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AWiener system is a system which can be modelled as a linear dynamic followed by a static gain. The goal of this paper is
to develop a robust H1 compensator for controlling an SISO Wiener system. The controller also takes the form of a
Wiener model. The design approach consists of the approximation of the non-linear gain using a piecewise linear (PWL)
function and in using a linear controller for each sector obtained from this approximation. Therefore, the general
controller structure can be stated as a linear dynamic compensator in series with a PWL static gain.
As an illustrative case, a neutralization pH reaction between a strong acid and a strong base in the presence of a buffer

agent is dealt with. Computer simulations are developed for showing the performance of the proposed controller.

1. Introduction

In the past few decades, a considerable amount of

research has been carried out on modelling, identifica-

tion and control of non-linear systems. Most dynamical

systems can be better represented by non-linear models

than linear ones. This is because the former models

are able to describe the behaviour of the system over a

wider operating range, while the latter ones are only able

to approximate the system around a given operating

point. One of the most frequently studied classes of

non-linear models are the so-called ‘block-oriented

non-linear models’ (Pearson and Pottmann 2000).

These models consist of the interconnection of linear

time invariant (LTI) systems and static (memoryless)

non-linearities. Within this class, two of the most

common model structures are:

. The ‘Hammerstein’ model, which consists of the

cascade connection of a static (memoryless)

non-linearity followed by an LTI system (see,

e.g. Eskinat et al. (1991) for a review on identifica-

tion of Hammerstein models).

. The ‘Wiener’ model, in which the order of the linear

and the non-linear blocks is reversed (see, e.g.

Greblicki (1994) and Wigren (1993) for different

methods for the identification of Wiener models).

These model structures have been successfully used

to represent non-linear systems in a number of practical

applications in the areas of chemical processes (Eskinat

et al. 1991, Kalafatis et al. 1995, Pearson and Pottmann

2000), biological processes (Koremberg 1973), signal

processing, communications and control (Zhu and

Seborg 1994, Fruzzetti et al. 1997, Norquay et al.
1998, Gerkšič et al. 2000, Lussón Cervantes et al.
2003 a). An analysis of the approximation properties
of these models can be found in Boyd and Chua (1985).

In the context of process control, most of the
applications of the structured models are in the area of
model predictive control. Harris and Palazoglu (2001)
present a controller based on robust control theory,
which can deal with more general block-oriented models
known as functional expansion models.

In this paper, we propose a particular formulation
of the Wiener model where the non-linear static gain
is represented by a piecewise linear (PWL) function.
The PWL function is chosen as a convenient represen-
tation for approximating the non-linear function. It
replaces the global non-linear function by a set of
linear sub-functions which are defined in properly
partitioned sub-regions of the original non-linear func-
tion domain. Then, it is possible to design a particular
H1 controller for each domain partition. The totality
of the resulting controllers can be written as a single
expression in the form of a Wiener controller, with
interesting stability and robustness properties.

The work is organized as follows. In } 2, a descrip-
tion of the Wiener model used in this paper is presented.
The controller design is discussed in } 3, and its stability
and robustness properties are analysed in } 4. In } 5, the
evaluation of the controller performance is presented via
simulation. Finally, in } 6, the conclusions are presented.

2. Wiener model

A Wiener model consists of a linear dynamics block
(H1) in cascade with a static non-linearity (H2) at the
output, as shown in figure 1, where v 2 <

1 is an inter-
mediate signal which does not necessarily have a
physical meaning.

The following SISO state-space description is used to
represent the linear block (H1) as
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_xx ¼ Axþ Bðu� ussÞ ð1Þ

v ¼ CxþDðu� ussÞ þ vss ð2Þ

where the matrices and vectors stand for the typical
variables of state-space models. The constants uss and
vss are the steady state values of the variables u and v,
respectively.

For the static non-linear element H2, the use of
continuous piecewise linear (PWL) functions is pro-
posed (Chua and Ying 1983, Julián et al. 1999). PWL
functions have been proved to be a very powerful tool
for modelling and analysing non-linear systems. It can
be demonstrated (Julián 1999) that any continuous
non-linear function h, h: <m

�!<
m can uniquely be

approximated by EL�ðvÞ ¼ hðvÞ. In our application, h,
h: <1

�!<
1, then we can use any description for the

PWL. In particular, we choose a non-simplicial partition
of the domain. In this way a more general description
for the PWL functions is selected. Let us consider the
domain (<) divided into � þ 1 segments by parameters
�j, with �1 � �2 � � � � � �� . The location of the seg-
ments is chosen in order to attain a good approximation
of the non-linear function. With these assumptions
in mind, the PWL function is defined as

hðvðtÞÞ ¼ EL�ðvÞ ð3Þ

where E 2 <
�þ1 is the vector of parameters that des-

cribes the non-linear function. A standard identification
algorithm and the Toolbox (Julián 2000) based on the
least-squares method can be respectively used to obtain
vector E (Lussón Cervantes et al. 2003 a). L�ðvÞ depends

only on the variable v and the domain segmentation
described by the parameters �j as

L�ðvÞ ¼

1

1
2
ðv� �1 þ jv� �1jÞ

1
2
ðv� �2 þ jv� �2jÞ

..

.

1
2
ðv� �� þ jv� ��jÞ

2
6666666664

3
7777777775
: ð4Þ

Figure 2 represents a typical PWL approximation in <
1.

Note that in each sector in which the domain is divided,
the model is affine in the variable v. Let us define the
sector @ðiÞ

¼ fv: �i � v � �iþ1g, then the affine expression
of h in this sector is defined as hðiÞ ¼ J ðiÞvþ wðiÞ for
v 2 @

ðiÞ, where

J ðiÞ
¼

Xi

j¼1

Eð j þ 1Þ ð5Þ

and

wðiÞ
¼ Eð1Þ �

Xi

j¼1

�jEð j þ 1Þ: ð6Þ

In the next section, this model will be used to design
an H1 controller.

3. Controller design

In this section, an H1 compensator will be designed
to control any system that matches the modelling
description defined in the previous section. The necess-
ary tools on H1 control can be read in Zhou et al.
(1995) and Rossi and Figueroa (1997).

Consider the LTI system described by the block
diagram of figure 3, where G is the generalized plant

Figure 2. PWL model for static gain.

Figure 1. Scheme of a Wiener model structure.
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and K is the controller. G(s) is defined as

GðsÞ ¼

A B1 B2

C1 D11 D12

C2 D21 D22

2
64

3
75:

The generalized plant G contains what it is usually called
the model in a control problem plus all weighting func-
tions. The signal w contains all external inputs, including
disturbances, sensor noise and commands, the output z
is an error signal, e is the controller input, and u is the
control input. The diagram in figure 3 is referred to
as linear fractional transformation (LFT) on K, and G
is called the coefficient matrix for the LFT.

The objective is to obtain a controller to track a
set-point change over a wide operation region. Let us
consider the closed-loop scheme depicted in figure 4,
where the manipulated variable is u, the measured
variable is y and the control objective is to minimize
z ¼ eo u½ �

T under any input reference change w ¼ ysp
(see figure 3).

Our intention is to design an H1 compensator for
the Wiener system of figure 1. However, it is already
known (Zhou et al. 1995) that the order of these
controllers is at least of the same order as the plant
model. To reduce the controller complexity we propose
to design a Wiener-type controller. Then, the H1

compensator will be based on the linear model of the
system H1, and additionally its gain will be modified in
concordance with the non-linear gain of the process H2.
Let us call

PðsÞ ¼
A B

C D

� �

the process model, and

WoðsÞ ¼
Ao Bo

Co Do

� �

the weighing matrix used to include the control
specification. Note that the information given by both
P(s) and Wo(s) is used to transform the representation in
figure 4 to the one in figure 3. Then, the linear fractional

transformation of the system would be represented as

GðsÞ ¼

Aol B1ol B2ol

C1ol D11ol D12ol

C2ol D21ol D22ol

2
64

3
75

where

Aol ¼
A 0

�BoC Ao

� �
, B1ol ¼

0

Bo

� �
, B2ol ¼

B

�BoD

� �

C1ol ¼
�DoC Co

0 0

� �
, D11ol ¼

�Do

0

� �

D12ol ¼
�DoD

1

� �
, C2ol ¼ �C Co

� �
, D21ol ¼ 1

� �
D22ol ¼ �D

� �
:

Taking into account the previous expressions, it is
now possible to compute an H1 controller. Let the
controller be

KðsÞ ¼
AK BK

CK DK

� �
:

Now if we consider the complete non-linear Wiener
model shown in figure 1, it is clear that in each sector @ðiÞ

the gain J ðiÞ of the plant model will change. Then, if we
add in series with the controller K(s) a gain J

ðiÞ
K which

varies from sector to sector, it is possible to retain the
linear closed-loop performance along the complete
operative region. Therefore, the value of the controller
gains for sector @ðiÞ should be J

ðiÞ
K ¼ 1=J ðiÞ.

In light of this, it is an appealing idea to conjugate all
these gains in a unique PWL function. To perform it, we
should consider that the plant domain (and for exten-
sion the partition), is not the same as the controller
domain. To analyse the relation between them, let us
consider the steady state version of figure 1. We know
that the partition of the plant domain is completely
defined by the parameters �i. Then, the plant input
must be

u ¼ �i ¼
4 ð�i � vssÞ

CA�1BþD
� uss

to obtain the output �i from the block H1. Therefore, to
compute the �i will require accurate system matrices

Figure 3. Linear fractional transformation.

Figure 4. Closed-loop system for design.
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ðA,B,C,DÞ and A must have an inverse. Now, if we
consider a block-type structure for the controller as
the one shown in figure 5, it is possible to define the
relations (see figure 6)

�i ¼ �i�1 þ J
ðiÞ
K ð�K

i � �K
i�1Þ i ¼ 2, . . . , �: ð7Þ

In addition, from the steady state situation it becomes
clear that for e¼ 0 the controller’s output should be
u� uss ¼ 0. From these equalities, if we assume that
�j � 0 � �jþ1, it is clear that

�jþ1 ¼ J
ð jÞ
K �K

j ð8Þ

and

�j ¼ J
ð jÞ
K �K

j : ð9Þ

Then, using expressions (7)–(9) it is possible to compute
the values for the parameters �K

i that in conjunction
with the gains in each sector define a PWL representa-
tion for the controller gain. This can be expressed as

hK ðveðtÞÞ ¼ EKL�K ðveÞ ð10Þ

where ve(t) is the output of the linear controller. It is
important to remark that the controller partition is
not simplicial, i.e. the segment length is not the same,
even if the plant partition is simplicial. In the next

section, some considerations related to stability and
robustness of this approach will be discussed.

4. Stability and robustness considerations

In this section, some aspects regarding stability and
robustness of the controller introduced in the previous
section are treated.

4.1. Nominal stability

Let us consider the closed-loop system of figure 7.
Note the explicit mention of the partition in the PWL
blocks. Now, let us assume that the process behaviour
is described exactly by the plant model. If we consider
the linearization of the plant/controller system around
all the possible operation points, then the closed-loop
linear system can be posed as

_xxcl ¼ A
ði, jÞ
cl xcl þ B

ði, jÞ
cl ysp

y ¼ C
ði, jÞ
cl xcl þD

ði, jÞ
cl ysp

where

xcl ¼
x

xK

" #

A
ði, jÞ
cl ¼

A�BJ
ð jÞ
K DKGCJ

ðiÞ J
ð jÞ
K BGCK

�BKGCJ
ðiÞ AK � BKGJ

ð jÞ
K DJ ðiÞCK

" #

B
ði, jÞ
cl ¼

J
ð jÞ
K BDKG

BKG

" #
, C

ði, jÞ
cl ¼ GCJ ðiÞ GJ ð jÞ

K DJ ðiÞCK

h i

D
ði, jÞ
cl ¼ GJð jÞ

K DJ ðiÞDK

h i
and G ¼ ðI þ J

ð jÞ
K DJ ðiÞDK Þ

�1:

Note that the system’s equations explicitly depend
on the controller sector ð jÞ and the plant sector ðiÞ.

Figure 6. PWL model for controller gain.

Figure 5. Wiener model for controller.
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The following considerations can be mentioned:

4.1.1. Nominal stability for exact switching. If we
consider that the switching between the partitions of
the controller and the plant model is perfectly synchro-
nized, then in the matrix A

ði, jÞ
cl of the closed-loop system

we should consider that J
ðiÞ
K ¼ 1=JðiÞ, and when the

controller is in the region i, the plant will also be in
the sector i. Under these considerations, it is clear that

A
ði, iÞ
cl ¼

A� BDKGC ðBGCK Þ=J
ðiÞ

ð�BKGCÞJðiÞ AK � BKGDCK

" #

whose eigenvalues are independent of J ðiÞ. Then, as the
controller stabilizes the plant for JðiÞ

¼ 1 (this happens by
definition), the closed loop will be stable for any region.
However, this assumption of exact switching implies
that the transition is perfect from the dynamics point
of view, but this is only true for steady state. The follow-
ing statement represents a sufficient condition for nom-
inal stability for smooth changes in the set-point (i.e. the
set-point variation constitutes a continuous function).

4.1.2. Nominal stability. If we consider a smooth set-
point change, then the closed-loop system will be stable
if the eigenvalues of the matrices A

ði, jÞ
cl have negative

real parts for all i ¼ j þ 1 and i ¼ j � 1. This implies
that we require the controller to stabilize the plant in
the regions next to the one used for the design. In the
case that it is not possible to ensure a smooth switch
between sectors, we can use the results on robustness
presented in the next sub-section to ensure stability. In
this case, the uncertainty model should include the gains
of the adjacent regions.

4.2. Robustness

In order to analyse the robustness of the proposed
control scheme, let us consider the block diagram shown
in figure 8, where it was assumed that the system is
linearized around some operation point. Note that we

consider uncertainties in the block of linear dynamics
and in the static gain, independently. This is a general
description of the uncertainties for Wiener models. The
M �� structure of this scheme is shown in figure 9,
where

� ¼
�1 0

0 �2

� �

and

M ¼
�ðI þ KhPÞ�1Kh �ðI þ KhPÞ�1K

ðI � PKhÞ�1
�ðI þ PKhÞ�1PK

" #
:

Note that M depends on the non-linear block. In this
case we should compute a different M for each sector,
considering the respective gain JðiÞ. The same considera-
tion holds for the controller block. In order to charac-
terize the uncertainty associated to the non-linear block,
we propose to bound it by using the upper and lower
gain bounds. To accomplish this, it is possible to use
the bounds for PWL developed by Lussón Cervantes
et al. (2003 b). Further details on this method can be
found in the example section. Now, at this operation
point, the structured singular value (Doyle 1982) can
be used to analyse robustness.

Theorem 1: The linear closed-loop system of figure 9 is
robustly stable if and only if

��ðMÞ < 1 8!:

Now, if this condition is satisfied for all operation
points, the non-linear closed-loop system will be

Figure 8. Block diagram for robustness analysis.

Figure 7. Closed-loop system for analysis.

Figure 9. M �� structure.
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robustly stable. Then, it is possible to draw the � index
as a function depending on the frequency and the opera-
tion point to determine the robustness properties of the
closed-loop system. Note that whenever the whole
uncertainty can be incorporated into the static gain
(i.e. �1 ¼ 0), it is possible to replace ��ðMÞ by jMj. It
is also possible to include some of these robustness
measures in the design step to ensure that a ‘robust’
controller is achieved (Zhou et al. 1995).

5. Example: pH neutralization

In order to illustrate the design procedure and to
evaluate the controller performance, simulation results
were obtained. A chemical process with marked non-
linearity was selected. The example consists of the
neutralization reaction between a strong acid (HA)
and a strong base (BOH) in the presence of a buffer
agent (BX) as described by Galán (2000). The neutrali-
zation takes place in a continuous stirred tank reactor
(CSTR) with a constant volume V.

It is a well-known fact that pH processes control
is particularly difficult to deal with. The main reason
is that those processes are highly nonlinear. The slope
of a chemical system’s titration curve can vary several
orders of magnitude over a modest range of pH values,
causing the overall process gain to vary accordingly. The
regions of high and low slope on the titration curve
correspond to conditions of high and low gain for a
pH control loop, respectively.

In figure 10, a scheme of the continuous pH neutra-
lization process is presented. An acidic solution with
a time-varying volumetric flow qAðtÞ of a composition
x1iðtÞ is neutralized using an alkaline solution with volu-
metric flow qBðtÞ of known composition made up of base
x2i and buffer agent x3i. Due to the high reaction rates
of the acid-base neutralization, chemical equilibrium
conditions are instantaneously achieved. Moreover,
under the assumptions that the acid, the base and the
buffer are strong enough, then the total dissociation of
the three compounds takes place.

The process dynamics model can be obtained by
considering the electroneutrality condition (which is
always preserved) and through mass balances of equiva-
lent chemical species (known as chemical invariants)
that were introduced by Gustafsson and Waller (1983).
For this specific case, under the previous assumptions,
the dynamic behaviour of the process can be described
considering the state variables

x1 ¼ ½A�
� ð11Þ

x2 ¼ ½Bþ
� ð12Þ

x3 ¼ ½X�
�: ð13Þ

Therefore, the mathematical model of the process can be
written in the following way (Galán 2000)

_xx1 ¼ 1=� ðx1i � x1Þ � 1=V x1qB ð14Þ

_xx2 ¼ �1=� x2 þ 1=V ðx2i � x2ÞqB ð15Þ

_xx3 ¼ �1=� x3 þ 1=V ðx3i � x3ÞqB ð16Þ

Fðx, �Þ � � þ x2 þ x3 � x1

� Kw=� � x3=½1þ ðKx �=KwÞ� ¼ 0 ð17Þ

where � ¼ 10�pH and � ¼ V=qA. Kw and Kx are the
dissociation constants of the buffer and the water,
respectively. The parameters of the system represented
by (14)–(17) are addressed in table 1. Equation (17) was
deduced by McAvoy et al. (1972), and it takes the
standard form of the widely used implicit expression
that connects pH with the states of the process. Note
that (17) can be rewritten as a third-order polynomial

hðx, �Þ � �3 þ Kw=Kx þ x3 þ x2 � x1½ ��2

þ

�
x2 � x1 � Kx

�
Kw=Kx � � ðK2

wÞ=ðKxÞ

¼ 0: ð18Þ

5.1. Wiener model

To obtain a linear description of the process, a
linearization around the operation point x ¼ xs, u ¼ us
(corresponding to pH¼ 7 ) was performed. The manipu-
lated variable is u ¼ qB and the output variable y is the

Parameter Value

x2i 0.0020mol NaOH/l

x3i 0.0025mol NaHCO3/l

Kx 10�7mol/l

Kw 10�14mol2/l2

V 2.5 l

Table 1. Non-linear model parameters.Figure 10. pH neutralization process scheme.
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pH measured. The resulting linear model is

A ¼

�ð1=� þ us=VÞ 0 0

0 �ð1=� þ us=VÞ 0

0 0 �ð1=� þ us=VÞ

2
4

3
5

B ¼

�x1, s=V

1=V ðx2, i � x2, sÞ

1=V ðx3, i � x3, sÞ

2
4

3
5

C ¼ �1 �2 �3�
�

where

�k ¼
4
@�=@xk ¼

@h=@xk
� lnð10Þð@h=@�Þ

@h

@�
¼ 3�2 þ 2 Kw=Kx þ x3 þ x2 � x1½ ��

þ

�
x2 � x1 � Kx

�
Kw=Kx

@h

@x1
¼ �Kx�

2
� Kw�

@h

@x2
¼ Kx�

2
þ Kw�

@h

@x3
¼ Kx�

2:

To determine the values for the static non-linear gain,
a particular partition of the domain was performed.
The necessary information to accomplish the partition

was taken from the process titration curve. The bounds
of each region are defined using the vector

� ¼

4:8000

6:3000

6:6000

8:2000

8:4000

2
6666664

3
7777775

and the set of parameters is

E¼ 2:6843 0:7845 8:1539 �7:7951 6:2660 �6:9771�:
�

Figure 11 shows the plot of the real output function and
the PWL approximation for this partition. In the next
sub-section a PWL-H1 controller will be designed for
the pH neutralization plant. This controller should be
able to achieve the control specifications along the whole
operative region.

5.2. Controller design

In this section, the controller formulation defined in
} 3 will be applied to the compensator design for the
neutralization reactor. Based on the linear block part
of the process model, a linear H1 controller is designed,
using the weighing matrix Wo to reduce the steady state
error for step set-point changes.

Wo ¼
10�5sþ 1

sþ 10�3
:

Figure 11. Non-linear gain and PWL approximation.
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The resulting four states controller is

K ¼
AK BK

CK DK

" #

¼

�24:7648 24:1648 12:0824 �0:0176 0

40:0916 �40:6916 �20:0458 0:0293 0

49:9772 �49:9772 �25:5886 0:0365 0

0 0 0 �0:0010 39:9349

859:5248 �859:5248 �429:7624 0:6275 0

2
666666664

3
777777775

which allows the value kTzwk1 ¼ 0:3987 for the objec-
tive function.

For the non-linear gain of the controller, the limits
of the region are given by the vector

�K
¼

�0:7786

�0:5686

�0:0823

0:2470

0:5161

2
666666664

3
777777775

and the set of parameters is

EK¼ �0:3979 1:2921 �1:1805 0:7672 �0:7443 2:1627
� �

:

5.3. Simulation results

In this section the controller performance will be
analysed by simulation. The output is asked to follow

a given set-point along the whole operative region.
To satisfy the continuity constraint for the set-point
variation, a polynomial approximation was used to fit
the step-like changes.

In the first stage, the PWL plant is controlled using
two H1 controllers, corresponding to sectors 1 and 2.
The results are presented in figures 12 and 13 for the
pH and the manipulated variable respectively. From
these plots, it is clear that no admissible performance
is obtained for a unique controller in the complete
operative region. Note that the controller for sector 2
responds with a desirable speed, but it requires an
excessive control action. Moreover, in a portion of the
plot, the manipulated variable u reaches saturation
at zero. On the other hand, the controller of sector 1
is too slow.

Figures 14 and 15 show the simulation results for the
PWL controller when it is applied to the PWL model of
the plant and to the non-linear real model of the process.
Note that the performance (for example the closed-loop
time constant) is almost constant along all the operating
region. The manipulated variable is smooth enough to
ensure good performance when applied to the real pro-
cess.

5.4. Robustness analysis

Before developing the robustness analysis, the uncer-
tainty is characterized. To perform it, a set of data is
obtained by stationary and dynamic simulations. Let us

Figure 12. pH reference and process output for PWL plant and two linear controllers designed for sector 1 and sector 2.
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Figure 13. Manipulated variable for PWL plant and two linear controllers (for sector 1 and sector 2).

Figure 14. pH reference and process outputs for non-linear plant/PWL controller, and PWL plant/PWL controller.
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Figure 15. Manipulated variable for non-linear and PWL plant and PWL controller.

Figure 16. Uncertainty bounds.
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call vi and yi the input and output of the linear block,

respectively. Using these data, uncertainty bounds are

obtained for the static non-linear gain block. The lower

bound is computed by solving the linear optimization

problem (Lussón Cervantes et al. 2003 b)

min
�j
l
,El

P
�jl

s:t: ElL�ðviÞ þ �jl � fi � EL�ðviÞ, 8vi 2 @
j, �jl � 0:

To compute the upper bound, the problem to be
solved is

min
�ju,Eu

P
�ju

s:t: � EuL�ðviÞ þ �ju � �fi þ EL�ðviÞ,

8vi 2 @
j , �ju � 0:

These uncertainty bounds are enough to include all
the uncertainties in the model. The resulting bound

Figure 17. Data validation of uncertainty bounds using dynamic data.

Figure 18. Robust stability measure.
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parameters are given by the vectors

El ¼ �0:0462 �0:0702 0:0503 0:0312 �1:1837 1:2717�
�

and

Eu ¼ 1:2595 0:0379 �3:7355 3:8937 �2:3124 2:5556
� �

:

Figure 16 shows these bounds as an input–output rela-
tion, while figure 17 shows the validation of these
bounds in a dynamic simulation. From these figures it
is clear that these gains are enough to ensure that the
real process is between them. Using this description
for uncertainty, the robustness analysis is performed.
To do this, jMj is computed for all frequencies and all
operating conditions (given for steady state values of
pH). From it (see figure 18) it is clear that the closed-
loop system is robustly stable.

6. Conclusions

The objective of this work was to present a design
methodology for anH1 controller for non-linear plants.
The first step in the design procedure consists of
modelling the process as a Wiener system, formed by
a linear dynamic block in cascade with a PWL gain.
Then, the resulting controller shares this structure,
where the dynamic part is a classical lineal H1 compen-
sator. Moreover, the controller PWL gain is obtained
through a transformation of the partition and the
gain of the plant. Results for stability and robustness
of the proposed controller are included. Simulations
show that the use of the proposed controller gives
excellent results.
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GALÁN, O., 2000, Robust multi-linear model-based control for
nonlinear plants. Doctoral thesis, University of Sydney,
Australia.
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