z(A)” is definable in S∨c

01 by a set of

∃∀-formulas. By compactness, we can assume that this set is finite. Let

A = C × C. Since (0, 1) ∈ Z(A), there are p1, . . . , pm such that in every

subalgebra of A containing (0, 1), p1, . . . , pm, we have that (0, 1) is central.

Let I ≤ C be a finite subalgebra such that {(0, 1), p1, . . . , pm} ⊆ I × I. We

Author's personal copy



	 M. Badano and D. J. Vaggione� Algebra Univers.24 M. Badano and D. J. Vaggione Algebra univers.

observe that if max(I − {1}) < a1 < a2 < · · · < ak < 1, then we have that

B = (I × I) ∪ {(a1, 1), (a2, 1), . . . , (ak, 1)} is the universe of a subalgebra B of

A containing (0, 1), p1, . . . , pm. Thus, (0, 1) ∈ Z(B). But this is absurd since

we can choose k in such a manner that the cardinality of B is a prime number.

(c): Suppose “e�A f” is definable in S∨c
01 by a set of positive formulas. Since

the language of S∨c
01 is finite, by compactness we have that there is a finite set

of positive formulas which defines “e �A f”. So, the formula ∃w (z � w) is a

positive formula which defines “e ∈ Z(A)” in S∨c
01 , which contradicts (a).

(d): This is similar to the proof of (c). �
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