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The resonances between the Earth as one boundary and the ionosphere as the other, known as
Schumann’s resonances, represent an interesting example of a spherical cavity. We consider a simple
model in which the boundaries behave as perfect conductors and then take into account the finite
conductivity of the boundaries. Numerical results are obtained for both models and compared with
available data. Good agreement is shown to exist between the analytical results and the experimental
values when finite conductivity of the walls is considered. 2@®4 American Association of Physics
Teachers.
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[. INTRODUCTION of the fields determine the characteristics of the electromag-
. . . netic modes inside a hollow spherical cavity. There are two
If one thinks of a resonant cavity, the first thought thaty nes: transverse magnetitM) modes and transverse elec-
might come in mind is a microwave oven or a similar device.jc (TE) modes, depending on the existence of transverse
It might be difficult to believe that the Earth behaves like anaqnetic or electric fields, respectively. In our problem, TM
enormous resonant cavity. This behavior was first realized bYTE) designates the non-existence of radial magnitiec-

Nikola Tesla in the early 1900's. He thought that the Earthmc) field component, that isB, =0 (E,=0). We shall dis-
' r r .

would b.e a conduc_:tor and t.’e responsive to certain el?Ctr.oéuss only the TM modes because they present the lowest
magnetic frequencies. The inner boundary of the cavity i

provided by the Earth's surface while the ionosphere is thsfrequenues in comparison with TE modes for the Earth cav-

outer surface. The resonant frequencies of this cavity are
known asSchumann resonancés honor of W. O. Schu-

mann who predicted them in 1952nd detected them in well's equation for zero divergence and the requirement that

19542 . celh VS
the fields must be finite a#=0, we conclude that only the

To observe these electromagnetic waves, one has to exci %mponent 0B is nonzero. Faraday's law requires that the
the Earth resonant cavity near its resonance, which is wh omponent of the electric fiel also must vanish. Hence,

the electrlcql activity in the atmospher_e does. The resona e nonvanishing field's components for the TM mode are
waves manifest themselves as peaks in the electromagne E. andE
¢1 ros -

noise spectrum and have average values of 8, 14, 20, 26, 3 "We first consider two perfectly conducting concentric

37, and 43 Hz, with a daily variation of about0.5 Hz e . ) ;
depending on the Earth's Zlectromagnetic activifjheir spheres with inner radiuR; (the Earth’s radiysand outer

characteristic wavelengths are of the order of magnitude of@diusR,, whereR,=R;+h andh is the height of the iono-
the Earth’s radiug6400 km. sphere. Although the ionosphere is the region of the atmo-

considering two models. The first, a rather crude one, conthe major electron density 010" m~* is at about 50 km

siders the cavity’s walls as perfect conductors of infinite con-during the day and 300 km at night. It can be shown that for

ductivity. The more realistic model takes into account thethese values, the resonant frequencies vary only ahOus

finite conductivity of the walls. Hz for each mode. Therefore, we will assufme 100 km to
The paper is organized as follows. In Sec. Il, the theoretcompare with literature.

ical approach for perfectly conducting walls is developed. In  We start with the vector Helmholtz equatfon

Sec. lll, we present two methods for obtaining the correc- 2

tions for real conductive walls. One method includes the cal-  y2g4 £ B=0, (1)

culation of the quality facto®. The other approach is based c?

on the method of perturbation of boundary. conditié_‘)rie. which can be written in spherical coordinates as

Sec. IV, these methods are used to determine the improved

eigenfrequencies of the system, and we compare these fre? d

guencies with the results for perfectly conducting walls and_z(rB¢)+ P“B@

the available data. Concluding remarks are presented in Sec.

+ —
r2

We assume that the fields for a TM mode in our spherical
cavity are independent of the azimuthal angle=rom Max-

=0. 2

1 a(_ a(rB¢))_(rB¢)

Il. THEORY AND INFINITE CONDUCTIVITY sing J¢ 90 sir? 6
APPROACH To solve Eq.(2), we apply the method of separation of

. L . i _variables. We have
Electric or magnetic fields in an electromagnetic cavity

resonator can support different types of standing waves de- B,(r,0)= fi(r) 9(6) &)
pending on the direction of their components. The directions AN r ’
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The angular behavior can be determined using Legendrsphere is treated as an anisotropic cold plasma mainly due to
polynomials,g(#) = P}(cosé). If we substitute this form for  the ionized gas of particles that exists in this region of the

g in Eq. (2), we obtain atmosphere and the presence of the Earth’s magnetic field
Bo.
dfy(r) N w? 1(1+1) £(1)=0 4 0The current density in the presence of an arbitrarily ori-
dr2 2 12 (1 =0, (4) ented magnetic field ¥s
wherel=1,2,... determines the angular dependence of the j=oB+opE, —0ou(E XB,)/B, (11)
modes. The solution fof,(r) is where the symbolgand_L refer to the direction parallel and
o perpendicular to the magnetic field ang, oy, andoy are
fi(r) Z A (Kr)+Byr g (kr), (5) g]ned I;?gegi?g;, kglall, and parallel conductivities, respectively,
wherej, and 7, are the spherical Bessel functichk= w/c v§ VRVe Nee’
is the magnitude of the wave vector, and the constansnd UPZTUOa OH=— ﬁffo: TI= 00
B, are determined by the boundary conditions. Ve VB Ve VB ee 12
The corresponding components Bfare (12)
2 g wherem, and e are the electron mass and charge, respec-
= —(sin6B,) tively, v is the electron collision frequencyg=eBy/27mm
wr sing 3¢ is the precession frequency of a charged particle in a mag-
ic2 f(r) netic field (gyration frequency andn, is the electron den-
=— —I(I +1)—P|(c050) (68 sity. For a typical value 0By=30uT as the Earth’'s mag-
netic field, vg~10°s?!
ic2 ¢ ic? dfy(r) We can make approximations that allow us to simplify the
Eo=—=r7r ((Bo) =~ r —4r Pl(cos6). (6b)  calculations and still obtain useful results. One class of ap-

proximations consists of simplifications to the anisotropic
The boundary condition for perfect conductors implies thecold plasma medium.

vanishing ofE, atr=R; andr=R,. Hence, For typical day-time values af.,° we haver.> vy at the
df,(r) height of interestij~ 100 km). In this limit, there is electric
=0. (7) current only in the direction of the electric field(—0 and
dr r=R;.R, op—0y), and the medium becomes an isotropic conductor

(j<E). The reason is that the electrons collide with the ionic

If we substitute Eq(5) for f,(r), we find nuclei before they are influenced by the Earth’'s magnetic

d ] field leading to a net electronic movement parallel to the
gr Ak +Byrp(kn)lr-g, r, =0, (8)  direction of the electric field. Thus, the ionosphere can be
well described as an isotropic conductor whose current den-
or sity is given by the Ohm’s lavi:
AILKRi]1-1(kR) = 1j(kR) ]+ B[kR; 7 - 1(KR;) j=0oE. (13
—17(kR)]=0, (9a Typical values for the ionospheric conductivity,, at of

_ 1060 -1 m-1 ;
ALKRyj11(kRy)—1j1(KRo) T+ BI[kRy 71 1(KRy) O T e e, The Earths surface con-
—17,(kR,)] =0. (9b)  ductivity, o5, can be taken asy=0,~1Q *m~, which
corresponds to seawater conductivfly.
The main consequence of considering real conductors in a
cavity is the dissipation of energy in their walls and a shift-
ing of the resonant frequencies. In the following, we will

To obtain a nontrivial solution of Eq9), the determinant
of the coefficient matrix is set equal to zero, the solution of
which yields the eigenvalues

o) take into account the finite conductivity of the Earth cavity’s
ki= c” (10 walls by using two approaches: The perturbation of boundary
conditions and the conservation of energy principle through

Il EINITE CONDUCTIVITY APPROACH the calculation of the quality factdD of the cavity.

The use of perfectly conducting walls is an approximationA. pPerturbation of boundary conditions
that is far from reality, because the earth’s ionosphere be-
haves like a real conductor with finite conductivity. A model The finite conductivity of the cavity walls can be taken
that includes the important properties which determine thénto account using the perturbation of boundary conditions
dynamic behavior of the ionosphere must consider ionizamethod in which the deviation from an exactly solvable
tion, the recombination of species, the variation of solar raproblem occurs at the boundaries due to the alteration of the
diation, and the configuration of the Earth’s magnetic field.boundary conditions. Although the method allows for correc-
We will not take into account all of these features, but will tions to any degree of accuracy in powers of a perturbation
assume as a first approximation that the ionosphere behavparameter, we shall use only the lowest order.
as a wall whose conductivity is determined from a Drude We focus our analysis on a single, nondegenerate TM
model for the electron gédsln this approximation, the iono- mode and consider the,, component. We denote by a zero
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superscript the unperturbed solution for infinite conductivity.
Thus, the time independent wave equation ¢8|=rB¢ is

(V2+kl92) =0, (14)
with homogenous Neumann boundary conditions

(9(,00

n s_ 0, (15

wherek®= »%c. For finite conductivity, the normal deriva-
tive of ¢° is not zero on the walls, and thus

o ~Cloe 1)
whereC(w) is given by
C<w)=§“’—§<1+i>, (17
c

where ¢ is the skin depth defined a%= 2/(u.o0w), . is
the permeability of the conducting wall, awdis its conduc-
tivity. The value of C(w) was obtained by considering the
boundary conditions on the tangential valueEgiust outside
the surface of a real conductor

Mc®

B~ 20

(1—=i)(nXHy). (18

Because we are looking for the lowest order approximatio
to the perturbed problem,
(V2+k?) =0, (19

with its boundary condition given by E¢L6), the right-hand

_side of Eq.(16) can be replaced by the unperturbed field, that

IS

de

on

=C(0°)¢s.
s

(20

Green’s theoreft can be employed to find the eigenvakfe

o¢ 4

J
| toveu-wvrgrix= § [ut-9Elaa @

where the right-hand side of E€R1) has an inwardly ori-
ented normaloutside the conductarlf we let y=¢ and ¢
=% and use Eqs(14) and(19), and the boundary condi-
tions, (15) and (20), Eq. (21) becomes

(k©2—K?) f ¢% ¢d%=C(o°) §> ¢%Pda. (22
\% S
BecauseC(w?) is a small parameteg can be replaced by its

unperturbed value?® inside the volume integral. Finally, we
have

0 2da
(KO 1) = (o) 8¢ 1703 29
Jvle®?d3x
We write k= w/c and rewrite Eq(23) as
0?=0Y%(1-(1+i)), (24)

where we have defined
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n

1 0fs | ¢’ da+ 55| ¢ °da
2 Jvle®?d®

andé., 6, Se, andS; are the skin depths and the spherical
surfaces of the Earth and the ionosphere, respectively. Equa-
tion (25) includes all of the contributions to the surface inte-
gral determined by Eq(23). If we evaluate Eq(25) and
replace it in Eqg.(24), we obtain improved values for the
eigenfrequencies.

: (25

B. The Q approach

Dissipation of energy causes a spread in the resonance
frequencies in real conductors. A measure of the tuning of a
cavity is the quality factoR, defined by

— OU 26
Q_ w Fi ( )
whereU is the energy stored in the cavitl, is the power
loss per cycle, an@? is the resonance frequency without
considering ohmic losses. The energy stored by electromag-
netic fields inside the cavity is

1 1
2] (6|E|2+;|B|2 @7

We use the definition foE and B [Egs. (3) and (6)] and
separate the volume integral into angular and radial compo-

U= d3x.

nents. For the angular part &f, andE, , we use

1 ZdQ—47TI(I+l)
f(P|(0039)) = 2isD) (289
240, = 4
J (Py(cos#))“d TR (28b)

respectively. Their radial integrals are
Ro C4
|E,|%r2dr= A?

Ro
NS

+Ci[kr - y(kn) =y (kn)])2dr (29

C4
= A", (30)
and
Ro 2.2 c* 272 Ro .
| Pl erar= a0+ 1A [ ian
Ri w Ri
+Cym(kir))%dr
4
= (1(1+2))2A%1{", (31)

(02

where we have defined,=A, /B, . Alternatively, for theB,,
component, we have the same angular paiE aEEq. (6b)],
while the radial integral is

R

0 RO
Ll |B¢|2r2dr=A|2fR. (i(kyr) +Cyp(kr))2r2dr

=AZI?. (32
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By using the angular integrals in E§28) and the radial

Table I. Comparison between the measured frequency valyesnd the

integrals in Eqs(30)—(32) the energy stored inside the cav- calculated valuesy, (infinite conductivity approachfor the first seven

ity can be written as

modesse, is the relative percentage error betwegrandv,, . It can be seen
that the first mode shows the maximum error value whereas the superior

A|27T 4 ) 1(8) 1 @ modes reflect errors of about 30%.
U= [T+ + 11+ —1 . (33
@2+1) | go2! Lo Mode () v+ 0.5 (H2) v, (H2) e (%)
Power loss arises from the cavity’s surfaces and is defined 1 8 10.47 30.88
by 2 14 18.13 29.52
1 3 20 25.64 28.22
B 2 4 26 33.11 27.33
P= 205f [nxH[*da. (34 5 32 40.55 26.71
. 6 37 47.98 29.68
In our case, the power loss is 7 43 55.39 28.81
1 2
P= |B,4|°da, (35
206k
OO duU 0 U 42
where H=B/u.. The surface integral must be expressed dt ¢ Q’ (42
into two contributions, one for the inner spherical shell andWith the solution
the other for the outer one. Therefore, the power loss can be
expressed as U(t)=Ugze e, (43

2

27l(1+1) [ R? R3
P= AT [fiR) [P+ — | i(Ro) 7.
(21+1)pug 0s0s U 0
(36)
Because
2 \2 1 Sucw
5:(Mc0w) Tee 2 =0
Eq. (36) for P becomes
ml(1+1)w°
P= o151, ATTSRITR)I+ SRl fi(Ro) ).
Cc
(39)

If we substitute Egs(33) and(38) in Eq. (26), we obtain
4

1
A+ +1{7)+ =1
w(o)z | | L |

Q= (39

1
o [ SR f1(R)[>+ R ui(Ro)|?]
C

If we assume that both walls are nonmagneji¢c ) and
use the equalitywe=1/c?, Eq. (39) reduces to

2

C
[
W('("Fl)h(r)'f‘h( ))+||(¢)

Q (40

" 8RR P+ 6REF(Ro)[A]

The field dependence dn is obtained from Eq(27), result-
ing in

P(t)=go(t)e VR, (44)

where (t) represents the magnitude &f or B field and
Jo(t) contains the oscillatory part of the fields.

Because the imaginary part af is related to the evanes-
cent behavior of the electromagnetic fields, we obtain from
Eqgs.(41) and (44), neglecting terms of orddr:

= (45)
o

Equation(45) establishes the connection between the two
methods ad —0. Conversely, it is useful to express in
terms of Q. From Eq.(24) we have

_ @+
Q

From Eq.(46), it is seen thaQ modifies both the real and
imaginary components @. The modification of the real part
leads to a downward shift of the resonant frequencies, while
the contribution for the imaginary component changes the
rate of decay of the fields.

2= (02

(46)

IV. NUMERICAL RESULTS AND COMPARISONS

Tables | to IV show the numerical values obtained solving
the transcendental Eq€a) and (9b), those calculated from

Equation(40) can be evaluated numerica”y for the different theQ approach1 and those determined using the perturbation

resonant modes.

C. Connection betweenQ and perturbation of boundary
conditions approaches

of boundary conditions method. The data are obtained from
averaged values between night and tay.

Table | illustrates the comparison between the measured
data (v,,= w/27) and the eigenfrequencies that are gener-

The correction for the resonant frequencies using thét€d from the infinite conductivity approaci,). The rela-
method of perturbation of boundary conditions is given bytive errors(without poiny and the quality factoQ between

Eq. (24). We perform a Taylor expansion &s-0, and obtain
for the imaginary part ofo:

|
Imw=———+0(1?). 41
700 (1% (41
BecauseP = —dU/dt, Eq. (26) implies
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the values for the different mode$=1,...,7) are shown.
Note that the maximum error value occurs for the first reso-
nant mode.

The computed values for the finite conductivity ap-
proaches are shown in Tables Il, Ill, and IV using iono-
spheric conductivities ranging from an intermediate value of
gi~10°0"tm™ 1, atypical night conductivity value of or-

M. F. Ciappina and M. Febbo 707



Table Il. Frequency values for the finite conductivity approaches usipglo > Q~tm™1: vq (Q approach », (perturbation of boundary conditions
approach eq ande, correspond to the relative percentage errors between the measured valugganly, , respectively.d, and 6, are the skin depths
calculated for the Earth and the ionosphere. The minimum error is observed for the first resonant mode while it increases for the superior ongsichhe freq
values obtained here represent a considerable improvement compared to the infinite conductivity approach.

Mode (1) 8¢ (km) &; (km) Q vg (H2) eq (%) v, (Hz) e (%)

1 0.156 49.19 4.06 9.21 15.13 9.19 14.89
2 0.118 37.38 5.34 16.45 17.50 16.43 17.36
3 0.099 31.43 6.35 23.64 18.20 23.61 18.05
4 0.087 27.66 7.21 30.82 18.54 30.79 18.42
5 0.079 25.00 7.98 38.02 18.81 37.98 18.69
6 0.072 22.98 8.68 45.22 22.22 45.18 22.11
7 0.067 21.38 9.32 52.44 21.95 52.39 21.84

der ¢~10°%0"'m% and a day value of o approximations, we use a smaller conductivity value, say

~102Q"*m™!, where v and v, represent the resonant 0i~107°Q~*m™*, which also is a reasonable vali
frequencies calculated by th@ approach and the perturba- view of the fluctuation of the values of, andn,). We ob-
tion of boundary conditions method, respectively. The relaserve in Table Il that the differences between the experimen-
tive errors. and the quality fact@ computed for the differ- tal and theoretical values are less than 25%. In particular, the
ent modes are also presented. A detailed discussion of thdifference for the fundamental mode is#fl5%, which is a
results shown in Tables | to IV will be presented in Sec. V. very significant improvement over the infinite conductivity
model.
V. SUMMARY In the opposite limit, that isy.=< vg (typical night valueg
the ionosphere does not behave like an isotropic conductor.
We have shown how a complex problem in electromagneHowever, it is illustrative to discuss the numerical results for
tism can be treated from different viewpoints. First, we em-¢;,~10760~"*m™1. This value results from the values of
ployed the usual infinite conductivity approach which con-anqn, at night. The calculations show the limitations of our
sists of the solution of a partial differential equation with a ,ymerical models and also are helpful for comparing with
homogenous Neumann boundary condition. This equatiofajyes in literature. Our results show a skin depth that is the
can be solved exactly and leads to a secular determinant f@frer of and is even larger than the height of the ionosphere
the elgenva_lqes. Numerical valu_es qbtamed fro_m its squthsee Table Il). When the skin depth is large, ti@ of the
are not sufficiently accurate, which is not surprising becausgayjity is very small and this fact implies that the possibility
th_e assumption of _perfectly condu_ctmg walls is far from re- determining the frequency, using the previously deter-
ality for the Earth—ionosphere cavity. _mined value ofQ, is rather poor. On the other hand, the
We then mcqrporated the finite conductivity of the cavity’s application of the perturbation of boundary conditions
walls by two simple methods: Th@ approach and the per- method cannot be considered suitable because the perturba-
turbation of boundary conditions. The ionosphere acts like aggn of the boundary condition is large and satisfactory con-
anisotropic conductor unlike the usual situations with resOyergence is not achieved.
nant cavities for which the walls are isotropic. However, use- | summary, the two methods show accurate results as can
ful results may be obtained by treating the ionosphere as age seen from Tables | and Il without much algebraic and
isotropic conductor within a certain range of valuesvpf computational effort. We believe that ti@ approach pre-
Consider first the case when>vg (day-time. For this  sents some advantages from a educational viewpoint because
limiting case, the ionosphere behaves as an isotropic conduit- has an intuitive interpretation in terms of energies and
tor. For o;~103Q " tm™1, a typical value, the resonant losses. On the other hand, the perturbation of boundary con-
frequency values show an error that is comparable to thditions method is a powerful mathematical tool not usually
model of infinite conductivity wall§zero skin depth This  used in physics undergraduate or even graduate courses. The
result can be easily understood because the ionospheric skimoblem considered here provides an example of its power
depth is negligible when compared to the height of the ionoand versatility.
spherg(see Table 1V. To test the sensitivity of our numerical  If we want to improve our results, further considerations

Table IIl. Frequency values for the finite conductivity approaches usjrgl0 ® Q~*m~1. Although it can be seen a remarkable decrease on the relative
error values in all cases, the calculated ionospheric skin dépthgan be, for some modes, even larger than the actual height of the ionosphere yielding a
small value for theQ of the cavity and resulting in an inaccurate determination of the resonant frequency.

Mode (1) Se (km) &; (km) Q vg (H2) eq (%) v, (Hz) e (%)

1 0.156 155.48 1.29 7.52 6.00 7.50 6.25
2 0.118 118.19 1.69 13.62 271 13.57 3.07
3 0.099 99.39 2.01 19.95 0.25 19.88 0.60
4 0.087 87.47 2.29 26.43 1.65 26.35 1.35
5 0.079 79.04 2.53 33.03 3.22 32.93 291
6 0.072 72.66 2.75 39.70 7.30 39.58 6.97
7 0.067 67.62 2.96 46.43 7.98 46.30 7.67
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Table IV. Frequency values for the finite conductivity approaches usingl0 2 Q' m~L. In this case, the ionospheric skin dehis very small which
implies that the frequency values,(and vg) tends to those calculated from the infinite conductivity approagh,

Mode (1) Se (km) & (km) Q vg (H2) eq (%) v, (Hz) e (%)

1 0.156 4.92 39.43 10.34 29.25 10.33 29.13
2 0.118 3.74 51.89 17.96 28.29 17.96 28.29
3 0.099 3.14 61.71 25.44 27.20 25.43 27.15
4 0.087 2.76 70.12 32.87 26.42 32.87 26.42
5 0.079 2.50 77.60 40.29 25.91 40.28 25.88
6 0.072 2.30 84.41 47.69 28.89 47.69 28.89
7 0.067 2.14 90.70 55.09 28.12 55.09 28.12

are needed. First, the relation between the fields outside th&. R. Cravero, D. A. Vega, and P. A. A. Laura for their
boundary surfaces should be accounted for in a more accuyitical reading of a preliminary version of this paper and for
rate way. Second, a more realistic model for both the ionotheir conceptual comments and corrections.

sphere and the Earth’s surface should be considered, includ-
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