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a b s t r a c t

We use a Magnus approximation at the level of the equations of
motion for a harmonic system with a time-dependent frequency,
to find an expansion for its in–out effective action, and a unitary
expansion for the Bogoliubov transformation between in and out
states. The dissipative effects derived therefrom are compared
with the ones obtained from perturbation theory in powers of the
time-dependent piece in the frequency, andwith those derived us-
ing multiple scale analysis in systems with parametric resonance.
We also apply the Magnus expansion to the in–in effective action,
to construct reality and causal equations ofmotion for the external
system. We show that the nonlocal equations of motion can be
written in terms of a ‘‘retarded Fourier transform’’ evaluated at the
resonant frequency.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Harmonic oscillatorswith time-dependent frequencies are ubiquitous inmanybranches of physics.
In the context of quantum field theory, there are many examples where the modes of a free field,
when put under the influence of time-dependent external conditions, can be described as a system of
harmonic oscillators with time-dependent frequencies and couplings. A well-known example arises
when considering quantum fields in cosmological backgrounds, such that partial homogeneity implies
uncoupled fieldmodeswhich are harmonic oscillators, with time-dependent frequencies [1]. Another
celebrated example, which produces coupled modes, corresponds to quantum fields in the presence
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of moving mirrors, or time-dependent media, which can also be treated as a set of coupled harmonic
oscillators (see, for example [2–4] and references therein).

The most interesting feature of the system is, perhaps, that it exhibits, at the quantum level, a
parametric resonance phenomenon. This can be studied, for example, in terms of the Bogoliubov
transformation between the in and out states, or the in–out effective action, both of which make it
possible to obtain the particle creation rates. In terms of a given mode, those rates correspond to the
creation of a certain number of quanta, as in the dynamical Casimir effect [2]. The same physical phe-
nomenon is also manifested when considering another observable, namely, the dynamical equations
for the external degrees of freedom. Theymay be obtained from the in–in effective action, and exhibit
a back-reaction due to emission of quantum field modes [5,6].

Except for rather special cases, it is not possible to obtain closed expressions for the effective
action, even in the case of a single harmonic mode with a time-dependent frequency. Indeed, the
problem of evaluating the effective action for a system like this, may be posed in terms of a functional
determinant, an object which may be obtained from the solution of a linear second-order differential
equation: the classical equation of motion. Since, except for rather special cases, closed solutions
for the latter are not known, it is natural to implement approximate treatments. Assuming that the
time dependent piece of the frequency is small in comparison with the constant (average) part, an
expansion in powers of the former seems natural. The alternative we follow here, corresponds to
writing the (formal) solution to the classical equation of motion in phase space, and implementing
the Magnus expansion [7–9] to solve the latter. This preserves, order by order, the time evolution as a
canonical transformation, both at the classical and quantum levels (since the equations of motion
are linear). This is a higher desirable feature when considering an expansion for the Bogoliubov
transformations, Thus, our approach may be interpreted as an alternative expansion in the time-
dependent part of the frequency, which preserves unitarity, and would correspond to a resummation
of infinite terms on the usual expansion.

The Magnus approach has been used in a large number of works and is of interest in many
branches of quantum mechanics. For example, it has been used in the open quantum systems theory
as a tool to investigate how to manipulate the irreversible component of open-system evolutions
(decoherence and dissipation) through the application of external controllable interactions [10]. Also
in the study of periodically driven systems, by means of an expansion both in the driving term
and the inverse of the driving frequency, applicable to isolated or dissipative systems. In [11], a
systematic Magnus expansion is used to derive explicit expressions for a system with a driving term
with harmonic time dependence. Also, in Ref. [12] authors evaluate the squeezing parameters and
the corresponding squeezing eigenmodes in the frame of the Bloch–Messiah decomposition for the
broadband squeezed light generated by type-I parametric down-conversion with monochromatic
pump. Magnus expansion provides the first three approximation orders for the quantum evolution
operator.

In Ref. [13] it is shown that even there is a wide range of problems where an elementary first
order perturbative approach would fail, but a calculation using just the first order Magnus term
would be sufficient. They describe both pump pulse and phase-matching functions that enter into
the description of the photon generation or conversion (such as spontaneous parametric down-
conversion and wave mixing).

Recently, the dynamics of a chirped two-level system has been studied. Authors in [14] derived a
Magnus expansion for the Hamiltonian which determines the stroboscopic [15] dynamics of a non-
harmonically driven two-level system, i.e. for a linear frequency chirp.

The paper represent a pedagogical presentation of the effective action approach for harmonic
systems with time-dependent frequency, and it is organized as follows: in Section 2 we write the
in–out effective action for a single harmonic oscillator with a time-dependent frequency, in terms of
an evolution operator. The approach is based on the Gelfand–Yaglom’s (GY) theorem [16] to evaluate
functional determinants. In Section3weapply the abovementionedMagnus expansion to the solution
of the homogeneous second-order equation which yields the result for the fluctuation determinant.
We evaluate explicitly the first and second order terms in that expansion, and present the structure of
the third order one. By studying the imaginary part of the corresponding terms in the effective action,
we show that it automatically captures non-trivial features, like the position of the (parametric)



260 C.D. Fosco et al. / Annals of Physics 399 (2018) 258–269

resonances. We also show that, in this approximation, the leading order in the Magnus expansion
involves the vacuum expectation value of a squeeze operator. In Section 4 we consider the in–in
effective action, implementing theMagnus approximation also, at the level of the equations ofmotion.
We study the implementation of the properties of reality and causality within the context of this
approximation. Section 5 contains our conclusions.

2. Harmonic oscillator with a time-dependent frequency

2.1. The system and its effective action

Let us begin by considering a system which exhibits the simplest non-trivial realization of the
phenomenon of parametric resonance; namely, that of a single quantum degree of freedom, endowed
with the dynamics of a harmonic oscillator, with a time-dependent frequency ω(t). Denoting by q its
associated generalized coordinate, its classical action S is given by:

S(q) =
1
2

∫
dt

[
q̇2(t) − ω2(t)q2(t)

]
. (1)

We split ω2(t) > 0 into a positive constant component ω2
0 , plus a time-dependent part ϵ(t):

ω2(t) = ω2
0 + ϵ(t) , (2)

where |ϵ(t)| < ω2
0 . The splitting becomes unambiguous when we impose on ϵ(t) the condition∫

+∞

−∞
dt ϵ(t) = 0. The sign of ω0 is chosen, by convention, to be positive.

We then introduce the in–out effective action Γ (a functional of ϵ(t)), as the quotient between
two path integrals, namely:

eiΓ =

∫
Dq eiS(q)∫
Dq eiS0(q)

, (3)

where the denominator, introduced for normalization purposes, has been defined in terms of the
constant-frequency action S0:

S0(q) =
1
2

∫
dt

[
q̇2(t) − ω2

0q
2(t)

]
. (4)

In Eq. (3), the functionally integrated paths q(t) are the appropriate ones in order to calculate the
in–out effective action. These paths must vanish at infinity; we shall reach that limit by starting from
a finite interval t ∈ [−

T
2 , T

2 ], imposing the boundary conditions: q(−T/2) = q(+T/2) = 0, and

then taking the T → (1 − i0+)∞ limit. Note that, because of the imaginary part in the previous
limit, no non-trivial classical solution survives the limiting procedure.

Therefore, and since the functional integrals in (3) are Gaussian, we may express Γ just in terms
of functional determinants:

eiΓ =

(
detK
detK0

)−1/2

, (5)

where we have introduced the K and K0 operators corresponding, respectively, to S and S0:

K ≡
d2

dt2
+ ω2(t) , K0 ≡

d2

dt2
+ ω2

0 . (6)

Our next step is then to evaluate the ratio between the two functional determinants which, by a
rather straightforward application of the GY theorem [16], may be written as follow, may be written
as follows:

detK
detK0

=
q(T/2)
q0(T/2)

, (7)
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where q and q0 are the unique solutions to the homogeneous equations:

Kq(t) = 0 , K0q0(t) = 0 , (8)

for the initial conditions q(−T/2) = 0, p(−T/2) = 1 (p ≡ q̇) (and identical conditions for q0).

2.2. First-order treatment of the G–Y approach

The problem has, therefore, been reduced to the calculation of the solution to a homogeneous
second-order equation with prescribed initial conditions [16]. It is well-known that a second order
equation may be equivalently formulated as a system of two first-order equations: that reformulated
problem will be the subject of our approximation scheme. To that order, we first introduce the two
complex combinations:

a =
ω0q + ip
√
2ω0

, a∗
=

ω0q − ip
√
2ω0

(9)

and the two-component function

|Ψ (t)⟩ ≡

(
a(t)
a∗(t)

)
, (10)

with the initial condition:

|Ψ (−T/2)⟩ =
i

√
2ω0

(
1

−1

)
. (11)

The second-order homogeneous equation for q, becomes equivalent to a Schrödinger-like equation,
with a non-Hermitian Hamiltonian:

i
d
dt

|Ψ (t)⟩ = H(t)|Ψ (t)⟩ , H(t) = H0 + H′(t) , (12)

where:

H0 ≡ ω0

(
1 0
0 −1

)
, H′(t) ≡ η(t)

(
1 1

−1 −1

)
, (13)

with η(t) ≡
ϵ(t)
2ω0

, which has the same dimensions as ω0.

Corresponding to some initial time ti, it is natural to introduce an ‘evolution operator’ (i.e., in
mathematical terminology, a ‘fundamental matrix solution’) to the first order equation:

i∂tU(t, ti) = H(t)U(t, ti) , U(ti, ti) = I , (14)

(I ≡ 2 × 2 identity matrix).
We note that the evolution operator may be regarded as the (linear) mapping between initial

condition in phase space, and the value of the dynamical variables at an arbitrary time. An important
property emerges as a consequence of the tracelessness of H(t), namely, the evolution operator
belongs to the SL(2,R) group. Indeed, det[U(ti, ti)] = 1, and:

∂t det[U(t, ti)] = det[U(t, ti)] Tr[H(t)] = 0

⇒ det[U(t, ti)] = 1 , ∀t . (15)

This property is a manifestation, in the first-order framework, of the constancy of the Wronskian of
two solutions of the original second-order problem. In the context of the solution of the classical
equations of motion, this condition amounts to the constancy of the Poisson brackets involving a,
a∗.

Equipped with the previously introduced objects, and defining |i⟩ ≡

(
1

−1

)
, |f ⟩ ≡

(
1
1

)
, we see

that (7) can be written as follows:
detK
detK0

=
Ufi

U (0)
fi

(16)
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where:

Ufi ≡ lim
T→∞(1−i0+)

⟨f |U(T/2, −T/2)|i⟩ , U (0)
fi ≡ Ufi

⏐⏐
η→0 . (17)

The problem thus reduces to finding either exact or approximate expressions for Ufi. To derive
approximate expressions, we shall introduce an expansion around the ‘free’, ϵ = 0 solution; i.e., we
treat the constant-frequency part of the evolution exactly. This is implemented by using, following
the quantum mechanical terminology, an interaction representation. Introducing interaction repre-
sentation vectors in the standard way: |ΨI (t)⟩ ≡ [U (0)(T/2)]−1

|Ψ (t)⟩, where:

U (0)(t) ≡ e−itH0 =

(
e−iω0t 0

0 eiω0t

)
, (18)

one obtains:

U(T/2, −T/2) = U (0)(T/2) UI (T/2, −T/2) [U (0)(−T/2)]−1 , (19)

i∂tUI (t, ti) = H′

I (t)UI (t, ti) , (20)

where

H′

I (t) ≡ [U (0)(t)]−1 H′(t)U (0)(t) . (21)

The explicit form of H′

I (t) for the system at hand is:

H′

I (t) = η(t)
(

1 e2iω0t

−e−2iω0t −1

)
. (22)

It is worth noting that, by taking the appropriate infinite time limit, we may give a more explicit
form for the ratio between determinants, now in terms of the interaction representation evolution
operator. Indeed,

detK
detK0

=
[
UI

]
22 (23)

where the subindices denote the respective matrix element in the 2 × 2 matrix, and UI ≡ UI (+∞,

−∞).

3. Magnus expansion

A known approach to the determination of UI that preserves its SL(2,R) structure is the Magnus
expansion. Indeed, writing UI = eA, it yields an expansion for A [17]. Denoting in what follows by Ai
the term of order i in the Magnus expansion for A:

A = A1 + A2 + · · · (24)

A very important property of this expansion is that it preserves the unimodularity of the evolution
operator, to each order. As we shall see, this can be interpreted within the context of Bogoliubov
transformation.

Let us first consider the results for the effective action which are obtained to each order in the
Magnus expansion.

3.1. First order

The first-order term in the Magnus expansion, is:

A1 = −i
∫

+∞

−∞

dt H′

I (t) . (25)
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Using the explicit form for H′

I (t) in (22), we see that:

A1 =

(
0 −iη̃(−2ω0)

iη̃(2ω0) 0

)
(26)

where the tildes denote Fourier transformation. Note that we have assumed that η̃(0) = 0. To this
order we then have:

UI = eA1 = U (1)
I = cosh |η̃(2ω0)| I +

sinh |η̃(2ω0)|
|η̃(2ω0)|

A1 . (27)

Therefore, at the first order,[
UI

]
22 = cosh |η̃(2ω0)| . (28)

Inserting this result into the expression for Γ , we see that:

ImΓ =
1
2

log cosh
[ ϵ̃(2ω0)

2ω0

]
. (29)

This, whenever the excitation ϵ(t) has a non-vanishing Fourier component along 2ω0, there will be a
non-zero probability of vacuum decay. A special case arises when ϵ(t) is periodic, with a frequency
equal to, say Ω:

ϵ(t) = ϵ0 cos(Ωt) . (30)

In this case, we see that there will be no imaginary part unlessΩ = 2ω0, and that when that happens,

ϵ̃(2ω0) = ϵ0T/2 , (31)

and we therefore obtain a non-vanishing vacuum decay probability

|⟨0in|0out⟩|
2

= e−2Im(Γ )
= e−

ϵ0T
4ω0 . (32)

The exponential behavior of this probability is produced by parametric resonance. Similar results can
be obtained using the method of multiple scales [18]. Our result is more general, since can be applied
to a generic function ϵ(t), not only to the particular case of a harmonic perturbation.

3.2. Second and third orders

The second order term is given by:

A2 = −
1
2

∫
+∞

−∞

dt1

∫ t1

−∞

dt2
[
H′

I (t1) , H′

I (t2)
]

, (33)

which, introducing the Fourier transform of H′

I can be conveniently expressed as follows:

A2 =
i
2

∫
+∞

−∞

dν
2π

1
ν − i0+

[H̃′
I (ν), H̃′

I (−ν)]

= i
∫

+∞

−∞

dν
2π

1
ν

H̃′
I (ν) H̃′

I (−ν) , (34)

where

H̃′
I (ν) =

(
η̃(ν) η̃(ν − 2ω0)

−η̃(ν + 2ω0) −η̃(ν)

)
. (35)

We see that the matrix elements of A2 are then given by:

[A2]11 = i
∫

+∞

−∞

dν
2π

|η̃(ν)|2
2ω0

ν2 − (2ω0)2
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[A2]22 = −[A2]11

[A2]12 = i
∫

+∞

−∞

dν
2π

η̃(ν − ω0) η̃(−ν − ω0)
2ω0

ν2 − ω2
0

[A2]21 = −i
∫

+∞

−∞

dν η̃(ν + ω0)η̃(−ν + ω0)
2ω0

ν2 − ω2
0

. (36)

Before proceeding to study the general case, let us consider the special case of a harmonic η(t),
namely:

η(t) = ξ cos(ωt) , ξ =
ϵ0

2ω0
(37)

η̃(ν) = πξ [δ(ν − ω) + δ(ν + ω)] . (38)

In this case, we see that:

[A2]12 = −iπ
ξ 2

ω0
[δ(ω − ω0) + δ(ω + ω0)]

[A2]21 = −[A2]12 . (39)

Thus, assuming that ω ≃ ω0, we see that A becomes anti-diagonal up this order:

UI = eπT ξ2
ω0

σ2 , (40)

where σ2 denotes a Pauli’s matrix. Therefore there appears a new resonance, this time at ω = ω0, and
the imaginary part of Γ behaves like:

Im[Γ ] ∼ πT
ξ 2

ω0
. (41)

The exponential behavior, now proportional to the square of the amplitude of the perturbation,
corresponds to a subleading parametric resonance, that appears when the external frequency equals
the natural frequency of the system (the leading parametric resonance seen before is linear in the
amplitude, and occurs when the external frequency is twice the natural frequency).

To finish this section, we show the structure of the third perturbative order. Applying the same
technique as in the previous steps, this time to the third term in the Magnus expansion we see, after
some algebra, that:

A3 = −
i
3

∫
+∞

−∞

dν1

2π

∫
+∞

−∞

dν2

2π
1
ν1

( 1
ν2

−
1

ν1 − ν2

)
H̃′

I (ν1)H̃′
I (ν2 − ν1)H̃′

I (−ν2) . (42)

3.3. A reinterpretation of the first-order term

Let us see here how the first-order term in the expansion can be related, and therefore interpreted,
in terms of the operatorial, interaction picture evolution operator.

Denoting by ÛI (−T/2, T/2) the usual interaction-picture evolution operator, we have

ÛI (T/2, −T/2) = T exp[−i
∫ T/2

−T/2
dt Ĥ ′

I (t)] (43)

where T denotes the time-ordered product and the interaction Hamiltonian reads

Ĥ ′

I (t) =
1
2

ϵ(t)
2ω0

q̂(t)2 . (44)

To the lowest order in the Magnus expansion,

ÛI (T/2, −T/2) ≃ exp[−i
∫ T/2

−T/2
dt Ĥ ′

I (t)] . (45)
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Taking now the limit T → (1− iδ)∞, which selects the in and out vacua for the initial and final times,
respectively, and introducing the usual creation and annihilation operators we obtain

ÛI (T/2, −T/2) ≃ exp
[
−

i
2

(
(â†)2η̃(2ω0) + â2η̃(−2ω0)

)]
≡ S(z) , (46)

which corresponds to a squeeze operator S(z) with parameter z = i η̃(−2ω0).
Thus, the lowest-order term in the expansion corresponds to having a squeeze-like operator

dictating the evolution, which is a Bogoliubov transformation.

3.4. Comparison with the usual perturbative approach

Let us consider here the calculation of the effective action Γ , focussing on its imaginary part, from
the point of view of the standard perturbative expansion in awould-be 0+1-dimensional field theory,
To that end, and to simplify the subsequent treatment, we work here in the Euclidean formalism,
where the (Euclidean) effective action is given by:

e−Γ
=

∫
Dq e−S(q)∫
Dq e−S0(q)

, (47)

where we have used the same notation for Euclidean objects as for their real time counterparts. The
full and free actions are now given, respectively by:

S(q) =
1
2

∫
+∞

−∞

dτ
[
q̇2 + ω2(τ )q2

]
,

S0(q) =
1
2

∫
+∞

−∞

dτ
[
q̇2 + ω2

0(τ )q
2] , (48)

where τ denotes the imaginary time.
Thus, introducing the operators ∆ and ϵ with kernels defined by:

∆(τ , τ ′) = ⟨τ |(−∂2
τ + ω2

0)
−1

|τ ′
⟩ =

∫
+∞

−∞

dν
2π

eiν(τ−τ ′) ∆̃(ν) ,

∆̃(ν) ≡
1

ν2 + ω2
0

, (49)

and

ϵ(τ , τ ′) = ⟨τ |ϵ(τ )|τ ′
⟩ = ϵ(τ ) δ(τ − τ ′) , (50)

we see that:

Γ =
1
2
Tr log(1 + ∆ϵ) . (51)

Expanding Γ in powers of ϵ, we get a series Γ = Γ (1)
+ Γ (2)

+ Γ (3)
+ . . .. By our initial

assumption that
∫

+∞

−∞
dτϵ(τ ) = 0, we see that the first order term Γ (1) vanishes, while the second

order one, Γ (2), may be written as follows:

Γ (2)
=

1
2

∫
dτ1

∫
dτ2 Γ (2)(τ1, τ2) ϵ(τ1) ϵ(τ2)

Γ (2)(τ1, τ2) = −
1
2

∆(τ , τ ′)∆(τ ′, τ ) . (52)

The kernel Γ (2)(τ1, τ2) may be rendered as follows:

Γ (2)(τ1, τ2) =

∫
+∞

−∞

dν
2π

eiν(τ−τ ′) Γ̃ (2)(ν)

Γ̃ (2)(ν) = −
1
2

∫
+∞

−∞

dω
2π

∆̃(ω) ∆̃(ω + ν) . (53)
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The last expression, which is the 0+ 1 dimensional version of a real scalar field one-loop diagram,
may be exactly evaluated, the result being:

Γ̃ (2)(ν) = −
1

2ω0 [ν2 + (2ω0)2]
. (54)

Hence, the second order term in the effective action expansion becomes

Γ (2)
= −

1
4ω0

∫
+∞

−∞

dν
2π

|ϵ̃(ν)|2

ν2 + (2ω0)2
, (55)

which, when rotated back to real time has an imaginary part which is determined by a single poles at
ν = ±2ω0:

Im
[
Γ (2)]

=
1
4

(
|ϵ̃(2ω0)|
2ω0

)2
. (56)

Of course, the last equation may be interpreted as reflecting the property that the imaginary part
appears when the frequency of ϵ̃ is sufficient to put on shell two free harmonic oscillator modes. Note
that Eq. (56) coincides with the lowest order Magnus approximation Eq. (29) when this is expanded
up to quadratic order in ϵ(t).

4. The CTP effective action

In situations where the main interest is to analyze the dynamical evolution of the system (see
various examples in Ref. [19]), it is relevant to compute the CTP or in–in effective action, defined as [20]

eiΓCTP[ω+,ω−]
=

∑
n

⟨0in|n⟩ω+
⟨n|0in⟩ω−

. (57)

Note that the matrix elements are evaluated on two different evolutions ω±(t) of the time dependent
frequency. In a cosmological context, the frequencies are in turn functions of the scale factor of the
universe a±. The variation of the effective action with respect to a+, evaluated on a+ = a− = a,
gives the semiclassical Einstein equation that takes into account the backreaction of the quantum field
on the scale factor a. One can show that ΓCTP can be written in terms of the Bogoliubov coefficients
(α±, β±) associated to both evolutions as follows [5]

ΓCTP[ω+, ω−] =
i
2
log[α−α∗

+
− β−β∗

+
] (58)

The contribution of the CTP effective action to the equation of motion of the external degree of
freedom is

δΓCTP

δη(t)
|η+=η−

=
i
2
(α

δα∗

δη(t)
− β

δβ∗

δη(t)
) . (59)

By its very definition, the CTP effective action produces real and causal equations of motion. It is
instructive to recall that, as easily seen from the equation above, reality comes from the identity

|α|
2
− |β|

2
= 1 . (60)

This is in turn equivalent to the unitarity of the evolution operator U . Causality, on the other hand, is
a consequence of the usual composition law of the evolution operator

U(tf , ti) = U(tf , t)U(t, ti) . (61)

We will prove this below, for an alternative derivation see [5].
It is in general not possible to evaluate the CTP effective action and its contribution to the

equations ofmotion for arbitraryω±. Previous calculations are based on perturbative approximations,
or evaluate the effective action in particular backgrounds. Under parametric resonance, one can work
within themultiple scale analysis, although to use this approach it is necessary to assume a particular
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form for the external frequency. As we will see, when handled with care, the Magnus approximation
becomes a useful tool to provide an analytic expression for the effective action and the associated
equation of motion.

Let us see how the Magnus expansion above leads to the Bogoliubov transformation that connects
the in and out basis, for the same physical system. Indeed, introducing the Bogoliubov transformation
connecting the in and out basis,(

âout
â†
out

)
= U

(
âin
â†
in

)
(62)

with

U =

(
α β∗

β α∗

)
, (63)

since the quantum evolution for the â and â† is identical to the one of their classical counterparts, we
see, from the first-order Magnus calculation, that:

α = cosh[|η̃(2ω0)|] , β = i eiφ sinh[|η̃(2ω0)|] . (64)

with φ = arg[η̃(2ω0)]. We see that the coefficients satisfy the proper relation Eq. (60) to be a
Bogoliubov transformation. Besides, using Eq. (29) we see that the relation between the in–out
effective action and the Bogoliubov coefficient α is also satisfied:

e−2ImΓ
= |⟨0out|0in⟩|

2
=

1
|α|

. (65)

In order to compute the CTP effective action, the Bogoliubov coefficients should be computed for
two different evolutions ω±(t). Relaxing the condition of vanishing temporal average of η±(t) we
obtain

α± = cosh η̃± − iη̃±(0)
sinh η̃±

η̃±

β± = iη̃±(2ω0)
sinh η̃±

η̃±

, (66)

where we introduced the notation

η̃± =

√
|η̃±(2ω0)|2 − |η̃±(0)|2 . (67)

Note that in previous sections we assumed η̃±(0) = 0. Inserting Eq. (67) into Eq. (58) one easily finds
an analytic expression for the CTP effective action. Interestingly enough, ΓCTP depends functionally on
η± through the Fourier transforms η̃±(2ω0) and η̃±(0). From Eq. (58) it is direct to write the real and
imaginary parts of ΓCTP, which are related with dissipation and noise (fluctuations), respectively. In
the present example we have

ReΓCTP = −
1
2

η̃+(0)η̃− cosh η̃− sinh η̃+ − η̃−(0)η̃+ cosh η̃+ sinh η̃−

η̃+η̃− cosh η̃− cosh η̃+ − sinh η̃+ sinh η̃− (η̃−(2ω0)η̃+(2ω0) − η̃−(0)η̃+(0))
, (68)

ImΓCTP =
1
2

{
[η̃+η̃− cosh η̃− cosh η̃+ − sinh η̃+ sinh η̃− (η̃−(2ω0)η̃+(2ω0) − η̃−(0)η̃+(0))]2

+ [η̃+(0)η̃− cosh η̃− sinh η̃+ − η̃−(0)η̃+ cosh η̃+ sinh η̃−]2
} 1

2 1
η̃+η̃−

. (69)

The field equations can also be obtained fromΓCTP. However, the result is real but non-causal. These
facts are a consequence of the properties of the Magnus approximation: while it respects unitarity of
the evolution operator, it does not satisfy the composition law Eq. (61).

The problem of the non causality of the equation of motion can be solved by applying the Magnus
approximation after taking the variation of the action with respect to η±. Let us write

U(T/2, −T/2) = U(T/2, t ′)U(t ′, −T/2) ≡ U2U1 , (70)
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with −T/2 < t < t ′ < T/2 and t is the time at which we want to evaluate the equation of motion.
The equation of motion can be written as

δΓCTP

δη(t)
|η+=η−

= −U−1
1

δU1

δη(t)
|11 . (71)

Taking the limit t ′ → t , we see that the equation of motion depends only the values of η(τ ) with
τ ≤ t . This proves that the validity of the composition law implies causality. Moreover, we can now
use the Magnus approximation to evaluate U1, and in this way we assure causality.

The effective action ΓCTP depends, in the Magnus approximation, on the Fourier transform of η(t).
When the Magnus approximation is applied to the equation of motion, it depends on the ‘‘retarded’’
Fourier transform

η̃ret(ω) =

∫ t

−∞

dτ η(τ )e−iωτ , (72)

evaluated at ω = 2ω0 and ω = 0. Explicitly, we have that the equation of motion can be written as
δΓCTP

δη(t)
|η+=η−

= −
1
2
sinh η̃ret cosh η̃ret

η̃ret
−

1
2
sinh η̃ret

η̃ret
Im

[
η̃ret(2ω0)e−2iω0t

]
(73)

−
1
2

η̃ret(0)
η̃2
ret

(
1 −

sinh η̃ret cosh η̃ret

η̃ret

) (
Re

[
η̃ret(2ω0)e−2iω0t

]
− η̃ret(0)

)
,

with η̃ret =

√
|η̃ret(2ω0)|2 − |η̃ret(0)|2. Taking into account that η̃ret is either a real or a pure imaginary

number, the reality and causality of the equation of motion is evident.

5. Conclusions

We have calculated the in–out effective action for a single harmonic oscillator with a time-
dependent frequency, applying the Magnus expansion to the solution of the homogeneous second-
order equation which yields the result for the fluctuation determinant. We evaluated explicitly the
first and second order terms in that expansion, and presented the structure of the third order one.
By studying the imaginary part of the corresponding terms in the effective action, we have shown
that it automatically captures non-trivial features, like the position of the (parametric) resonances,
which is a crucial aspect, for example, to study particle creation in dynamical systems (for example,
in nonstationary cavity quantum electrodynamics, such as those cases related with the dynamical
Casimir effect). The same calculation allowed us to compute the unitary matrix that implements
the Bogoliubov transformation between the in and out basis. Up to each order in the expansion, the
transformation is unitary.

We have compared the results of the Magnus approach to the in–out effective action with the
ones one would obtain by applying standard, field-theoretic perturbation theory in Euclidean time,
showing that they agree to the lowest order. The Magnus expansion, however, provides a non-trivial
resummation of the perturbative results, which preserves the unitary evolution. For example, to the
lowest order, that expansion amounts to including the evolution dictated by a squeeze operator, with
a parameter determined by the Fourier transform on the frequency at its first resonance.

We have also considered the CTP effective action, implementing the Magnus approximation at the
level of the equations of motion. This effective action, which is written in terms of the Bogoliubov
coefficients, is relevant in order to study dynamical evolutions as non-equilibrium problems, open
quantum systems, etc. We have shown the Magnus approximation becomes a useful tool to provide
an analytic expression for the effective action and the associated equation of motion. To lowest order
in the Magnus expansion, the equation of motion involves the ‘‘retarded’’ Fourier transform of the
perturbation, evaluated at twice the natural frequency of the oscillator. This is a simple way to take
into account the back reaction of the parametric resonance on the external pumping.
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