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The resonances between the Earth as one boundary and the ionosphere as the other, known as
Schumann’s resonances, represent an interesting example of a spherical cavity. We consider a simple
model in which the boundaries behave as perfect conductors and then take into account the finite
conductivity of the boundaries. Numerical results are obtained for both models and compared with
available data. Good agreement is shown to exist between the analytical results and the experimental
values when finite conductivity of the walls is considered. ©2004 American Association of Physics
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I. INTRODUCTION

If one thinks of a resonant cavity, the first thought th
might come in mind is a microwave oven or a similar devic
It might be difficult to believe that the Earth behaves like
enormous resonant cavity. This behavior was first realized
Nikola Tesla in the early 1900’s. He thought that the Ea
would be a conductor and be responsive to certain elec
magnetic frequencies. The inner boundary of the cavity
provided by the Earth’s surface while the ionosphere is
outer surface. The resonant frequencies of this cavity
known asSchumann resonancesin honor of W. O. Schu-
mann who predicted them in 19521 and detected them in
1954.2

To observe these electromagnetic waves, one has to e
the Earth resonant cavity near its resonance, which is w
the electrical activity in the atmosphere does. The reson
waves manifest themselves as peaks in the electromag
noise spectrum and have average values of 8, 14, 20, 26
37, and 43 Hz, with a daily variation of about60.5 Hz
depending on the Earth’s electromagnetic activity.3 Their
characteristic wavelengths are of the order of magnitude
the Earth’s radius~6400 km!.

In this paper, we determine the Schumann resonance
considering two models. The first, a rather crude one, c
siders the cavity’s walls as perfect conductors of infinite c
ductivity. The more realistic model takes into account t
finite conductivity of the walls.

The paper is organized as follows. In Sec. II, the theo
ical approach for perfectly conducting walls is developed.
Sec. III, we present two methods for obtaining the corr
tions for real conductive walls. One method includes the c
culation of the quality factorQ. The other approach is base
on the method of perturbation of boundary conditions.4 In
Sec. IV, these methods are used to determine the impro
eigenfrequencies of the system, and we compare these
quencies with the results for perfectly conducting walls a
the available data. Concluding remarks are presented in
V.

II. THEORY AND INFINITE CONDUCTIVITY
APPROACH

Electric or magnetic fields in an electromagnetic cav
resonator can support different types of standing waves
pending on the direction of their components. The directio
704 Am. J. Phys.72 ~5!, May 2004 http://aapt.org/ajp
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of the fields determine the characteristics of the electrom
netic modes inside a hollow spherical cavity. There are t
types: transverse magnetic~TM! modes and transverse ele
tric ~TE! modes, depending on the existence of transve
magnetic or electric fields, respectively. In our problem, T
~TE! designates the non-existence of radial magnetic~elec-
tric! field component, that is,Br50 (Er50). We shall dis-
cuss only the TM modes because they present the low
frequencies in comparison with TE modes for the Earth c
ity.

We assume that the fields for a TM mode in our spheri
cavity are independent of the azimuthal anglef. From Max-
well’s equation for zero divergence and the requirement t
the fields must be finite atu50, we conclude that only thef
component ofB is nonzero. Faraday’s law requires that thef
component of the electric fieldE also must vanish. Hence
the nonvanishing field’s components for the TM mode a
Bf , Er , andEu .

We first consider two perfectly conducting concent
spheres with inner radiusRi ~the Earth’s radius! and outer
radiusRo , whereRo5Ri1h andh is the height of the iono-
sphere. Although the ionosphere is the region of the atm
sphere between 90 and 3000 km above the Earth’s surf
the major electron density 108– 1011m23 is at about 50 km
during the day and 300 km at night. It can be shown that
these values, the resonant frequencies vary only about60.5
Hz for each mode. Therefore, we will assumeh5100 km to
compare with literature.5

We start with the vector Helmholtz equation4

¹2B1
v2

c2
B50, ~1!

which can be written in spherical coordinates as

v2

c2
~rBf!1

]

]r 2
~rBf!

1
1

r 2 F 1

sinu

]

]u S sinu
]~rBf!

]u D2
~rBf!

sin2 u
G50. ~2!

To solve Eq.~2!, we apply the method of separation o
variables. We have

Bf~r ,u!5
f l~r !

r
g~u!. ~3!
704© 2004 American Association of Physics Teachers
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The angular behavior can be determined using Legen
polynomials,g(u)5Pl

1(cosu). If we substitute this form for
g in Eq. ~2!, we obtain

d fl~r !

dr2
1Fv2

c2
2

l ~ l 11!

r 2 G f l~r !50, ~4!

where l 51,2,... determines the angular dependence of
modes. The solution forf l(r ) is

f l~r !5(
l 51

`

Alr j l~kr !1Blrh l~kr !, ~5!

where j l andh l are the spherical Bessel functions,6 k5v/c
is the magnitude of the wave vector, and the constantsAl and
Bl are determined by the boundary conditions.

The corresponding components ofE are

Er5
ic2

vr sinu

]

]u
~sinuBf!

52
ic2

vr
l ~ l 11!

f l~r !

r
Pl~cosu!, ~6a!

Eu52
ic2

vr

]

]r
~rBf!52

ic2

vr

d f l~r !

dr
Pl

1~cosu!. ~6b!

The boundary condition for perfect conductors implies
vanishing ofEu at r 5Ri and r 5Ro . Hence,

d fl~r !

dr U
r 5Ri ,Ro

50. ~7!

If we substitute Eq.~5! for f l(r ), we find

d

dr
~Alr j l~kr !1Blrh l~kr !!ur 5Ri ,Ro

50, ~8!

or

Al@kRi j l 21~kRi !2 l j l~kRi !#1Bl@kRih l 21~kRi !

2 lh l~kRi !] 50, ~9a!

Al@kRoj l 21~kRo!2 l j l~kRo!#1Bl@kRoh l 21~kRo!

2 lh l~kRo!] 50. ~9b!

To obtain a nontrivial solution of Eq.~9!, the determinant
of the coefficient matrix is set equal to zero, the solution
which yields the eigenvalues

kl5
v l

c
. ~10!

III. FINITE CONDUCTIVITY APPROACH

The use of perfectly conducting walls is an approximat
that is far from reality, because the earth’s ionosphere
haves like a real conductor with finite conductivity. A mod
that includes the important properties which determine
dynamic behavior of the ionosphere must consider ion
tion, the recombination of species, the variation of solar
diation, and the configuration of the Earth’s magnetic fie
We will not take into account all of these features, but w
assume as a first approximation that the ionosphere beh
as a wall whose conductivity is determined from a Dru
model for the electron gas.7 In this approximation, the iono
705 Am. J. Phys., Vol. 72, No. 5, May 2004
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sphere is treated as an anisotropic cold plasma mainly du
the ionized gas of particles that exists in this region of
atmosphere and the presence of the Earth’s magnetic
B0 .

The current density in the presence of an arbitrarily o
ented magnetic field is8

j5s iEi1sPE'2sH~E'ÃB'!/B, ~11!

where the symbolsi and' refer to the direction parallel and
perpendicular to the magnetic field andsP , sH , ands i are
the Pedersen, Hall, and parallel conductivities, respectiv
and are given by

sP5
nc

2

nc
21nB

2
s0 , sH52

nBnc

nc
21nB

2
s0 , s i5s05

nee
2

menc
,

~12!

where me and e are the electron mass and charge, resp
tively, nc is the electron collision frequency,nB5eB0/2pm
is the precession frequency of a charged particle in a m
netic field ~gyration frequency!, andne is the electron den-
sity. For a typical value ofB0530mT as the Earth’s mag-
netic field,nB;106 s21.

We can make approximations that allow us to simplify t
calculations and still obtain useful results. One class of
proximations consists of simplifications to the anisotrop
cold plasma medium.

For typical day-time values ofnc ,9 we havenc@nB at the
height of interest (h;100 km). In this limit, there is electric
current only in the direction of the electric field (sH→0 and
sP→s0), and the medium becomes an isotropic conduc
~j}E!. The reason is that the electrons collide with the ion
nuclei before they are influenced by the Earth’s magne
field leading to a net electronic movement parallel to t
direction of the electric field. Thus, the ionosphere can
well described as an isotropic conductor whose current d
sity is given by the Ohm’s law:7

j5s0E. ~13!

Typical values for the ionospheric conductivity,s i , at of
h5100 km vary froms05s i;1026 V21 m21 at night to
s i;1023 V21 m21 during the day. The Earth’s surface co
ductivity, ss , can be taken ass05ss;1 V21 m21, which
corresponds to seawater conductivity.10

The main consequence of considering real conductors
cavity is the dissipation of energy in their walls and a sh
ing of the resonant frequencies. In the following, we w
take into account the finite conductivity of the Earth cavity
walls by using two approaches: The perturbation of bound
conditions and the conservation of energy principle throu
the calculation of the quality factorQ of the cavity.

A. Perturbation of boundary conditions

The finite conductivity of the cavity walls can be take
into account using the perturbation of boundary conditio
method in which the deviation from an exactly solvab
problem occurs at the boundaries due to the alteration of
boundary conditions. Although the method allows for corre
tions to any degree of accuracy in powers of a perturba
parameter, we shall use only the lowest order.

We focus our analysis on a single, nondegenerate
mode and consider theBf component. We denote by a zer
705M. F. Ciappina and M. Febbo
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superscript the unperturbed solution for infinite conductiv
Thus, the time independent wave equation forw05rBf is

~¹21k~0!2!w050, ~14!

with homogenous Neumann boundary conditions

]w0

]n U
S

50, ~15!

wherek05v0/c. For finite conductivity, the normal deriva
tive of w0 is not zero on the walls, and thus

]w

]nU
S

5C~v!w, ~16!

whereC(v) is given by

C~v!5
d

2

v2

c2
~11 i !, ~17!

whered is the skin depth defined asd5A2/(mcsv), mc is
the permeability of the conducting wall, ands is its conduc-
tivity. The value ofC(v) was obtained by considering th
boundary conditions on the tangential value ofE just outside
the surface of a real conductor5

Et.Amcv

2s
~12 i !~n3Ht!. ~18!

Because we are looking for the lowest order approximat
to the perturbed problem,

~¹21k2!w50, ~19!

with its boundary condition given by Eq.~16!, the right-hand
side of Eq.~16! can be replaced by the unperturbed field, th
is

]w

]nU
S

.C~v0!w0uS . ~20!

Green’s theorem11 can be employed to find the eigenvaluek2

E
V
@f¹2c2c¹2f#d3x5 R

S
Fc df

]n
2f

]c

]nGda, ~21!

where the right-hand side of Eq.~21! has an inwardly ori-
ented normal~outside the conductor!. If we let c5w andf
5w0* and use Eqs.~14! and ~19!, and the boundary condi
tions, ~15! and ~20!, Eq. ~21! becomes

~k~0!22k2!E
V
w0* wd3x5C~v0! R

S
uw0u2da. ~22!

BecauseC(v0) is a small parameter,w can be replaced by its
unperturbed valuew0 inside the volume integral. Finally, w
have

~k~0!22k2!.C~v0!
rSuw0u2da

*Vuw0u2d3x
. ~23!

We write k5v/c and rewrite Eq.~23! as

v2.v~0!2~12~11 i !I !, ~24!

where we have defined
706 Am. J. Phys., Vol. 72, No. 5, May 2004
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1

2

derSe
uw0u2da1d irSi

uw0u2da

*Vuw0u2d3x
, ~25!

andde , d i , Se , andSi are the skin depths and the spheric
surfaces of the Earth and the ionosphere, respectively. E
tion ~25! includes all of the contributions to the surface int
gral determined by Eq.~23!. If we evaluate Eq.~25! and
replace it in Eq.~24!, we obtain improved values for th
eigenfrequencies.

B. The Q approach

Dissipation of energy causes a spread in the resona
frequencies in real conductors. A measure of the tuning o
cavity is the quality factorQ, defined by

Q5v0
U

P
, ~26!

whereU is the energy stored in the cavity,P is the power
loss per cycle, andv0 is the resonance frequency witho
considering ohmic losses. The energy stored by electrom
netic fields inside the cavity is

U5
1

4 E S euEu21
1

m
uBu2Dd3x. ~27!

We use the definition forE and B @Eqs. ~3! and ~6!# and
separate the volume integral into angular and radial com
nents. For the angular part ofEu andEr , we use

E ~Pl
1~cosu!!2dV5

4p l ~ l 11!

~2l 11!
, ~28a!

E ~Pl~cosu!!2dV5
4p

~2l 11!
, ~28b!

respectively. Their radial integrals are

E
Ri

Ro
uEuu2r 2dr5

c4

v~0!2
Al

2E
Ri

Ro
~@kr j l 21~kr !2 l j l~kr !#

1Cl@krh l 21~kr !2 lh l~kr !# !2dr ~29!

5
c4

v~0!2
Al

2I l
~u! , ~30!

and

E
Ri

Ro
uEr u2r 2dr5

c4

v~0!2
~ l ~ l 11!!2Al

2E
Ri

Ro
~ j l~klr !

1Clh l~klr !!2dr

5
c4

v~0!2
~ l ~ l 11!!2Al

2I l
~r ! , ~31!

where we have definedCl5Al /Bl . Alternatively, for theBf

component, we have the same angular part asEu @Eq. ~6b!#,
while the radial integral is

E
Ri

Ro
uBfu2r 2dr5Al

2E
Ri

Ro
~ j l~klr !1Clh l~klr !!2r 2dr

5Al
2I l

~f! . ~32!
706M. F. Ciappina and M. Febbo
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By using the angular integrals in Eq.~28! and the radial
integrals in Eqs.~30!–~32!, the energy stored inside the ca
ity can be written as

U5
Al

2p

~2l 11! S ec4

v~0!2
~ l ~ l 11!I l

~r !1I l
~u!!1

1

m
I l

~f!D . ~33!

Power loss arises from the cavity’s surfaces and is defi
by

P5
1

2sd E un3Hu2da. ~34!

In our case, the power loss is

P5
1

2sdmc
2 E uBfu2da, ~35!

where H5B/mc . The surface integral must be express
into two contributions, one for the inner spherical shell a
the other for the outer one. Therefore, the power loss can
expressed as

P5
2p l ~ l 11!

~2l 11!mc
2

Al
2F Ri

2

ssds
U f l~Ri !U21

R0
2

s id i
U f l~R0!U2G .

~36!

Because

d5S 2

mcsv D 1/2

→ 1

ds
5

dmcv

2
, ~37!

Eq. ~36! for P becomes

P5
p l ~ l 11!v0

~2l 11!mc
Al

2@dsRi
2u f l~Ri !u21d iR0

2u f l~R0!u2#.

~38!

If we substitute Eqs.~33! and ~38! in Eq. ~26!, we obtain

Q5

ec4

v~0!2
~ l ~ l 11!I l

~r !1I l
~u!!1

1

m
I l

~f!

1

mc
@dsRi

2u f l~Ri !u21d iR0
2uul~R0!u2#

. ~39!

If we assume that both walls are nonmagnetic (mc;m) and
use the equalityme51/c2, Eq. ~39! reduces to

Q5

c2

v~0!2
~ l ~ l 11!I l

~r !1I l
~u!!1I l

~f!

@dsRi
2u f l~Ri !u21d iR0

2u f l~R0!u2#
. ~40!

Equation~40! can be evaluated numerically for the differe
resonant modes.

C. Connection betweenQ and perturbation of boundary
conditions approaches

The correction for the resonant frequencies using
method of perturbation of boundary conditions is given
Eq. ~24!. We perform a Taylor expansion asI→0, and obtain
for the imaginary part ofv:

Im v.2
I

2v0
1O~ I 2!. ~41!

BecauseP52dU/dt, Eq. ~26! implies
707 Am. J. Phys., Vol. 72, No. 5, May 2004
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dU

dt
52v0

U

Q
, ~42!

with the solution

U~ t !5U0e2v0t/Q. ~43!

The field dependence onU is obtained from Eq.~27!, result-
ing in

c~ t !5c0~ t !e2v0t/2Q, ~44!

where c(t) represents the magnitude ofE or B field and
c0(t) contains the oscillatory part of the fields.

Because the imaginary part ofv is related to the evanes
cent behavior of the electromagnetic fields, we obtain fr
Eqs.~41! and ~44!, neglecting terms of orderI 2:

I 5
v~0!2

Q
. ~45!

Equation~45! establishes the connection between the t
methods asI→0. Conversely, it is useful to expressv in
terms ofQ. From Eq.~24! we have

v2.v~0!2F12
~11 i !

Q G . ~46!

From Eq.~46!, it is seen thatQ modifies both the real and
imaginary components ofv. The modification of the real par
leads to a downward shift of the resonant frequencies, w
the contribution for the imaginary component changes
rate of decay of the fields.

IV. NUMERICAL RESULTS AND COMPARISONS

Tables I to IV show the numerical values obtained solvi
the transcendental Eqs.~9a! and ~9b!, those calculated from
theQ approach, and those determined using the perturba
of boundary conditions method. The data are obtained fr
averaged values between night and day.3

Table I illustrates the comparison between the measu
data (nm5vm/2p) and the eigenfrequencies that are gen
ated from the infinite conductivity approach (na). The rela-
tive errors~without point! and the quality factorQ between
the values for the different modes (l 51,...,7) are shown.
Note that the maximum error value occurs for the first re
nant mode.

The computed values for the finite conductivity a
proaches are shown in Tables II, III, and IV using ion
spheric conductivities ranging from an intermediate value
s i;1025 V21 m21, a typical night conductivity value of or-

Table I. Comparison between the measured frequency valuesnm and the
calculated valuesna ~infinite conductivity approach! for the first seven
modes;er is the relative percentage error betweenna andnm . It can be seen
that the first mode shows the maximum error value whereas the sup
modes reflect errors of about 30%.

Mode ~l! nm60.5 (Hz) na (Hz) er (%)

1 8 10.47 30.88
2 14 18.13 29.52
3 20 25.64 28.22
4 26 33.11 27.33
5 32 40.55 26.71
6 37 47.98 29.68
7 43 55.39 28.81
707M. F. Ciappina and M. Febbo
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Table II. Frequency values for the finite conductivity approaches usings i;1025 V21 m21: nQ ~Q approach!, n I ~perturbation of boundary conditions
approach!. eQ andeI correspond to the relative percentage errors between the measured values andnQ andn I , respectively.de andd i are the skin depths
calculated for the Earth and the ionosphere. The minimum error is observed for the first resonant mode while it increases for the superior ones. Thuency
values obtained here represent a considerable improvement compared to the infinite conductivity approach.

Mode ~l! de (km) d i (km) Q nQ (Hz) eQ (%) n I (Hz) eI (%)

1 0.156 49.19 4.06 9.21 15.13 9.19 14.89
2 0.118 37.38 5.34 16.45 17.50 16.43 17.36
3 0.099 31.43 6.35 23.64 18.20 23.61 18.05
4 0.087 27.66 7.21 30.82 18.54 30.79 18.42
5 0.079 25.00 7.98 38.02 18.81 37.98 18.69
6 0.072 22.98 8.68 45.22 22.22 45.18 22.11
7 0.067 21.38 9.32 52.44 21.95 52.39 21.84
t
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ns
der s i;1026 V21 m21, and a day value of s i

;1023 V21 m21, wherenQ and n I represent the resonan
frequencies calculated by theQ approach and the perturba
tion of boundary conditions method, respectively. The re
tive errors. and the quality factorQ computed for the differ-
ent modes are also presented. A detailed discussion o
results shown in Tables I to IV will be presented in Sec.

V. SUMMARY

We have shown how a complex problem in electromag
tism can be treated from different viewpoints. First, we e
ployed the usual infinite conductivity approach which co
sists of the solution of a partial differential equation with
homogenous Neumann boundary condition. This equa
can be solved exactly and leads to a secular determinan
the eigenvalues. Numerical values obtained from its solu
are not sufficiently accurate, which is not surprising beca
the assumption of perfectly conducting walls is far from
ality for the Earth–ionosphere cavity.

We then incorporated the finite conductivity of the cavity
walls by two simple methods: TheQ approach and the per
turbation of boundary conditions. The ionosphere acts like
anisotropic conductor unlike the usual situations with re
nant cavities for which the walls are isotropic. However, u
ful results may be obtained by treating the ionosphere a
isotropic conductor within a certain range of values ofnc

Consider first the case whennc@nB ~day-time!. For this
limiting case, the ionosphere behaves as an isotropic con
tor. For s i;1023 V21 m21, a typical value, the resonan
frequency values show an error that is comparable to
model of infinite conductivity walls~zero skin depth!. This
result can be easily understood because the ionospheric
depth is negligible when compared to the height of the io
sphere~see Table IV!. To test the sensitivity of our numerica
708 Am. J. Phys., Vol. 72, No. 5, May 2004
-

he

-
-
-

n
for
n
e

-

n
-
-
an

c-

e

kin
-

approximations, we use a smaller conductivity value, s
s i;1025 V21 m21, which also is a reasonable value~in
view of the fluctuation of the values ofnc andne). We ob-
serve in Table II that the differences between the experim
tal and theoretical values are less than 25%. In particular,
difference for the fundamental mode is of'15%, which is a
very significant improvement over the infinite conductivi
model.

In the opposite limit, that is,nc&nB ~typical night values!,
the ionosphere does not behave like an isotropic conduc
However, it is illustrative to discuss the numerical results
s i;1026 V21 m21. This value results from the values ofnc

andne at night. The calculations show the limitations of o
numerical models and also are helpful for comparing w
values in literature. Our results show a skin depth that is
order of and is even larger than the height of the ionosph
~see Table III!. When the skin depth is large, theQ of the
cavity is very small and this fact implies that the possibil
of determining the frequency, using the previously det
mined value ofQ, is rather poor. On the other hand, th
application of the perturbation of boundary conditio
method cannot be considered suitable because the pert
tion of the boundary condition is large and satisfactory co
vergence is not achieved.

In summary, the two methods show accurate results as
be seen from Tables I and II without much algebraic a
computational effort. We believe that theQ approach pre-
sents some advantages from a educational viewpoint bec
it has an intuitive interpretation in terms of energies a
losses. On the other hand, the perturbation of boundary c
ditions method is a powerful mathematical tool not usua
used in physics undergraduate or even graduate courses
problem considered here provides an example of its po
and versatility.

If we want to improve our results, further consideratio
tive
ding a
Table III. Frequency values for the finite conductivity approaches usings i;1026 V21 m21. Although it can be seen a remarkable decrease on the rela
error values in all cases, the calculated ionospheric skin depth,d i , can be, for some modes, even larger than the actual height of the ionosphere yiel
small value for theQ of the cavity and resulting in an inaccurate determination of the resonant frequency.

Mode ~l! de (km) d i (km) Q nQ (Hz) eQ (%) n I (Hz) eI (%)

1 0.156 155.48 1.29 7.52 6.00 7.50 6.25
2 0.118 118.19 1.69 13.62 2.71 13.57 3.07
3 0.099 99.39 2.01 19.95 0.25 19.88 0.60
4 0.087 87.47 2.29 26.43 1.65 26.35 1.35
5 0.079 79.04 2.53 33.03 3.22 32.93 2.91
6 0.072 72.66 2.75 39.70 7.30 39.58 6.97
7 0.067 67.62 2.96 46.43 7.98 46.30 7.67
708M. F. Ciappina and M. Febbo



Table IV. Frequency values for the finite conductivity approaches usings i;1023 V21 m21. In this case, the ionospheric skin depthd i is very small which
implies that the frequency values (n I andnQ) tends to those calculated from the infinite conductivity approach,na .

Mode ~l! de (km) d i (km) Q nQ (Hz) eQ (%) n I (Hz) eI (%)

1 0.156 4.92 39.43 10.34 29.25 10.33 29.13
2 0.118 3.74 51.89 17.96 28.29 17.96 28.29
3 0.099 3.14 61.71 25.44 27.20 25.43 27.15
4 0.087 2.76 70.12 32.87 26.42 32.87 26.42
5 0.079 2.50 77.60 40.29 25.91 40.28 25.88
6 0.072 2.30 84.41 47.69 28.89 47.69 28.89
7 0.067 2.14 90.70 55.09 28.12 55.09 28.12
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are needed. First, the relation between the fields outside
boundary surfaces should be accounted for in a more a
rate way. Second, a more realistic model for both the io
sphere and the Earth’s surface should be considered, inc
ing modeling the ionosphere as a full anisotropic plasma,
variation of the ionospheric conductivity during the day a
at different seasons, and according to the sunspot cy
Methods that implement these features, such as the fi
difference time domain,8 permit one to incorporate all o
these characteristics of the ionosphere. However, they
crease the algebraic and numeric complexity.

A very interesting and not so complicated project app
priate for undergraduate students is to measure these
nances. They can be detected by using a whip antenna
captures the radial electric field together with an array
electronic devices that amplifies and filters the collected
nal. Next, this signal, digitally recorded, must be analyz
with a computer using fast Fourier transform algorithms
clean and fix the values of the resonance frequencies
present, we are successfully carrying out this task wit
sophomore student class.
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