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A noncombinatorial method for structural observability analysis is presented in this paper. The
technique rearranges the process occurrence matrix to a specific block lower-triangular pattern
by means of bigraphs and digraphs in two consecutive stages. The algorithmic core is constituted
of a new node classification that leads to suitable maximum-matching decompositions even for
structurally singular matrices. A three-step strategy for the identification and analysis of
forbidden subsets was also designed to take into account the additional numeric constraints
that guarantee further solvability of the final pattern. In contrast with other structural
techniques, the proposed method treats complex nonlinear models in a remarkably efficient way.
Its performance was compared with existing structural observability techniques for three
industrial problems. The final results revealed that the direct method is extremely robust and
efficient in computing times, becoming more efficacious as problems grow in size and complexity.

1. Introduction

The observability analysis consists in classifying the
unmeasured process variables in order to determine the
observable ones, i.e., those that can be estimated
through model equations using measured values. The
analysis is frequently carried out on the steady-state
mathematical model chosen to represent plant behavior,
which is typically a nonlinear system of algebraic
equations expressed in terms of measured and unmea-
sured variables. The categorization procedure is an
essential stage in process plant instrumentation design.
A correct rigorous analysis avoids the inclusion of an
extra amount of measurements in order to guarantee
the required knowledge of the plant state.

There are two main approaches to carry out the
classification of unmeasured variables. One of them is
topology-oriented because the analysis is based on the
identification of cutsets and cycles within the undirected
graph that represents process topology. In contrast, the
other one is equation-oriented, making use of the system
of algebraic equations that constitutes the mathematical
model of the plant under study in various ways. In the
first category, the most representative papers1-3 address
the topology-oriented approach for linear and bilinear
models. In turn, the equation-oriented techniques can
be divided in two subcategories: nonstructural and
structural methods. The former are numerical proce-
dures4,5 that make use of different matrices associated
with the plant’s standard operating point. The latter6-8

make do with the information provided by the occur-
rence matrix, which is a binary array that indicates all
of the process variables that are present in each model
equation. One of the main advantages of the structural
approach is its independence from individual operating
points, together with its potential capacity to deal with

nonlinear plant models rigorously. A thorough critical
overview of the existing methodologies for the catego-
rization of unmeasured variables was presented in a
paper by Ponzoni et al.,8 where we proposed a robust
structural technique called GS-FLCN that could be
applied to nonlinear systems of equations.

GS-FLCN proved to be the most adequate alternative
to ensure reliable results for the rigorous analysis of
complex models. Nevertheless, its combinatorial nature
constitutes a disadvantage for the treatment of large
problems, mainly because computing times grow expo-
nentially with problem size. This drawback can be
overcome to a certain extent by means of either judicious
tree pruning (FLCN with BF8) or parallel processing (p-
FLCN9). Both strategies succeed in shifting the practical
limit of manageable problems significantly at the ex-
pense of some loss of effectiveness in the case of FLCN
with BF or additional hardware requirements for p-
FLCN.

In this paper, we present a direct technique for
observability analysis that is based on graph theory and
matrix permutations. In contrast with GS-FLCN and
its variants, this method is noncombinatorial, thus being
much more efficient in terms of computing times. The
direct method has an enormous potential for its ap-
plication to plantwide rigorous instrumentation design
because it keeps GS-FLCN’s robustness while providing
much more efficiency with regard to execution times.
Therefore, it is a powerful procedure to be incorporated
into a package for industrial-scale applications.

As to the organization of the paper, sections 2 and 3
contain the fundamentals of structural observability
analysis and graph theory that are required to under-
stand the description of the direct method that follows
in section 4. Then, three industrial examples are
discussed in section 5, where the performance of the
direct method is contrasted with GS-FLCN’s perfor-
mance. Finally, the conclusions are summarized in
section 6. An appendix with the main algorithms has
also been included to strengthen the understanding of
the proposal.
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2. Structural Approach for Observability
Analysis

There are two main approaches for the development
of algorithms for the classification of process variables,
namely, strategies based on either process topology or
model equations. Our contributions, which fall into the
second category, belong to the field of structural observ-
ability analysis, which is basically a nonnumeric equa-
tion-oriented approach for the classification of unmea-
sured variables.

The interactions among process variables are de-
scribed through the mathematical model chosen for the
process under study. The associated occurrence matrix
M, whose rows and columns represent the model equa-
tions and process variables, respectively, provides the
key information required for the analysis. This matrix
is always sparse, with its nonzero entries indicating that
the variable associated with the column is present in
the equation described in that row. It is interesting to
note that the elements in M are unaffected by changes
in model coefficients, with their typical values being
either 0 or 1. The nonnumeric nature of the approach
is advantageous because it allows a high degree of
independence from the operating points, thus leading
to more general results.

Prior to the analysis, the columns of the occurrence
matrix are permuted to yield a two-block partitioning:
M ) [M1, M2], where the columns of M1 correspond to
the unmeasured variables and those of M2 are associ-
ated with the measurements. The observability analysis
is performed exclusively on M1, which is typically
rectangular in shape and structurally nonsingular. The
core classification procedure for the structural approach
is an algorithm that permutes the occurrence matrix
to the desired pattern, which evidences the classification
(see Figure 1). The shaded zones correspond to the parts
of the matrix that contain nonzero entries. The pattern
includes a block lower-triangular area that comprises
all of the observable variables, i.e., those whose values
could be calculated from the measurements. The diago-
nal blocks in this area are called assignment subsets.
The block lower-triangular form (BlTF) reveals a pre-
cedence order for the calculations because the assign-
ment subsets can be solved sequentially in blocks. The
square subsystems of equations indicated by the as-
signment subsets should be consistent in order to serve
as a means of calculating the assigned process variables.
This aspect, which is inherently numerical, is contem-
plated through an allowability test8 that discards the
subsets that correspond to spurious cases such as

parallel streams as well as undesirable combinations
whose numerical solution would be extremely cumber-
some. The unmeasured variables that remain unobserv-
able are indeterminable for the given set of measure-
ments.

Regarding the application of the observability analysis
to process plant instrumentation or revamp, it should
be noted that the equations that contain those un-
knowns constitute a subsystem with infinitely many
solutions. Particular solutions can be reached by adding
new measurements because the addition of any single
measurement might lead to further decoupling. After
measurement incorporation, the whole classification
procedure should be carried out again to ensure the best
BlTF for the modified set of measurements.

In this paper, we present a direct method to carry out
the core classification task more efficiently. The quality
of the technique was assessed by comparison with GS-
FLCN’s quality8 because it was the most robust tool
available to date for the rigorous treatment of complex
problems. In sharp contrast with the new proposal, GS-
FLCN employs a costly combinatorial depth-first search
(DFS) procedure to rearrange the occurrence matrix to
the BlTF that evidences the classification. Moreover, for
large size problems that contain assignment subsets of
high order, such as the third example discussed below,
GS-FLCN can reach a complete classification only when
the branching factor (BF) acceleration technique is used.
The BFs reduce the search space by limiting the amount
of branches to be explored while seeking assignment
subsets of a given order. The time complexity of the
FLCN algorithm increases exponentially with problem
size.9 Therefore, the use of BFs together with GS-FLCN
proved to be indispensable in practice, despite being
detrimental to effectiveness because of the fact that
some branches of the tree are never reached. Although
the risk of skipping over assignment subsets cannot be
avoided completely, it is, in fact, much lower for the
expert user because his insight into the physical prob-
lem helps him a lot at the decision-making stages of the
procedure.

3. Fundamentals

In this section, we define the concepts required to
understand the description of the direct method given
in section 4. The interested reader will find detailed
coverage on graph theory and its applications in many
textbooks.10-14

3.1. Some Basic Definitions. A graph G ) (N, E)
comprises a finite set of nodes N and a finite set of

Figure 1. Block arrangement required for the observability classification.
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ordered pairs E, known as edges. The order n of a graph
G is its number of nodes. A walk between nodes u and
v along a graph G is a finite alternating sequence u )
n0, e1, n1, e2, n2, e3, ..., ek, nk ) v of nodes and edges in
G, so that edge ei joins nodes ni-1 and ni. The nodes and
edges in a walk are not necessarily different. A walk
that does not contain repeated nodes is called a path. A
pair of nodes in a graph is a connected pair if there is a
path between them. A graph G is a connected graph if
every pair of nodes in G is a connected pair.

A directed graph D (also named digraph) D ) (N, E)
is a graph where each edge e ) (n0, n1) implies a
connection directed from node n0 to node n1. In this case,
n0 and n1 are the end points of edge e, and it is said
that the nodes are connected. When two or more edges
connect the same pair of nodes, those edges are called
parallel edges. A loop is an edge whose end points
coincide. D is a simple graph if it does not contain loops
or parallel edges. It is said that D is strongly connected
if there is a path from u to v and there is also another
path from v to u for any pair of distinct nodes u, v ∈ N.
Digraphs that are not strongly connected can always
be divided into strongly connected subgraphs known as
D’s strong components.

3.2. Connectivity and Depth-First Searches on
Digraphs. An acyclic graph (also known as forest) is a
graph with no cycles. A tree is a connected acyclic graph.
An acyclic connected subgraph of D is called a spanning
tree in D.

A graph exploration technique that proceeds to suc-
cessive levels in a tree at the earliest possible op-
portunity is called a DFS. A series of n DFSs that start
from each node in D is called a transversal DFS on D.
If it is found that a digraph D of order n is a connected
graph by using DFSs, the set of n - 1 used edges in D
constitute the edges of a spanning tree called a DFS
spanning tree in digraph D. The set of trees that can be
generated for digraph D constitutes the DFS spanning
forest F in D. Hence, it is possible to split the set E into
a subset EF, whose elements are all of the edges used
in the spanning forest and a complementary subset
R ) E - EF that contains the rest of the edges. The
edges in R are called backward edges because they
connect nodes with their ancestors.

For digraphs, the spanning forest is said to be
outgoing because the heads of all of the edges in the
forest point at the leaves. In this case, the set of
edges A is partitioned into four subsets as follows:
EF (outgoing edges) ) {edges that belong to F},
R1 (backward edges) ) {edges that go from a node to
one of its ancestors}, R2 (forward edges) ) {edges that
do not belong to F and go from a node to one of its
descendants}, and C (cross edges) ) {edges that connect
pairs of nodes from different trees in the forest}.

Let us define the label DFI(v) as a nonnegative integer
that indicates the order of node v in the sequence of
visited nodes during a DFS. DFI(v) ) 0 for any node
that has not been visited yet.

The following basic theorem holds:
Theorem 1.10 If (u, v) ∈ C, then DFI(u) > DFI(v)

during a DFS on a digraph.
3.3. Strong-Component Detection. The direct

method presented in this paper involves matrix decom-
positions and rearrangements that are determined from
an analysis of the strong components in digraphs
associated with certain blocks in M1. The most efficient
algorithm for the detection of strong components15 is

based on a DFS procedure. The method fundamentally
depends on the following statement:

Theorem 2.10 If Di ) (Ni, Ei) is a strong component
of a digraph D and F ) (NFi, EF) is a DFS outgoing
spanning forest, then Ti ) (Ni, Ei ∩ EF) is a tree.

Ti’s root ri is called the root of Di’s strong component.
From theorem 2, it is possible to find the strong
components of a digraph D by obtaining the roots r1,
r2, ..., rk, in a convenient order. During the transversal
DFS on D, ri will be visited for the last time before the
last visit to rj if i < j. Then, from theorem 1 and also
considering that rj cannot be a descendant of ri’s if
DFI(ri) > DFI(rj), it can be deduced that Di is a subgraph
induced by all of the nodes in D that are only descended
from ri, without being descendants of r1, r2, ..., ri-1.

Parameter Q(v) will be defined next in order to
facilitate the computational identification of the roots
of the strong components.

where x is a descendant of v and the root r of the strong
component that contains v′ is an ancestor of v.

The following theorem constitutes the basis for an
algorithm that detects the roots of the strong compo-
nents in a digraph.

Theorem 3.10 v is the root of a strong component in
digraph D if and only if Q(v) ) DFI(v).

The detection algorithm recursively evaluates Q(v) in
order to embed it into the DFS. This is done by
reformulating Q(v) as follows:

The complete procedure can be explained through two
pseudoalgorithms that are reported in the appendix
(algorithms A.1 and A.2). There is a basic algorithm
(SSC) that finds whether a given node is the root of a
strong component by means of eq 2. This routine is
called by the main program (SC) in order to detect all
of the strong components in a digraph.

Figure 2 shows how to apply these algorithms to
digraph D ) (N, E) where N ) {1, 2, 3, 4, 5, 6, 7, 8} and

Figure 2. Detection of all of the strong components of a digraph.

Q(v) ) min ({DFI(v)} ∪
{DFI(v′)|(x, v′) belongs either to R1 or to C}) (1)

Q(v) ) min ({DFI(v)} ∪ {Q(v′)|v′ is a son of v’s} ∪
{DFI(v′)|(v, v′) is either in R1 or in C, with the
root of the strong component that contains v′

being an ancestor of v’s}) (2)
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E ) {(1, 8), (2, 1), (3, 2), (3, 4), (4, 5), (5, 3), (5, 6), (5, 7),
(5, 8), (6, 7), (8, 2)}. The outgoing spanning forest for
this example is presented in Figure 2a, together with a
table that reports the DFI and Q values assigned to each
node during the searches. The full lines represent the
edges that belong to EF, while the edges in R1, R2, or C
are plotted in dotted lines. The final results are shown
in Figure 2b, where each shaded circle indicates a strong
component in D.

3.4. Bipartite Graphs and Maximum Matching.
A bipartite graph (also named bigraph) B ) (N1, N2, E)
is a simple graph whose nodes can be partitioned in two
disjoint subsets N1 and N2, so that each edge in the
graph has one end point in each subset.

Given a bigraph B ) (N1, N2, E), a matching P is a
subset from E whose edges have no common end points.
The number of edges in P is called the cardinality of
the matching C. In particular, Pi is a maximum match-
ing for B if there are no other matchings Pj * Pi in B
whose cardinality is higher than P’s.

An alternating walk along bigraph B related to a
matching P is a walk whose edges alternate in P. In
other words, if the first edge in the walk belongs to P,
then all of the edges at odd locations in the walk also
belong to P, while those at even positions do not. An
alternating path is an alternating walk without repeated
edges, and an augmenting path is an alternating path
whose terminal edges do not belong to P.

Given a matching P, an augmenting path A can be
employed to obtain a matching P′ whose cardinality is
one unit higher than P’s. P′ is generated by removing
from P all of the edges that are present in both sets,
i.e., the edges in A ∩ P, and adding to P all of the edges
that only appear in A. For a bigraph of interest and
starting from a proposed matching P, this procedure can
be repeated sequentially until no more augmenting
paths can be found. At this point, it is said that a
maximum matching Pm has been reached. It is clear
that several maximum matchings can be obtained from
a given matching P, depending on the sequence of
augmenting paths chosen to build the succession of
matchings. Nevertheless, the cardinality of the maxi-
mum matchings will always be the same, whatever the
generation order. Algorithm A.3 (see the appendix)
shows the steps required to obtain a maximum match-
ing for a bigraph B.

3.5. Matrix Permutations Using Graphs. The
direct method is based on DFSs along bipartite and
directed graphs derived from M1. This matrix is not
necessarily square and almost always structurally
singular. Therefore, the existing techniques to carry out
matrix permutations to block triangular forms (BTFs)
proved to be unsuitable in this context, and a new
algorithm had to be devised. Some traditional methods
were not applicable to rectangular structurally singular
matrices, while others led to patterns with a useless
block distribution. In particular, Tarjan15 proposed a
very efficient algorithm for the determination of the
strong components of a digraph. The method can be
applied to the permutation of matrices to BTFs, pro-
vided the matrices have a full transversal. A square
matrix is said to have a full transversal when none of
its diagonal elements is equal to zero. Later, Gustav-
son16 and Duff and Reid17 developed implementations
of Tarjan’s method for square matrices.

In the case of rectangular structurally singular ma-
trices, the available techniques18-20 do not yield the

desired pattern, leading to block upper triangular
shapes. The classic Dulmage-Mendelsohn (DM) decom-
position18,19 is one of the most widespread noncombi-
natorial techniques to permute a general matrix, i.e.,
one that is not necessarily square, to a BTF. In brief,
the reordering procedure for a given matrix A comprises
two sequential stages. First, a bipartite graph B is
associated with A. Then, a maximum matching Pm is
found for B, and the nodes in B are classified as a
function of Pm. Next, A’s rows and columns are rear-
ranged in accordance with the following node classifica-
tion that was proposed by Dulmage and Mendelsohn:
VR ) {nodes in N1 that can be reached from an
unmatched node in N1 by moving along an alternating
path}, HR ) {nodes in N1 that can be reached from an
unmatched node in N2 by moving along an alternating
path}, SR ) N1 \(VR ∪ HR), VC ) {nodes in N2 that
can be reached from an unmatched node in N1 by
moving along an alternating path}, HC ) {nodes in N2
that can be reached from an unmatched node in N2
by moving along an alternating path}, and SC )
N2 \(VC . HC).

As a result, A is permuted to the BTF shown in Figure
3a, where block AC is always square and has a full
transversal.

In 1990, Pothen and Fan20 introduced a two-stage
partitioning technique (PF) for general matrices. In this
technique, DM’s strategy is applied first in order to yield
a coarse-grain decomposition. Then, a fine-grain decom-
position is performed. This stage consists in partitioning
the three diagonal blocks AH, AC, and AV into block
upper-triangular forms whose diagonal blocks are ir-
reducible. A diagonal block is irreducible when it cannot
be decomposed into blocks of smaller size without

Figure 3. BTF patterns. Shaded blocks: PF’s fine-grain decom-
position.
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destroying the block upper-triangular pattern. Matrices
AH and AV are decomposed by determining all of their
connected components by means of a DFS. In turn, block
AC is partitioned using Tarjan’s method for square
matrices.15 The corresponding pattern is shown in
Figure 3a.

It is clear from Figure 3 that PF’s rearrangement
significantly differs from the BlTF required by our
structural methodology for observability analysis. On
the one hand, PF’s pattern is block upper-triangular,
where only the blocks corresponding to AC are square,
while the rest (AH and AV) are rectangular. On the other
hand, the pattern required for observability analysis is
block lower-triangular, where all of the blocks on the
main diagonal of submatrix SO are square. It is evident
that it is impossible to transform any of these BTFs into
the other one by simple matrix-transpose operations.
In this paper, we present a methodology that makes use
of the fundamental PF concepts in order to obtain the
BlTF required for observability analysis in a direct way.

4. Direct Method for Observability Analysis

This technique, which is based on graph decomposi-
tion, is a novel noncombinatorial algorithm for the
structural classification of unmeasured variables that
is significantly more efficient than FLCN and its varia-
tions.9,21 The main idea is based on the analysis of
existing direct methods for matrix reordering that were
developed in order to solve systems of linear equa-
tions.17,20 Although both the goal and the scope of those
techniques are completely different from ours, the
philosophy employed for the structural rearrangement
served as a basis for this development.

4.1. General Structure. The algorithm consists of
six stages plus an initialization phase, as shown in
Figure 4. In the first place, the bigraph B associated
with the occurrence submatrix M1 is built. Then, a
coarse-grain decomposition of B is carried out. This
decomposition involves two consecutive stages: a search
for a maximum matching in B, followed by an appropri-
ate node classification. Next, a fine-grain partitioning
is performed in stage 2, which results in the determi-
nation of M1’s assignment subsets. All of them are tested
for allowability in stage 3. When a block proves to be

unallowable, a reassignment is attempted (stage 4); i.e.,
the process tries to substitute one of the rows in the
rejected subset by another row that corresponds to a
redundant equation. If the reassignment was successful,
the algorithm goes back to step 2. Otherwise, it moves
to step 5 (reduction stage). In this phase, all of the nodes
associated with the rows and columns that passed the
allowability test are removed from B. Then, the algo-
rithm goes back to stage 1 in order to process the
reduced bigraph. The complete cycle continues until no
new assignment subsets are detected. When this is the
case, the algorithm moves to stage 6, where the matrix
is rearranged and the procedure ends. Figure 4 sum-
marizes the information flow for the direct method,
while the complete algorithm is reported in appendix
A.4.

4.2. Coarse-Grain Decomposition. The input in-
formation required for this decomposition is the bipar-
tite graph B ) (N1, N2, E) associated with the occurrence
submatrix M1, built during the initialization stage. The
nodes in N1 and N2 correspond to M1’s rows and columns,
respectively, while E’s edges represent its nonzero
elements. Once B has been generated, the first parti-
tioning level, which we have called coarse-grain decom-
position, is carried out. In this stage, a maximum
matching Pm is looked for in B by means of the MM
algorithm (see appendix A.3). Next, the nodes are
classified according to Pm.

As pointed out in the Introduction, DM’s classification
for the nodes in B does not lead to the pattern of
interest. Therefore, to modify the categorization to suit
our special needs, we devised a different way of catego-
rizing B’s nodes. The following proposal of a new node
classification was first presented in 199722 and later
published in Ponzoni et al.23 The new technique parti-
tions sets N1 and N2 into the following disjoint subsets:
VR ) {unmatched nodes in N1}, SR1 ) {matched nodes
in N1 reachable from an unmatched node in N1 along
an alternating path}, HR ) {matched nodes in N1
reachable from an unmatched node in N2 along an
alternating path}, SR2 ) N1 \(VR ∪ SR1 ∪ HR),
SC1 ) {matched nodes in N2 reachable from an un-
matched node in N1 along an alternating path}, HC )
{nodes in N2 reachable from an unmatched node in N2
along an alternating path}, and SC2 ) N2 \(SC1 ∪ HC).

The main difference between DM’s decomposition and
this new proposal lies in the fact that DM’s technique
places all of the nodes in N1 that belong to VR and SR1
in the same set, while the classification for instrumen-
tation design requires one to make a distinction between
them. The contrast between both classifications can be
appreciated in Figure 5, where Figure 5b shows how
the nodes must be rearranged in order to get the desired
BlTF. It is important to note that the blocks (SC1, SR1)
and (SC2, SR2), apart from being square, have a full
transversal because the nodes in SC1, SR1, SC2, and
SR2 belong to the maximum matching.

An example of the resulting pattern is presented in
Figure 6. It corresponds to the matrix N shown in
Figure 6a. The corresponding bipartite graph and the
node classification are shown in Figure 6b, while Figure
6c contains the matrix that results after applying the
coarse-grain decomposition to N. It can be noticed that
the nodes in SC1 and SC2 are associated with the
observable variables, while those in HC correspond to
the indeterminable variables. In turn, the nodes in SR1
and SR2 represent the assigned equations, the ones in

Figure 4. General scheme of the direct method.
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VR indicate the redundant equations, and those in HR
correspond to equations that contain unobservable
variables.

4.3. Fine-Grain Decomposition. The coarse-grain
decomposition yields two structurally nonsingular
square blocks determined by the sets (SR1, SC1) and
(SR2, SC2). The fine-grain decomposition stage parti-
tions these blocks into irreducible square subsystems
by means of the SC algorithm for the detection of the
strong components of a digraph (see appendix A.2).
First, the digraph D(NS1) is decomposed, where NS1 )
(SR1, SC1), and then the SC algorithm is applied to
D(NS2), where NS2 ) (SR2, SC2). Each strong component
that is detected in these digraphs corresponds to an
assignment subset in the BlTF.

Figure 7 shows the fine-grain decomposition of block
NS2 ) (SR2, SC2) for the example given in Figure 6. In
the first place, the digraph D(NS2) is built (see Figure
7a,b). Each node in D(NS2) is associated with two nodes
from the bigraph, which come from SR2 and SC2,
respectively. Then, the digraph is partitioned into its
strong components (Figure 7c), and finally NS2 is rear-
ranged according to the strong components found through
SC.

4.4. Allowability Test, Block Reassignment, and
Bigraph Reduction. The next algorithmic step con-
sists in verifying whether the assignment subsets found
at the fine-grain decomposition stage are acceptable.
The allowability test checks all the blocks to make sure
that they do not contain any forbidden subsets. The
unallowable subsets are specified in the set of con-
straints R, which stores information about subsystems
in N that have been declared unacceptable for any
reason.

First of all, the blocks NS1i, for i ) 1, ..., p, where p is
the number of assignment subsets in NS1, are analyzed.
All of these blocks belong to NS1 ) (SR1, SC1). If a
certain block NS1j, with 1 e j e p, contains a forbidden

subset T listed in R, the algorithm moves to the
reassignment stage. In this phase, the method looks for
a row node r in VR so that there is an edge (r, c), where
c is a column node from NS1j. If such node exists, row
node k in NS1j, which formed a pair with c, is replaced
by node r. In terms of systems of equations, the
reassignment exchanges one of the equations in the
subsystem that failed the allowability test for a redun-
dant equation. In Figure 6b, it can be noticed that the
reassignment implies a permutation between rows from
SR1 and VR.

After permutation, the digraph that corresponds to
NS1 is rebuilt and the fine-grain decomposition of this
block is carried out again. The objective of the reassign-
ment stage, specially proposed for this algorithm, is to
break the structure of block NS1j, which contained the
forbidden subset T. By exchange of a row node NS1j for
a node in VR, the rejected block NS1j will not be formed
again during the next fine-grain decomposition of NS1.

When it is impossible to reassign block NS1j, the
method tries to reduce the bigraph. In this phase, blocks
NS1i, for i < j, are stored in the structure that keeps
the valid assignment subsets. Next, the row and column
nodes in those blocks are removed from bigraph B(N).
At this point, a row node e from NS1j, which will be called
special row, is chosen and temporarily removed from
B(N). Then, the control is transferred back to the first
stage of the method again.

The choice and temporary removal of a special row
aims at finding a maximum matching Pm′ that differs
from the one obtained from the first application of the
coarse-grain decomposition. If no row nodes in B(N)
were temporarily removed, the next execution of algo-
rithmic stage 1 would build a maximum matching Pm′
that would be equivalent to Pm, i.e., to the one that had
originally been found. The only difference would lie in
the fact that Pm′ would not contain those nodes in the
blocks NS1i that had been removed from G(N), with the
rest of Pm remaining equal to Pm′.

After generation of the new maximum matching Pm′,
special row e is introduced into the bigraph again and
classified according to the following rules:

1. e will belong to VR if all of its edges lead to columns
in SC1 or SC2.

2. e will belong to SR1 if e is connected to only one
column in HC and it is not connected to any columns in
SC2 (in this case, this column, together with e, forms a
block whose order is 1).

3. e will belong to SR2 if e is connected to only one
column in HC and at least one column in SC2 (in this
case, this column, together with e, forms a block whose
order is 1).

4. e will belong to HR if e is connected to two or more
columns in HC.

Theorem 4. If node e belongs to the rejected block
NS1j, this block will not be formed again during the next
execution of the fine-grain decomposition procedure.

Proof. This theorem can be proved by the absurd.
First of all, it must be taken into account that the
constraints always correspond to subsystems whose
order is at least 2. Then, if NS1j has been rejected during
the allowability test, its dimension must be greater than
1 because NS1j contains a constraint. In contrast, the
classification rules stated above establish that e can only
belong to a block of order 1. As a consequence, NS1j will
not be present in the new fine-grain decomposition.

Figure 5. Classification of nodes and the coarse-grain decomposi-
tion.

582 Ind. Eng. Chem. Res., Vol. 43, No. 2, 2004



In this way, the proposed classification of nodes leads
to a new decomposition of B(N), where no nodes are lost
because the special row e, which is at first temporarily

removed, is reestablished later as soon as the new
maximum matching has been found. It is interesting
to remark that it is impossible to “lose” an observable
variable during the procedure, in principle, because the
removal is always temporary. Moreover, the special
equation that has been temporarily removed can never
contain only one observable variable because if that
were the case, that variable and the equation it appears
in should have already been detected and classified as
a 1 × 1 diagonal block earlier. In short, this strategy
successfully avoids undesirable assignment subsets
because the blocks that fail the test are left behind.

After having checked all of the blocks in NS1 success-
fully, the allowability test is carried out on block NS2 )
(SR2, SC2). In contrast with NS1, the rejected blocks in
NS2 cannot be reassigned. It is clear from the BlTF
pattern that the redundant rows only have nonzero
elements in the columns that correspond to SR1. Then,
the reassignment does not make sense for NS2. There-

Figure 6. Coarse-grain decomposition.

Figure 7. Fine-grain decomposition of N2 ) (SC2, SR2).

Ind. Eng. Chem. Res., Vol. 43, No. 2, 2004 583



fore, whenever a block NS2i in NS2 is unallowable, the
algorithm moves directly toward the bigraph reduction
stage.

It sometimes occurs that the removal of only one
special row is not enough to find new acceptable blocks.
In those cases, the method removes several special rows
until some significant progress is achieved in the
decomposition; i.e., different row nodes are temporarily
removed from the bigraph until new blocks are de-
coupled. The policy adopted for the classification of the
temporarily removed nodes is always the same. Once
the new maximum matching has been found, each
special row is reincorporated and categorized following
the rules stated above.

The algorithm ends either when all of the blocks in
NS2 have been accepted by the allowability test or else
when the sets SR1 and SR2 returned by the coarse-
grain decomposition are empty.

By way of illustration, we shall consider the example
in Figure 6 again. The fine-grain decomposition of block
NS1 ) (SR1, SC1) yields only one strong component,
which is obviously made up of all of the rows and
columns in NS1. Let us assume that there is a constraint
T in R composed of the row nodes {2, 4, 5, 8} and the
column nodes {2, 7, 8, 1} because the associated equa-
tions and variables correspond to a singular subsystem
from the mathematical model of the plant. Then, the
block is rejected by the allowability test, and the
algorithm proceeds with the reassignment stage. At this
point, we shall assume that the row nodes 2 (from SR1)
and 10 (from VR) are chosen and exchanged. After that,
block NS1 is composed of the row nodes {4, 5, 8, 10}, as
shown in Figure 8a, while node 2 corresponds to a
redundant equation.

Let us suppose that the fine-grain decomposition is
executed again, and as a result, a single strong compo-
nent that comprises the complete block NS1 is found
again. Next, we will assume that the new block,
composed of row nodes {4, 5, 8, 10} and column nodes
{2, 7, 8, 1}, is checked and rejected as a result of a
constraint made up of row nodes {4, 5, 10} and column
nodes {2, 7, 8}. This triggers a new reassignment,
where, for example, row nodes 4 and 12 are exchanged,
yielding a block NS1 with row nodes {5, 8, 10, 12} and
column nodes {2, 7, 8, 1}. Next, the fine-grain decom-
position is repeated, resulting in the following two
strong components: NS11 ) {{10, 12}, {1, 2}} and
NS12 ) {{5, 8}, {7, 8}}. Both of them are acceptable, so
they pass the allowability test, which ends in this way
for NS1. The resulting matrix is shown in Figure 8b.

4.5. Efficiency and Correctness. The order of the
proposed algorithm with regard to execution times can
be estimated from the order of each decomposition
procedure. The coarse decomposition, in particular,
employs Hopcroft-Karp’s algorithm,24 whose execution
time is O(n3/2τ) in the worst cases, where n and τ are
the number of vertexes and nonzero elements in the
matrix, respectively. Because τ e n2, it can be stated
that Hopcroft-Karp’s algorithm has execution times of
O(n5/2). As to the fine decomposition, Tarjan’s method
is of order (O(n) + O(τ)). Taking into account that both
methods are applied sequentially, it is immediate that
the proposed algorithm has O(n3/2τ). Finally, it is
important to remark that the correctness of our proce-
dure can be assessed from the correctness of Hopcroft-
Karp’s and Tarjan’s algorithms. The methodology is
both robust and trustworthy, preserving the high qual-

ity of the partitions yielded by those two individual
techniques.

5. Performance Analysis

The direct method for observability analysis was
employed to classify the unmeasured variables for
several industrial problems. The final results revealed
that the technique is extremely robust and efficient in
computing times. In this section, we present three
problems where the performance of the proposed method
is assessed by comparison with the best existing struc-
tural method: GS-FLCN. For each problem, both algo-
rithms were run from the same initial data and the
algorithmic behavior and results were contrasted.

5.1. Example I: Model of a Distillation Column.
The first example corresponds to the section of an
ammonia synthesis plant where ammonia is purified by
distillation. The corresponding flow diagram is shown
in Figure 9. The main processing unit is a distillation
column (D1) and the model includes the following six
additional items of equipment: a mixer (MIX3), two
dividers (DIV1 and DIV2) and three heat exchangers
(CHX1, DRB1, and RFHX2). The steady-state math-
ematical model of this section is made up of 104
nonlinear algebraic equations with an initial sensor
configuration composed of 25 measurements and 85
unmeasured variables.

The results from the observability analyses carried
out with both methods are schematized in Table 1. It is

Figure 8. Reassignments for block N1.
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interesting to note that this is a problem of small size.
As a consequence, it was possible to execute GS-FLCN
thoroughly, without employing BFs. As a result, GS-
FLCN could explore the complete search space, thus
working at its very best in regards to robustness.

Both methods succeeded in determining the 63 ob-
servable variables in the problem. Therefore, the per-
centage of assigned variables (pav) was the same.
Nevertheless, the configuration of the assignment sub-
sets was different.

In general, GS-FLCN tends to yield smaller blocks
than the direct method because of the strategy employed
to look for the assignment subsets. GS-FLCN starts
seeking for blocks of size n only after the exploration in
search for blocks of size n - 1 has been completed.
Besides, whenever the method locates a block of size n,
with n > 1, the block is decoupled and the exploration
starts all over again from the very beginning, i.e., trying
to detect subsets of size 1. This policy guarantees
minimum-size sets provided no techniques that limit the
search space, such as BFs, are employed. This important
feature of GS-FLCN is attractive because it is easier to
detect unallowable assignment subsets on small blocks
and it is also simpler to incorporate constraints. As to
the run times, the direct method behaved much better.
However, this problem is too small to be interesting for
time comparisons.

According to these results, GS-FLCN is more robust
(with respect to the detection of minimum-size blocks)
than the direct method, even though both algorithms
achieve the same efficacy level (i.e., the same amount
of observable variables was detected). It can be con-
cluded that when GS-FLCN is employed without resort-
ing to techniques that prune the search space, the
algorithm yields a classification whose granularity is
either equal to or finer than the one obtained through
the direct method. However, it is important to remark
that this is a small problem with very few units. The
mathematical models for wider sectors or industrial

plants become significantly more complex, and their size
increases dramatically. As a result, it is not always
feasible to run GS-FLCN in its pure form, and the
employment of acceleration strategies, such as the BFs,
becomes mandatory.

5.2. Example II: Ammonia Synthesis Plant. The
second example corresponds to an ammonia synthesis
plant designed by Bike.25 The mathematical model
chosen to represent the plant consisted of 557 equations
and 587 variables. The analysis was started from a basic
configuration with a few instruments: only 74 variables
were set as measured, with the rest being initially
defined as unmeasured.

This is a medium-size problem that required the
eventual use of BFs to reduce computing times when
running GS-FLCN. In view of the fact that run times
grow as the search depth augments, the search space
was not reduced for the lower levels, i.e., where blocks
of sizes between 1 and 6 were being looked for. From
level 7 onward, different BFs were employed in order
to reduce the space dimensions gradually. The higher
the level, the stricter the pruning that had to be imposed
in order to keep times within reasonable bounds.

Table 2 summarizes the results yielded by both GS-
FLCN and the direct method. In contrast with case
study I, the pav achieved through the direct method is
slightly greater than the one obtained with the direct
method. All of the variables assigned by GS-FLCN were
also classified as observable by the direct method, which
could also detect 34 other observable variables that GS-
FLCN never individualized. This difference in the sets
of assigned variables arose because GS-FLCN could not
explore the entire search space when trying to locate
subsets of size 7 or greater. As a result of the pruning
strategy, some valid assignment subsets were not
detected by the combinatorial algorithm.

The impact of failing to locate a block of a given size
often propagates to the lower levels because the removal
of an assignment subset of size n, for n > 1, frequently
triggers the subsequent decoupling of smaller blocks.
This effect manifested itself in this example. In Table
2, it can be observed that the direct method found four
additional blocks of size 1, which could not be detected
by GS-FLCN even though the BFs never impose bounds
on the search for 1 × 1 blocks. Because the combinato-
rial algorithm could not find the bigger assignment
subsets (of sizes 7-9), it never found those four smaller
blocks.

Finally, in regards to execution times, the direct
method proved to be significantly more efficient than
GS-FLCN, with the times differing by several orders of
magnitude. This gap can be attributed to the combina-
torial nature of GS-FLCN, whose run times grow
exponentially with both problem size and search depth.

Figure 9. Flow diagram for the ammonia distillation column.

Table 1. Comparative Results from the Observability
Analysis for Example I

104 × 100dimension
block size GS-FLCN direct method

1 55 44
2 1 1
5 1
6 1

12 1

pav (%) 74 74
run times (min) 1:53 0:03

Table 2. Results from the Observability Analysis for
Example II

557 × 513dimension
block size GS-FLCN direct method

1 113 117
2 2
5 2
6 2 2
7 1
8 1
9 1

pav (%) 25 32
run times (min) 35:12 0:14
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In brief, the direct method behaved notoriously better
for this example because it was more efficacious and
efficient than GS-FLCN, successfully assigning 7% more
variables. As the size of occurrence submatrix N in-
creased, it was necessary to employ BFs to speed up GS-
FLCN, and this action was detrimental to the method’s
capacity to detect assignment subsets.

5.3. Example III: Ethane Plant. The last case
under study corresponds to the real ethane plant
presented in a paper by Ponzoni et al.8 The rigorous
mathematical model employed for this analysis con-
tained 1830 equations with 332 measurements and 1600
unmeasured variables. This is the biggest example
presented here, but it is important to mention that huge
problems of much greater size are frequently encoun-
tered in engineering practice.

Because of the size of this problem, BFs were em-
ployed to accelerate GS-FLCN, just like in the previous
example, though more severe pruning was required in
this case in order to keep computing times reasonably
low. Complete exploration of the graph was allowed up
to depth 5. From level 6 onward, the search space was
gradually bounded, with the strictest bound being set
for levels above 8.

The results obtained after several global iterations
with both methods are reported in Table 3. The last row
of the table shows that the direct method could assign
66% of the unmeasured variables, while GS-FLCN only
classified 20% as observable. This significant loss in
efficacy exhibited by the combinatorial algorithm can
be attributed to two main causes. The most evident
reason is associated with the strict bounding on the
search space required for a big problem that notoriously
limited the exploration capacity of the method. Then,
the method obviously failed to detect a great amount of
valid blocks.

The second reason behind GS-FLCN’s unsatisfactory
performance is associated with the physical features
that characterize this industrial process. Most of the
streams flowing in the plant contain 12 chemical
components, which favors the appearance of big assign-
ment subsets that are typically formed around the
global and component mass balances. In general, it can
be stated that the greater the number of compounds
considered in the mathematical model, the bigger those
assignment subsets will be. This fact obviously affects
GS-FLCN in a negative way because the exploration of

the deeper levels associated with those subsets is
severely bounded to limit execution times. Conse-
quently, some of those subsets may remain hidden, as
was the case in this problem where the largest blocks
detected by the direct method (see Table 3) could never
be found by means of GS-FLCN. Moreover, just like for
example II, the computing time required by the combi-
natorial technique was notoriously higher, this being
another strong advantage of the direct method.

The main conclusion that can be drawn from the
analysis of this example is the fact that the behavior of
the direct method will be significantly better for big-
size industrial plants, where the formation of large
assignment subsets are expected. Therefore, we strongly
recommend the use of the proposed technique in those
cases.

6. Conclusions

A direct method for observability analysis was pre-
sented in this paper. In contrast with other structural
methods that had been proposed to treat complex
nonlinear models, this technique does not carry out
combinatorial searches, like GS-FLCN.8 Moreover, it
does not employ heuristic rules, like CDHG.26

The proposed method is a two-stage procedure based
on graph decompositions that rearranges the occurrence
matrix associated with the unmeasured variables by
means of bigraphs and digraphs. The algorithmic core
is constituted of a new node classification derived from
Dulmage and Mendelsohn’s technique for the decom-
position of structurally singular matrices. A three-step
strategy was designed for the identification and analysis
of forbidden subsets. It comprises an allowability test,
a subset reassignment procedure, and a bigraph reduc-
tion. The allowability test follows the same philosophy
originally designed for the GS-FLCN and CDHG algo-
rithms. In turn, the reassignment step aims at avoiding
the repeated appearance of forbidden subsets by ad-
equately permuting rows that correspond to assigned
and redundant equations. Finally, the reduction phase
makes it possible to build alternative maximum match-
ings either when the reassignment has not been suc-
cessful or when it is not applicable.

The direct method was compared with GS-FLCN for
three sample problems in order to assess its perfor-
mance for the observability analysis of industrial plants.
The results were extremely satisfactory because the
direct method always managed to assign an equal or
often higher amount of unmeasured variables. Although
it was observed that GS-FLCN may yield a decomposi-
tion of finer granularity for small problems, it was
stated that the direct method becomes more efficacious
as problems grow in size and complexity. Besides, it also
proved to be remarkably more efficient than GS-FLCN.

As to the scope of this development, it is interesting
to note that the direct method constitutes a new strong
matrix-partitioning tool, whatever the field of applica-
tion. The technique is powerful because it can be applied
to any matrices, regardless of their structural pattern.
It is also original because no algorithms that allow the
addition of block constraints in order to guide the search
according to specific criteria could be found in the
literature. Besides, the method is extremely flexible for
it is possible to generate various reorderings for the
same problem until a satisfactory one has been found.

Table 3. Comparative Results from the Observability
Analysis for Example III

1830 × 1600dimension
block size GS-FLCN direct method

1 292 807
2 2 4
3 1
4 1 1
5 1
6 2 6
7 1

11 1
16 2
22 1
27 1
35 2
39 1

pav (%) 20 66
run times (min) 59:23 0:42
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Appendix: Algorithms

A1. Detection of a Single Strong Component in a
Digraph (SSC).

Input: i, v, N, E, P
Input/Output: j, CC

DFI(v) r i.
Q(v) r DFI(v).
i r i + 1.
Put v in P.
Stack(v) r true.
For each node v′ adjacent to v do:

If DFI(v′) ) 0
then

SC(i,v′,DFI,N,E,P,j,CC).
Q(v) r min (Q(v), Q(v′)).

else
If DFI(v′) < DFI(v) and Stack(v′)

then
Q(v) r min (Q(v), DFI(v′)).

End if
End if

End for
If Q(v) ) DFI(v)

then
Unstack all elements from P until v is reached.
Store the unstacked elements in CC(j), including
v.
Unstack v.
Set Stack(u) r false, for all nodes in CC(j).
j r j + 1.

{the elements stored in CC(j) constitute the jth strong
component of the graph whose root is v}

End if
End of Algorithm

A2. Detection of All of the Strong Components in
a Digraph (SC).

Input: N, E
Input/Output: CC

i r 1.
j r 1.
Empty P.
Empty CC.

For all v ∈ N do:
DFI(v) r 0.
Stack(v) r false.

End do
While there is some u, so that DFI(u) ) 0 do:

SSC(i,u,DFI,N,E,P,j,CC).
End while
End of Algorithm

A3. Maximum Matching in a Bigraph (MM).

Input: R, C, E
Output: Pm

Pm r L.
CU r L.
% Building an initial matching
For each node c ∈C do:

Match c with the first unmatched node r, so that
r ∈ R.
If node r does not exist, then Cv r Cv ∩ {c}

end do
% Looking for augmenting paths
CvN r L.

Repeat
Search for an augmenting path Au from c, only
visiting those nodes in R that have not been visited
before during that step.
Label all nodes that are reached as “visited”.
If an augmenting path Au has been found

then
Augment Pm with Au.

else
Include c in CvN.

End if
Cv r CvN.
CvN r L.

Until no augmenting paths are found in the loop.
End of Algorithm

A4. Direct Method for the Classification of Un-
measured Variables.

Input: N (occurrence matrix) and R (initial constraints)
Output: N in BlTF

Stage 0. Initialization.
Build the bigraph G(N) ) (R,C,E) associated with N.

Stage 1. Coarse-Grain Decomposition.
1.1. Obtain a maximum matching Pm from G(N).
1.2. Classify the rows into SR1, SR2, VR, and HR
and the columns into SC1, SC2, and HC on the basis
of Pm.
1.3. For each special row, classify it as

VR, if all of its edges lead to columns in
SC1 or SC2.
SR1, if it is connected to only one column
in HC and it is not connected to any
column in SC2 (if this is the case, this
column, together with the special row,
constitutes a 1 × 1 block).
SR2, if it is connected to only one column
in HC and at least one column in SC2 (if
this is the case, this column, together with
the special row, constitutes a 1 × 1 block).
HR, if it is connected to more than one
column in HC.

Stage 2. Fine-Grain Decomposition.
2.1. Associate the digraph G(N1) ) (V,E) with matrix
N1, which corresponds to block (SR1, SC1).
2.2. Decompose G(N1) into its strong components N11,
N12, ..., N1q (each N1i corresponds to a diagonal block).
2.3. Associate the digraph G(N2) ) (V,E) with matrix
N2, which corresponds to block (SR2, SC2).
2.4. Decompose G(N2) into its strong components N21,
N22, ..., N2p (each N2i corresponds to a diagonal block).

Stage 3. Allowability Test.
3.1. For each strong component N1i,

3.1.1. Check that N1i does not belong to the
set of constraints R.
3.1.2. If N1i is forbidden,

go to stage 4.
3.1.3. If the reassignment was successful,

return to stage 2.
Otherwise, go to stage 5 for a reduction
to N1i.

3.2. For each strong component N2i,
3.2.1. Check that N2i does not belong to the
set of constraints R.
3.2.2. If N2i is forbidden,

go to stage 5 for a reduction to N2i.
3.3. Go to stage 6.
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Stage 4. Reassignment of a Strong Component N1i.
4.1. Look for an edge (r, c), where r ∈ VR, c belongs
to the columns in N1i, (k, c) ∈ Pm, and k has not been
reassigned by r before.
4.2. If such an edge exists, then the reassignment is
possible, and the following steps must be carried out:

4.2.1. Remove edge (k, c) from Pm, where
k is one of the rows in N1i.
4.2.2. Add (r, c) to Pm; remove k from SR1
and N1i.
4.2.3. Add r to SR1 and N1i; remove r from
VR.
4.2.4. Add k to VR.

Otherwise, the reassignment is impossible.
4.3. Go back to step 3.1.3.

Stage 5. Reduction of Bigraph G(N) to the Strong
Component Nij.

5.1. Remove all of the rows and columns correspond-
ing to the strong components preceding Nij, i.e., all of
the Nkl for k < i or k ) i and l < j, from the bigraph
and incorporate them to the solution.
5.2. Choose a row from Nij, which had not been
selected before, as the special row and remove it from
G(N).
5.3. If all of the rows in Nij had been chosen as the
special row before, choose two special rows among the
rows in Nij, disregarding whether they had been
selected previously.
5.4. Return to stage 1.

Stage 6. Reordering.
6.1. Rearrange N as follows:

[N11, N12, ..., N1p, N21, N22, ..., N2q, (VR,
SC1), (HR, HC)]

6.2. End of Algorithm
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