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Effective action for QED 4 through z function regularization
C. G. Beneventanoa) and E. M. Santangelob)

Departamento de Fı´sica, Facultad de Ciencias Exactas,
Universidad Nacional de La Plata, C.C. 67 (1900) La Plata, Argentina

~Received 9 February 2001; accepted for publication 30 April 2001!

We obtain, throughz function methods, the one-loop effective action for massive
Dirac fields in the presence of a uniform, but otherwise general, electromagnetic
background. After discussing renormalization, we compare ourz function result
with Schwinger’s proper-time approach. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1383976#

I. INTRODUCTION

In QED, the effective one-loop Lagrangian describes the effective nonlinear interaction of the
electromagnetic fields due to a single fermion loop. In two dimensions, its general form has been
obtained both through proper time andz function regularizations.1,2 In four dimensions, on the
other hand, only particular field configurations have been studied.

The 311 dimensional problem of constant electromagnetic fields was first studied by Euler
and Heisenberg3 and independently by Weisskopf.4 These authors obtained an integral expression
for the one-loop effective Lagrangian in the framework of the electron-hole theory. Later on,
Schwinger rederived this integral representation in a field-theoretical scenario, by making use of
proper time techniques.5 In all these references, explicit results were derived in some limits, the
most famous being the weak-field one. This and other particular field configurations were subse-
quently studied through the proper-time regularization by a number of authors~see, for example,
Refs. 6–10!.

More recently, the interest in the subject was renewed, and the Euclidean effective action for
constant electromagnetic background configurations was studied throughz function
techniques:11,12 In Ref. 13 analytic expressions were found for the case of purely magnetic fields
in any number of dimensions. In this same reference, the case of equal electric and magnetic fields
in four Euclidean dimensions was also studied. A step towards more general field configurations
was given in Ref. 14, where the authors obtained the effective Lagrangian as a power series in
B/E.

It is the aim of this article to obtain, throughz function methods, an explicit nonperturbative
expression for the full one-loop effective action of quantum electrodynamics in four dimensions in
the case of constant, but otherwise arbitrary, electromagnetic fields. To this end, we will work in
Euclidean space–time, and define the determinant of the relevant Dirac operatorD” through the
derivative of thez function of D” †D” .

The organization of the article is as follows:
After summarizing some well-known generalities in Sec. II, we devote Sec. III to analytically

extending the relevantz function to the regionRs.22. ~The main point here is the analytic
extension of a Barnesz function.! Its value ats50 is also given in this section.

In Sec. IV, a complete analytical expression for the effective action in terms of special func-
tions is given, and the renormalization issue is discussed.

Section V contains a comparison betweenz and proper-time regularizations.
The Appendices A and B contain the derivation of some particular limits for the relevant zeta
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and for the effective action, thus allowing for the comparison with previous work on less general
field configurations.

II. GENERALITIES

We study the effective action for massive Dirac particles in the presence of uniform, but
otherwise arbitrary, electromagnetic background fields. We work in four-dimensional Euclidean
space. Then, the effective action in the one-loop approximation is given by

S@Am#5Scl@Am#2 logDet~D” @Am#!, ~1!

whereScl@Am# is the classical Euclidean action andD” @Am#5gm(]m2 ieAm)1 im is the Euclidean
Dirac operator,m being the fermion mass.

Note that, even thoughD” is not self-adjoint, it is normal; so, the functional determinant
appearing in the one-loop correction to the action can be defined throughz function
regularization,11,12 which leads to

Seff@Am#5Scl@Am#1S(1)@Am#5Scl@Am#1
1

2

]

]s
z~s;D” †D” !cs50 . ~2!

In order to evaluate the one-loop correctionS(1) in the previous expression, it is necessary to
obtain the spectrum of the operatorD” †D” , which is well known in the case of uniform fields.15 In
this particular situation, one can always choose a reference frame such thatF0352F305E and
F1252F215B, while the remaining components of the field tensor vanish. When doing so, the
required zeta function turns out to be

z~s;D” †D” !5m4V
ab

4p2 F2 (
na51

`

~2naa1c!2s12 (
nb51

`

~2nbb1c!2s

14 (
na51

`

(
nb51

`

~2naa12nbb1c!2s1c2sG . ~3!

Here, V is the volume of the four-dimensional Euclidean space,a5euEu/m2, b5euBu/m2, c
5m2/m2, andm is a parameter with mass dimension, introduced to render thez function dimen-
sionless. Note that the series in Eq.~3! are all convergent forRs.2, where they define an analytic
function of s.

III. ANALYTIC EXTENSION OF THE z FUNCTION

In this section, we will perform the analytic extension of the relevantz function to a region
containings50. In particular, we will show it to be finite ats50 and give its value at this point.

The first two terms in Eq.~3! can be rewritten in terms of Hurwitz’ zeta functions, which are
well known to be meromorphic functions with a unique simple pole ats51. On the other hand,
the third term is a zeta function of the Barnes’ type16,17 ~see also Refs. 18 and 19 and references
therein!. In order to analytically extend this term, we write it in integral form. After doing so, we
get

z~s;D” †D” !5m4V
ab

4p2 H 2

~2a!s
zS s,

c

2a
11D1

2

~2b!s
zS s,

c

2b
11D

1
1

G~s!
E

0

`

dt ts21
4e22ate22bte2ct

~12e22at!~12e22bt!
1c2sJ

5 A~s!1B~s!1C~s!1D~s!, ~4!
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wherez(s,v) is Hurwitz’ zeta function. This expression~invariant undera↔b) is, in principle,
well defined forRs.2. Since the analytic structure of A(s) and B(s) is well known, we will
concentrate on the Barnes term C(s), which will be extended toRs.22.

To this end, we will use the expansion20

1

eat2e2at
5

1

2at
1at(

k51

`

~21!k
1

~at!21~kp!2
, ~5!

thus obtaining

C~s!52m4V
ab

4p2

1

G~s! H 1

2aE0

`

dt ts22
e2(a1b1c)t

ebt2e2bt

1aE
0

`

dt ts
e2(a1b1c)t

ebt2e2bt (
k51

`

~21!k
1

~at!21~kp!2 J 1 a↔b

5C1~s!1C2~s!. ~6!

The first term, C1(s), can be easily seen to be

C1~s!52m4V
ab

4p2

1

2a

1

~s21!~2b!s21
zS s21,

a12b1c

2b D 1 a↔b. ~7!

As all the terms we have analytically extended up to this point, C2(s) in Eq. ~6! involves an
integral which diverges ats50. In order to isolate this singularity, we will rewrite this term as

C2~s!52m4V
ab

4p2

1

G~s!
aE

0

`

dt ts
e2(a1b1c)t

~ebt2e2bt!
H (

k51

`

~21!kF 1

~at!21~kp!2
2

1

~kp!2G
1 (

k51

`

~21!k
1

~kp!2 J 1 a↔b

5CF2~s!1CD2~s!. ~8!

The integral appearing in CD2(s) is divergent ats50 but, after performing the sum, this term is
easily seen to be

CD2~s!52m4V
ab

4p2

a

6

s

~2b!s11
zS s11,11

a1c

2b D 1 a↔b. ~9!

Now, once the difference between brackets is performed, CF2(s) can be rewritten as

CF2~s!522m4V
ab

4p2

1

G~s!
a3(

k51

`
~21!k

~kp!2E0

`

dt ts12
e2(a12b1c)t

~12e22bt!

1

~at!21~kp!2
1 a↔b.

~10!

As is easily seen, this integral converges forRs.22. We have thus obtained an analytic exten-
sion for thez of the operator as a meromorphic function with only simple poles. Such extension
is valid for Rs.22.

Now, the factor 1/@(at)21(kp)2# can be written as an integral. In fact,
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1

~at!21~kp!2
5

21

2ikp F 1

at1 ikp
2

1

at2 ikpG5
1

kpE0

`

du e2atusin~kpu!.

When replaced in Eq.~10!, this gives

CF2~s!522m4V
ab

4p2

1

G~s!
a3(

k51

`
~21!k

~kp!3E0

`

dt ts12
e2(a12b1c)t

~12e22bt!
E

0

`

du e2atusin~kpu!1 a↔b

or, after interchanging the integrals

CF2~s!522m4V
ab

4p2

a3

G~s! (
k51

`
~21!k

~kp!3E0

`

du sin~kpu!
G~s13!

~2b!s13
zS s13,

a12b1c1au

2b D
1 a↔b.

When thez function is written in terms of its series development~which is valid forRs.
22) one has~after interchanging this series and the integral!

CF2~s!522m4V
ab

4p2

a3

G~s!

G~s13!

~2b!s13 (
k51

`
~21!k

~kp!3 (
l 51

` E
0

`

du sin~kpu!S l 1
a1c1au

2b D 2(s13)

1 a↔b.

Finally, after performing the remaining integral and making use of the functional relations
between incomplete gamma functions,21 one gets

CF2~s!5 im4V
ab

4p2

G~s13!

G~s!
a2s

1

s12 (
k51

`
~21!k

~kp!12s (
l 51

` F i s12ei ~kp/a!(2bl1a1c)GS 2s

21,i
kp

a
~2bl1a1c! D2~2 i !s12e2 i ~kp/a!(2bl1a1c)GS 2s21,2 i

kp

a
~2bl1a1c! D G

1 a↔b. ~11!

The replacement of Eqs.~7!, ~9! and ~11! into Eq. ~4! completes the analytic extension of the
relevantz function. Its value ats50 can be easily computed, which gives

z~0;D” †D” !5
m4V

4p2 H 1

2
c21

a21b2

3 J . ~12!

The agreement with the known results for null and equal fields is shown in Appendix A.

IV. THE EFFECTIVE ACTION AND ITS RENORMALIZATION

This section contains the main result in this article, i.e., the one-loop correction to the Euclid-
ean effective action. According to Eq.~2!, to obtain such result, one must perform the derivatives
at s50 of the various terms in Eq.~4!.

We start from A(s), which contributes with

1

2

]

]s
A~s!c

s50

5m4V
ab

4p2 H log~2a!S 1

2
1

c

2aD1 logGS c

2a
11D2

1

2
log~2p!J . ~13!

In a completely analogous way, one has
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1

2

]

]s
B(s) c

s50

5m4V
ab

4p2 H log~2b!S 1

2
1

c

2bD1 logGS c

2b
11D2

1

2
log~2p!J . ~14!

It is also through a direct calculation that one gets

1

2

]

]s
C1~s!c

s50

5m4V
ab

4p2

1

2a H 2b~211 log~2b!!zS 21,11
a1c

2b D
22b

]

]sc
s50

zS s21,11
a1c

2b D J 1 a↔b. ~15!

1

2

]

]s
CD2~s!c

s50

5m4V
ab

4p2

a

24b H log~2b!1CS 11
a1c

2b D J 1 a↔b. ~16!

As regards CF2(s), due to the presence ofG(s) in the denominator, the required derivative
reduces to the productG(s) CF2(s) at s50, i.e.,

1

2

]

]s
CF2~s!c

s50

52
i

2
m4V

ab

4p2 (
k51

`
~21!k

kp (
l 51

` Fei ~kp/a!(2bl1a1c)GS 21,
ikp

a
~2bl1a1c! D

2e2 i ~kp/a!(2bl1a1c)GS 21,2
ikp

a
~2bl1a1c! D G1 a↔b. ~17!

Summarizing, the Euclidean effective action is given by the sum of the partial contributions in
Eqs.~13!–~17!, plus

1

2

]

]s
D~s!c

s50

52m4V
ab

8p2
log~c!. ~18!

Notice that even though the result is finite, it depends on the arbitrary parameterm. However, this
effective action still admits a finite renormalization. We will perform it by adopting the criterium
~used, for instance, in Ref. 22!, that a very massive field does not fluctuate. Thus, we will subtract
the one loop correction to the effective action in the limitm→`. From Eq.~B6! in Appendix B,
the effective action in this limit can be seen to be

m4V
1

4p2 H F3

8
2

1

4
log~c!Gc22

1

6
~b21a2!log~c!J . ~19!

After doing this subtraction, all dependence on the parameterm disappears, and the Euclidean
effective action is given by

Seff
Ren@Am#5

Vm4

2e2
~a21b2! 1m4V

ab

4p2 H 1

8
logS 4ab

c2 D 2
1

24

~a21b2!

ab
logS 4ab

c2 D 1
c

4a
logS a

bD
2

c2

16ab
logS 4ab

c2 D 1 logS G~c/2a11!

A2p
D 2

b

a
zS 21,11

a1c

2b D2
b

a

]

]s c
s50

zS s21,1

1
a1c

2b D2
i

2 (
k51

`
~21!k

kp (
l 51

` Fei ~kp/a!(2bl1a1c)GS 21,
ikp

a
~2bl1a1c! D
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2e2 i ~kp/a!(2bl1a1c)GS 21,
2 ikp

a
~2bl1a1c! D G

1
a

24b
CS 11

a1c

2b D2
3

16

c2

ab
1 a↔bJ . ~20!

The renormalization performed amounts to subtracting the zero field effective action~thus
redefining the cosmological constant!, and renormalizing the classical action. As a result, one gets
the following running charge relationship:

1

e2
5

1

e0
2

1
1

12p2
log

m2

m2
. ~21!

Equivalently, for the fine structure constant one has

a5
a0

11~a0/3p!logm2/m2
. ~22!

Note that this expression reduces, in the perturbative limit, to the well known result~see, for
example, Ref. 23!

a5a0S 12
a0

3p
log

m2

m2D . ~23!

V. COMPARISON WITH THE PROPER TIME RESULT

In Appendix B we show that, in the weak field limit, our result for thez regularized effective
action coincides, once renormalized, with the Euclidean version of the well known Schwinger’s
proper time one.

In this section, we will show that this is also the case for arbitrary field strengths. In fact,
Schwinger’s integral expression for the one loop correction to the effective action is given, after
subtracting the divergent terms, by

SPT
(1)5m4VH ab

8p2E0

`

dt ts21e2ctcoth~bt!coth~at!2
1

8p2E0

`

dt ts23e2ct

2
a21b2

24p2 E
0

`

dt ts21e2ctJ c
s50

. ~24!

Now, performing the integrals in the last two terms and comparing with Eq.~4! ~with the
Hurwitz’s zetas written in integral form!, the previous expression can be rewritten as

SPT
(1)5

1

2 H G~s!z~s;D” †D” !2
m4V

4p2 S c22sG~s22!1
a21b2

3
c2sG~s! D J c

s50

. ~25!

After developing arounds50, it is easy to see that

SPT
(1)5Sz

(1)2
m4V

4p2 F3

8
c22S c2

4
1

a21b2

6 D log cG , ~26!
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whereSz
(1) is thez-regularized one loop correction to the effective action, as defined in Eq.~2!,

and the remaining terms are precisely the ones we have subtracted through renormalization. So,
the exact agreement between both renormalized effective actions is apparent.
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APPENDIX A: THE LIMITS OF NULL AND EQUAL FIELDS

In this section, we will show the agreement of our generalz function with the results obtained
by other authors for some particular cases, i.e., the case of a null electric or magnetic field13,14and
that of equal electric and magnetic fields.13

We will start with the B→0 limit. It is easy to see that limb→0A(s)50. As regards
limb→0B(s), it can be studied by making use of the asymptotic expansion for Hurwitz’z function
~see, for example, Ref. 24!,

z~s,v !5
1

G~s! H v12sG~s21!1
1

2
v2sG~s!1 (

n51

N

B2n

G~s12n21!

~2n!!
v12s22nJ 1O~v22N2s21!,

~A1!

lim
b→0

B~s!5 lim
b→0

H m4V
ab

4p2

2

~2b!s

G~s21!

G~s! S c

2b
11D 12sJ 5

m4V

4p2

a

s21
c12s. ~A2!

The only contribution to C(s) in this limit comes from C1(s), which gives

lim
b→0

C~s!5
m4V

4p2

~2a!22s

s21 H zS s21,
c

2aD2S c

2aD 12sJ . ~A3!

Finally, D(s) vanishes forb50. Then, replacing all these partial results into Eq.~4!, one
obtains

z~s,D” †D” !cb505
m4V

4p2

~2!12s

s21
a22sH 2zS s21,

c

2aD2S c

2aD 12sJ , ~A4!

which is in complete agreement with previous results.13,14

Of course, theE→0 limit gives an analogous expression, which can be obtained by changing
a→b in Eq. ~A4!.

We will now study the equal fields limit. In this situation, takinga5b in the different terms
appearing in thez function ~4!, we have

z~s;D” †D” !ca5b5m4V
a2

4p2 H 4

~2a!s
zS s,

c

2a
11D 1c2s 1

222sa2s

s21
zS s21,

3

2
1

c

2aD
2

1

6
~2a!2s zS s11,

3

2
1

c

2aD 2 i 2 a2s~s11!s

3 (
k51

`
~21!k11

~kp!12s (
l 51

` F i s12eikp(2l 111c/a)GS 2s21,ikpS 2l 111
c

aD D
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2~2 i !s12e2 ikp(2l 111c/a)GS 2s21,2 ikpS 2l 111
c

aD D G J . ~A5!

In order to compare this expression with the result in Ref. 13, we use the functional relations
between incomplete gamma functions once more, thus getting

z~s;D” †D” !ca5b5m4V
a2

4p2 H 4

~2a!s
zS s,

c

2a
11D 1c2s 1

222sa2s

s21
zS s21,

3

2
1

c

2aD
2 i 2 a2ss(

k51

`
~21!k

~kp!12s (
l 51

` F i s12eikp(2l 111c/a)GS 2s,ikpS 2l 111
c

aD D
2~2 i !s12e2 ikp(2l 111

c
a)G~2s,2 ikp~2l 111c/a!!G J . ~A6!

We now use the integral representation for the incomplete gamma function

G~a,x!5E
x

`

dt e2tta21.

When doing so, and after interchanging the integral and the sum overl, the last term in Eq.~A6!
can be written as

~2a!2ss(
k51

`
~21!k

~kp!2E0

`

du e2uFzS s11,
3

2
1

c

2a
2

iu

2kp D1zS s11,
3

2
1

c

2a
1

iu

2kp D G
52~2a!2s

1

G~s! (
k51

`

~21!kE
0

`

dt ts
e2(3/21c/2a)t

12e2t

1

~kp!21~ t/2!2

where we have used the integral form for the Hurwitz’s zeta functions, interchanged the integrals
and performed the interior one.

Interchanging now the integral with the sum, and using Eq.~5!, we obtain

222sa2s
1

G~s!
E

0

`

dt ts21
e2(3/21c/2a)t

12e2t F e2t/2

12e2t
2

1

t G
5222sa2sFzS s21,

c

2a
11D2S c

2a
11D zS s,

c

2a
11D2

1

s21
zS s21,

3

2
1

c

2aD G .
When replaced in~A6!, the final result is

z~s;D” †D” !ca5b5m4V
a2

4p2 H c2s 1222sa2sFzS s21,
c

2a
11D2

c

2a
zS s,

c

2a
11D G J

5m4V
a2

4p2 H c2s 14~2a!2sS zS s21,
c

2aD2
c

2a
zS s,

c

2aD D J . ~A7!

This expression coincides with the result obtained in Ref. 13@see Eqs.~5.2.6! and ~5.2.4! in that
reference#.
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APPENDIX B: THE WEAK-FIELD LIMIT

An unavoidable test our effective action must resist is its coincidence with the well known
result for weak fields.3,5 In order to check this is the case, we will develop the different contribu-
tions to the effective action@Eqs.~13!–~18!# in powers of the fields over the squared mass. In the
cases of Eqs.~13!–~16!, such development can be obtained by making use of the well known
asymptotic expansions24 for log G(x), c(x), andz(s,x) @see also our Eq.~A1!#. When doing so,
and retaining terms up to the order of squared fields over mass to the fourth, one gets, after a
straightforward though tedious calculation,

1

2

]

]s
A~s!c

s50

.m4V
ab

4p2 H 1

6
ac211

1

2
log~c!1

1

2a
~ log~c!21!cJ , ~B1!

1

2

]

]s
B~s!c

s50

.m4V
ab

4p2 H 1

6
bc211

1

2
log~c!1

1

2b
~ log~c!21!cJ , ~B2!

1

2

]

]s
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s50
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ab
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1

ab H S 1

4
2

1

4
logc1

1

8D c21S 1

2
~a1b!2

1

2
~a1b!logcD c2

5

24
~a2

1b2!

2
1

2
ablogc2

1

24
~5ba215ab21a31b3!c21

1S 1

24
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1

24
a3b1

1
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b2a21

7

1440
a41

7

1440
b4D c22J , ~B3!

1

2
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24H S a
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1
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b
1
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a D c21

2
1

2 S 2a212b21
a3

b
1

b3

a
1

4

3
baD c22J . ~B4!

As regards1
2(]/]s)CF2(s) cs50 , one has to use the asymptotic expansions for the incomplete

G function and for the Hurwitz’ zeta functions@Eq. ~A1!#. After doing so, one obtains

1

2

]

]s
CF2~s!c

s50

.m4V
ab

4p2

7

1440S a3

b
1

b3

a D c22. ~B5!

By summing up the contributions in Eqs.~B1!–~B5!, plus the one coming from1
2(]/]s)D(s) cs50 ,

the one-loop correction to the effective action is seen to reduce, in this weak-field limit, to

S(1)5m4V
1

4p2 H F3

8
2

1

4
log~c!Gc22

1

6
~b21a2!log~c!1F 7

90
~ab!22

1

90
~a21b2!2Gc22J .

~B6!

Now, renormalizing according to the criterium discussed in Sec. IV, one is left with

Seff5
V

2
~B21E2!1

Ve4

8p2m4 F 7

45
~EB!22

1

45
~E21B2!2G , ~B7!

where the definitions ofa, b andc given in the paragraph following Eq.~3! were used.
The expression in~B7! is precisely the Euclidean version of the Euler–Heisenberg effective

action for weak fields.3,5

3268 J. Math. Phys., Vol. 42, No. 8, August 2001 C. G. Beneventano and E. M. Santangelo

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

163.10.1.253 On: Wed, 07 Jan 2015 18:57:29



1J. Schwinger, Phys. Rev.128, 2425~1962!.
2R. E. G. Saravı´, M. A. Muschietti, F. A. Schaposnik, and J. E. Solomin, Ann. Phys.~Paris! 157, 360 ~1984!.
3H. Euler and W. Heisenberg, Z. Phys.98, 714 ~1936!.
4V. Weisskopf, K. Dan. Vidensk. Selsk. Mat. Fys. Medd.14, 1 ~1936!.
5J. Schwinger, Phys. Rev.82, 664 ~1951!.
6W. Dittrich, J. Phys. A9, 1171~1976!.
7J. S. Heyl and L. Hernquist, Phys. Rev. D55, 2449~1997!.
8G. V. Dunne and T. M. Hall, Phys. Rev. D60, 065002~1999!.
9W. J. Mielniczuk, J. Phys. A15, 2905~1982!.

10Y. M. Cho and D. G. Pak, ‘‘Effective Action - A Convergent Series - of QED,’’ hep-th/0006057.
11J. S. Dowker and R. Critchley, Phys. Rev. D13, 3224~1976!.
12S. W. Hawking, Commun. Math. Phys.55, 133 ~1977!.
13S. K. Blau, M. Visser, and A. Wipf, Int. J. Mod. Phys. A6, 5409~1991!.
14R. Soldati and L. Sorbo, Phys. Lett. B426, 82 ~1998!.
15A. Bassetto, Phys. Lett. B222, 443 ~1989!.
16E. W. Barnes, Trans. Cambridge Philos. Soc.19, 374 ~1903!.
17E. W. Barnes, Trans. Cambridge Philos. Soc.19, 426 ~1903!.
18M. Bordag, K. Kirsten, and J. S. Dowker, Commun. Math. Phys.182, 371 ~1996!.
19M. Holthaus, E. Kalinowski, and K. Kirsten, Ann. Phys.~Paris! 270, 137 ~1998!.
20L. S. Gradshteyn and L. M. Ryzhik,Table of Integrals, Series and Products~Academic, San Diego, 2000!.
21M. Abramowitz and I. Stegun,Handbook of Mathematical Functions~Dover, New York, 1970!.
22M. Bordag and K. Kirsten, Phys. Rev. D60, 105019~1999!.
23C. Itzykson and J.-B. Zuber,Quantum Field Theory~McGraw–Hill, New York, 1980!.
24The Bateman Manuscript Project: Higher Trascendental Functions, edited by A. Erde´lyi, W. Magnus, F. Oberhettinger,

and F. G. Tricomi~McGraw–Hill, New York, 1953!.

3269J. Math. Phys., Vol. 42, No. 8, August 2001 Effective action for QED4

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

163.10.1.253 On: Wed, 07 Jan 2015 18:57:29


