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Abstract

The aim of this work is to describe an analysis of the transverse shear deformability in the dynamics of
thin-walled composite beams. Some thin-walled-composite-beam models, which are derived by means of
different approaches (principle of virtual works and principle of Hellinger–Reissner among others), show
substantial discrepancies due to the employment of different constitutive equations based on the
aforementioned approaches. In the following paragraphs a comparison of different schemes and
hypotheses related to constitutive equations for thin-walled composite beams is performed.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In the last fifteen years a number of models [1–8] have been developed to describe the dynamics
of thin-walled composite beams. The accuracy of these models is strongly dependent on the
different underlying concepts and hypotheses used to formulate them. Thin-walled composite
beam models based on hypotheses adopted by Vlasov or Bauld and Tzeng, where shear
deformability is neglected, in general overpredict the frequency values in the cases of shorter
beams, especially in the determination of higher modes [1,2,8]. This is also a known fact in the
context of isotropic materials.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Many non-conventional effects were incorporated with the purpose to improve the accuracy of
the predicted frequencies. These improvements have been validated by means of the comparison
with experimental results or, at least, with extensive 2D or 3D finite element solutions.

Two of the most relevant non-conventional effects taken into account were shear deformation
and rotary inertia as an extension of Timoshenko’s earlier ideas for solid section beams.

However, the incorporation of these non-conventional effects, especially shear deformations,
yields accurate results when the constitutive law and the methodology of derivation are conveniently
adopted. The effect of shear deformability can be taken into account by employing one or more of
the following concepts: (1) shear deformability due to bending, (2) shear deformability due to non-
uniform torsion warping (very important in thin-walled beams with open sections), and (3)
transverse shear deformability (or thickness shear effect). Wu and Sun [1] developed their model
making use of the first two concepts of shear deformability. Song and Librescu [2] developed their
model employing the first and third concepts of shear deformability. These authors applied the
principle of virtual works (PVW) to derive the governing equations of their respective models. On
the other hand, Cortı́nez and Piovan [8] considered all the three aspects of the shear deformability
aforementioned, however they derived their model by means of the principle of Hellinger–Reissner
(PHR). One of the main differences between PVW and PHR lies in the scheme for obtaining the
constitutive equations in terms of stress resultants and generalized strains.

In this note, comparisons of different shear deformable thin-walled-composite-beam models
and their underlying concepts are performed. The ply sequence of the constitutive models is
restricted to the particular, but quite common, case of symmetric and balanced stacking sequence.
From these comparisons, the model obtained by means of the PHR appears to be the most
convenient from the point of view of its accuracy (at least for determining natural frequencies).
2. Thin-walled beam models by means of the Hellinger–Reissner principle

The PHR for a composite thin-walled beam can be expressed in the following form [8,9]:Z
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In expressions (1), r is the mass density and e is the wall-thickness. Nxx; Nxs; Mxx; Mxs and Nxn

are the shell stress resultants and Āij ; D̄ij are elasticity constants [10]. �xx; gxs; gxn; kxx and kxs are
the linear shell strains. Ū ; V̄ ; W̄ ; fx and fs are the shell displacements in the x; s and n directions,
and bending rotations about s and x; respectively (see Fig. 1(b)), which are defined in terms of the
general set of displacements given by expressions (2), as shown in Ref. [8].

It should be noted that, in Eq. (1), the stress resultants and the displacements are variationally
independent quantities. Expressions (1a) and (1b) represent the variational forms of the dynamic
equilibrium and constitutive equations, respectively. Eq. (1a) can also be interpreted as a form of
the PVW.

The displacement field can be defined in the following form [8]:

ux ¼ uxoðxÞ � yzðxÞ Ȳ ðsÞ � n
dZ

ds

� �
� yyðxÞ Z̄ðsÞ þ n

dY

ds

� �
� yðxÞoðs; nÞ; (2a)

uy ¼ uycðxÞ � fðxÞ ZðsÞ þ n
dY

ds

� �
; (2b)

uz ¼ uzcðxÞ þ fðxÞ Y ðsÞ � n
dZ

ds

� �
; (2c)

where uxo
is the axial displacement of the cross-sectional centroid, uyc

and uzc are the lateral
displacements measured from cross-sectional shear-center (defined according to Vlasov). The
variables yy and yz are bending rotations with respect to the principal axes of the cross section.
The variable f is the torsional rotation measured from the shear-center. The variable y is a
measure of the torsional warping along the beam. It is important to realize that in the present
formulation y is an independent variable. Thus, this is an important difference with other thin-
walled beam formulations that express the warping measure in terms of the first derivative of the
torsion rotation [2,3,5,6].

In expressions (2), fY ;Zg ðfȲ ; Z̄gÞ are the coordinates of the wall mid-line measured from the
shear-center (centroid). The following expression for the warping function o takes into account
primary as well as secondary warping [8]:

oðs; nÞ ¼ oPðsÞ þ osðs; nÞ ¼

Z
s
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Fig. 1. Beam and coordinate system of the cross section.
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The linear shell strains �xx; gxs; gxn; kxx and kxs can be expressed in terms of generalized strains
by means of the following forms [8]:

�xx ¼ ½�D1 � Y ðsÞ�D3 � ZðsÞ�D2 � oPðsÞ�D4�; (4a)
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� �
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Actually, �D1 means the longitudinal deformation, �D2 and �D3 are flexural curvatures, �D4 is the
warping deformation, �D5 and �D6 are related to bending shear deformation, �D7 is the shear
deformation related to torsion warping and �D8 is related to pure torsion.

When the shell transverse strain is neglected in expression (4d) (meaning gxn ¼ 0), the remaining
expressions (4) are similar to that of Wu and Sun [1]. On the other hand, imposing gxn ¼ 0 and
�D7 ¼ 0 (that is, neglecting warping shear flexibility and transverse strains), the reduced
expressions (4) are identical to those employed by Smith and Chopra [11] for box beams. On
the other hand, when �D7 is neglected in expressions (4c) and (4d), it is possible to obtain the strain
field of Song and Librescu [2,3] for box beams.
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The shell stress resultants (which are consistent with shell equilibrium equations [8]) can be
expressed in terms of beam stress resultants in the following form:

Nxx ¼ e
QX

J11
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J22
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Ȳ þ
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� �
; (6a)
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where QX ; MY ; MZ; B; QY ; QZ; TSV and TW are axial force, bending moment in y direction,
bending moment in z direction, bimoment, shear force in y direction, shear force in z direction,
pure torsion moment, flexural-torsional moment, respectively. J11; J22; J33; J44; and J88 are cross-
sectional area, inertia moments (z and y directions), warping constant and torsion constant,
respectively [8]. The functions l̄iðsÞ are expressed in the form:
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� �
ds; (7c)

where w is 0 or 1 depending on whether the cross-section contour is open or closed, respectively. S

denotes the contour perimeter.
Following Refs. [8], the beam equilibrium equations can be obtained substituting Eqs. (6), (5),

(4) and (2) into Eq. (1a), and the constitutive equations can be obtained substituting Eqs. (2)–(7)
into Eq. (1b).
3. Constitutive equations and their related hypotheses

The constitutive equations of composite beams can be obtained in different ways according to
the different hypotheses considered in their formulation. Some authors [4,12] have developed the
constitutive equations imposing a plane stress state in the stress–strain relations of a lamina [10],
and then rearranging (neglecting or replacing) hoop strains and stresses in normal and transverse
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components, before obtaining the shell stress resultants and the constitutive equations of beam
stress resultants in terms of generalized deformations. Other authors [1,3,6,8] based the
constitutive models on imposing in the general expression (8) of shell stress resultants the
conditions Nss ¼ Nsn ¼ Mss ¼ 0 (this is one of the most realistic hypotheses, see Refs. [10,13]) and
then rearranging �ss; gsn and kss in terms of the remaining strain components.
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: (8)

Then, following the second procedure, it is possible to obtain modified expressions of Nxx; Nxs;
Mxx; Mxs and Nxn in terms of the strains �xx; gxs; gxn; kxx and kxs: In the case of symmetric and
balanced laminates, the constitutive equations take the form [8]
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Ā11 0 0 0 0
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Ā11; Ā66; etc. are modified elastic constants as explained in Refs. [8,14]. It has to be noted that for
dynamic problems, the inclusion of gxn was only considered in Refs. [2,3,8]. However in Refs. [2,3]
as well as in Refs. [1,6,7,12] the direct stiffness method was employed to obtain the beams stress
resultants.

The beam stress resultants are defined in terms of the shell stress resultants as

QX ¼

Z
S

Nxx ds; MY ¼

Z
S

NxxZ̄ þ Mxx

dY

ds

� �
ds; (10a,b)
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Z
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Z
S

fNxs½rðsÞ þ cðsÞ� þ NxnlðsÞgds; TSV ¼

Z
S

½NxscðsÞ � 2Mxs�ds: (10g,h)

It is clear that by substituting Eq. (6) into Eq. (11), a set of identities is obtained.
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3.1. Stiffness-based constitutive equations

The constitutive equations of the beam stress resultants in terms of the generalized
deformations could be obtained substituting Eq. (9) into Eq. (10), leading to
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ðdÞ
j

� �
e3 ds; (12)
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ds
;�

dZ
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� �
: (13b,c)

In expression (14) the components of the fifth, sixth and seventh rows of Eq. (11) are shown.
This is a way to understand the combination of hoop and thickness shear effects in the context of
the PVW approach.
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The first term of Eq. (14) corresponds to the shear rigidity associated with hoop strains ðgxsÞ; and
the second term of Eq. (14) corresponds to the shear rigidity associated with the in-thickness shear
strain ðgxnÞ:
3.2. Constitutive equations obtained by using the Hellinger–Reissner principle

In this context, the constitutive equations of beam stress resultants can be obtained by
substituting Eqs. (4) and (6) into Eq. (1b). After some algebraic manipulations it is possible to
arrive at the constitutive equations having form (11), but differing only in the shear components
of the constitutive matrix, i.e. the elements of rows and columns 5–7. They can be calculated in the
following form [8]:
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where the following notation is used:

Z;s ¼
dZ

ds

� �
; Y ;s ¼

dY

ds

� �
; oP;n ¼

doP
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� �
: (16a,b,c)
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4. Finite element analysis

In order to perform the comparative analysis of PVW and PHR approaches, a finite element
scheme based on a previous work [14] of the authors is employed. In this scheme a two-node
seven-degree-of-freedom element is used. It is possible to neglect different terms of shear flexibility
within the element basis. Also, a Vlasov-type element may be obtained as a limit case when the
rotary inertia terms and the shear flexibility are completely neglected (i.e. �D5 ¼ �D6 ¼ �D7 ¼ 0).

As a first example, in Fig. 2, the cross section of a simply supported U-beam made of
graphite–epoxy AS4/3506-1 and the corresponding stacking sequence and slenderness ratio are
shown. In Table 1, a comparison is shown for the first four flexural-torsional frequencies obtained
with the Vlasov model, the PVW approach and the PHR approach. The frequencies of the shear
flexible models (PVW and PHR) were obtained considering only gxs and neglecting gxn: In Table 2
the same frequencies are shown, but now taking into account gxs and gxn:

It can be seen in Tables 1 and 2 that the Vlasov model overestimates the frequency values with
respect to the predictions of the shear flexible approaches. There are, however, some discrepancies
between the frequencies obtained by the different shear deformable models (PVW and PHR).

The aforementioned discrepancy is increased with the increase of the ratio e=h and the
frequency order. When using the PHR approach, the frequency values obtained by considering
both gxs and gxn are lower than those corresponding to the case that neglects gxn: This last
behaviour appears to be reasonable. In fact, when the beam is more flexible (gxsa0 and gxna0 its
frequencies are lower. However, the opposite occurs when the PVW approach is used. That is,
frequencies increase for the more flexible case (gxsa0 and gxna0). This is a non-consistent
behaviour. Therefore, when applying the PVW approach it appears to be more consistent to
neglect gxn:
y

z e

b

hy
_

z
_

Fig. 2. Cross section of a composite U-beam and its properties. Composite material is AS4/3506-1: E1 ¼ 144GPa;
E2 ¼ 9:68GPa; G12 ¼ G13 ¼ 4:14GPa; G23 ¼ 3:45GPa; n12 ¼ 0:3; n23 ¼ 0:5; r ¼ 1389 kg=m3; h=L ¼ 0:1; fh; b; eg ¼
f0:6; 0:6; 0:03gm: Stacking sequence of each segment: f15=� 15=� 15=15g: Boundary conditions: simply supported at

both ends.
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Table 1

Flexural-torsional frequencies (Hz) of a simply supported U-beam considering only gxs in the shear flexible constitutive

model

e=h Approach f 1 f 2 f 3 f 4

0.05 [I] 36.36 139.63 187.20 311.74

[II] 35.01 121.74 140.07 238.06

[III] 34.78 119.08 137.61 229.22

0.10 [I] 41.27 145.16 189.92 317.32

[II] 39.83 127.34 142.44 244.09

[III] 39.62 124.85 141.36 235.66

0.15 [I] 47.92 153.77 194.38 326.30

[II] 45.94 135.47 149.04 253.12

[III] 45.76 133.24 147.55 245.41

[I] Vlasov-model, [II] PVW approach, [III] PHR approach.

Table 2

Flexural-torsional frequencies (Hz) of a simply supported U-beam considering gxs and gxn in the shear flexible

constitutive model

e=h Approach f 1 f 2 f 3 f 4

0.05 [I] 36.36 139.63 187.20 311.74

[II] 35.58 128.96 143.10 264.46

[III] 34.78 119.08 137.61 229.19

0.10 [I] 41.27 145.16 189.92 317.32

[II] 40.41 134.53 146.30 270.35

[III] 39.62 124.77 141.34 235.42

0.15 [I] 47.92 153.77 194.38 326.30

[II] 46.59 142.68 151.76 279.35

[III] 45.73 132.92 147.46 244.28

[I] Vlasov-model, [II] PVW approach, [III] PHR approach.
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A cantilever C-beam with its geometrical and material properties is depicted in Fig. 3. This
beam was tested experimentally in order to assess the efficiency of early shear-deformable thin-
walled-composite-beam models [1]. In Table 3 comparisons of the present approaches with
experimental and computational results are depicted. It is possible to see that the PHR approach,
when gxn and gxs are considered, leads to frequency predictions closer to the experimental values.

As it can be seen, the use of shear-flexible models by means of PVW (or the direct stiffness
method) considering in-thickness shear deformability (i.e. gxn) leads to a non-consistent over-
prediction of the frequency values. Conversely, the use of hoop and thickness shear flexibility in
the PHR approach leads to consistent and more realistic values of the frequencies. This behaviour
can be explained recalling the derivation methodologies of constitutive equations for PVW and
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Fig. 3. Cross section of a composite C-beam and its properties. Composite material is epoxy plastic reinforced with

graphite: E1 ¼ 128GPa; E2 ¼ 11GPa; G12 ¼ 4:48GPa; n12 ¼ 0:25; r ¼ 1500 kg=m3; L ¼ 0:152m: Stacking sequence:

f0=� 45=90gs: Boundary conditions: clamped at x ¼ 0; free at x ¼ L: R ¼ 0:127m; g ¼ 17:14�; e ¼ 1:04mm:

Table 3

First three frequencies (Hz) of a cantilever composite cylindrical panel with quasi-isotropic stacking sequence

f0=� 45=90gs

Reference and solution approach f 1 f 2 f 3

Type of mode 1 �FT 1 �F 2 �FT

Wu–Sun [1] shear deformable beam solution 194.10 235.80 724.10

Experiment of Crawley [1] 177.00 201.80 645.00

Present PHR approach ðgxna0Þ 178:84 227:11 616:03
Present PHR approach ðgxn ¼ 0Þ 178.84 227.80 616.73

Present PVW approach ðgxna0Þ 196.40 240.40 746.10

Present PVW approach ðgxn ¼ 0Þ 187.40 235.00 668.60

1 �FT means first flexural-torsional, 1 �F means first flexural and 2 �FT means second flexural-torsional.
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PHR approaches. Then, comparing expressions (14) and (15), that is the shear components of
constitutive equations of the PVW and PHR approaches, respectively, the difference between the
constitutive models can be clearly identified. In expression (14) the consideration of gxn leads to
the direct addition of rigidity terms, whose effect is to increase the frequency values. Contrary, in
expression (15) the consideration of gxn does not add rigidity, instead it implies the addition of
flexibility, which is in fact closer to the idea of including a non-conventional flexibility effect in a
beam model.
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5. Conclusions

In this note a comparison of different schemes and hypotheses related to constitutive equations
for thin-walled composite beams was performed. The role of the in-thickness shear deformation
gxn was focused on and studied by the use of experimental results. It was shown that the
consideration of gxs and gxn in beam models based on the PVW leads to an over prediction of the
frequency values, in comparison with the results obtained taking into account only gxs: The
employment of Reissner’s methodology can overcome this problem, leading to consistent
frequency values. However, the PVW approach can reach acceptable results when the in-thickness
shear strain gxn is neglected.

This circumstance is remarkable, important in the vibration of thin-walled beams with general
lamination, where PHR approaches are not yet available due to their inherent complex
formulation. However, as a first approximation, PVW approaches (considering only hoop shear
flexibility) may be employed in the determination of the lower frequencies.
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