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Effective action for QED , through ¢ function regularization
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We obtain, through? function methods, the one-loop effective action for massive
Dirac fields in the presence of a uniform, but otherwise general, electromagnetic
background. After discussing renormalization, we compare {ofunction result

with Schwinger’s proper-time approach. 2001 American Institute of Physics.
[DOI: 10.1063/1.1383976

I. INTRODUCTION

In QED, the effective one-loop Lagrangian describes the effective nonlinear interaction of the
electromagnetic fields due to a single fermion loop. In two dimensions, its general form has been
obtained both through proper time agdfunction regularization$? In four dimensions, on the
other hand, only particular field configurations have been studied.

The 3+1 dimensional problem of constant electromagnetic fields was first studied by Euler
and Heisenberband independently by WeisskobThese authors obtained an integral expression
for the one-loop effective Lagrangian in the framework of the electron-hole theory. Later on,
Schwinger rederived this integral representation in a field-theoretical scenario, by making use of
proper time techniquesin all these references, explicit results were derived in some limits, the
most famous being the weak-field one. This and other particular field configurations were subse-
quently studied through the proper-time regularization by a number of auteesfor example,

Refs. 6-10.

More recently, the interest in the subject was renewed, and the Euclidean effective action for
constant electromagnetic background configurations was studied thrqugffunction
techniques®*?In Ref. 13 analytic expressions were found for the case of purely magnetic fields
in any number of dimensions. In this same reference, the case of equal electric and magnetic fields
in four Euclidean dimensions was also studied. A step towards more general field configurations
was given in Ref. 14, where the authors obtained the effective Lagrangian as a power series in
B/E.

It is the aim of this article to obtain, throughfunction methods, an explicit nonperturbative
expression for the full one-loop effective action of quantum electrodynamics in four dimensions in
the case of constant, but otherwise arbitrary, electromagnetic fields. To this end, we will work in
Euclidean space—time, and define the determinant of the relevant Dirac of@r#ttoough the
derivative of the/ function of D'D.

The organization of the article is as follows:

After summarizing some well-known generalities in Sec. I, we devote Sec. Il to analytically
extending the relevang function to the regiortis>—2. (The main point here is the analytic
extension of a Barnes function) Its value ats=0 is also given in this section.

In Sec. IV, a complete analytical expression for the effective action in terms of special func-
tions is given, and the renormalization issue is discussed.

Section V contains a comparison betwegand proper-time regularizations.

The Appendices A and B contain the derivation of some particular limits for the relevant zeta
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and for the effective action, thus allowing for the comparison with previous work on less general
field configurations.

Il. GENERALITIES

We study the effective action for massive Dirac particles in the presence of uniform, but
otherwise arbitrary, electromagnetic background fields. We work in four-dimensional Euclidean
space. Then, the effective action in the one-loop approximation is given by

SA,1=Sc[A,]~logDe(D[A,]), @

whereS[ A, ] is the classical Euclidean action aBfiA 1= v,(d,—ieA,)+imis the Euclidean
Dirac operatorm being the fermion mass.

Note that, even thougl® is not self-adjoint, it is normal; so, the functional determinant
appearing in the one-loop correction to the action can be defined thrdudhnction
regularization:**?which leads to

_ DOra 1= 19
Seil Al =Scl Aul+SVIALL =Sl Aul+ 5 72 L(SID D) Jso- 2

In order to evaluate the one-loop correcti8fY) in the previous expression, it is necessary to
obtain the spectrum of the opera®f D, which is well known in the case of uniform field3In
this particular situation, one can always choose a reference frame sudhgtkat F3p=E and
F.,= —F,;=B, while the remaining components of the field tensor vanish. When doing so, the
required zeta function turns out to be

ab ee] o]
UsD'D)=p*Q—|2 D> (2n,a+c) S+2 >, (2n,b+c)S
4772 na=1 np=1

[’ ©

+4>, > (2n,a+2n,b+c) S+cTS. (3)

ng=1np=1

Here, Q is the volume of the four-dimensional Euclidean spaze.e|E|/u?, b=e|B|/u?, c
=m?/u?, andu is a parameter with mass dimension, introduced to rendef fbaction dimen-
sionless. Note that the series in E8). are all convergent folRs>2, where they define an analytic
function of s.

Ill. ANALYTIC EXTENSION OF THE ¢ FUNCTION

In this section, we will perform the analytic extension of the relevahinction to a region
containings=0. In particular, we will show it to be finite &=0 and give its value at this point.

The first two terms in Eq(3) can be rewritten in terms of Hurwitz’ zeta functions, which are
well known to be meromorphic functions with a unique simple pole=at.. On the other hand,
the third term is a zeta function of the Barnes’ t}/p¥ (see also Refs. 18 and 19 and references
therein. In order to analytically extend this term, we write it in integral form. After doing so, we
get

2
(2a)®

1)+

© .
g Slza

2 (s i+1)
(Zb)sév '2b

© 4~ 2atg—2btg—ct _S]

(DD = pia 22
' H 472

+=— s-1 +c
I'(s) Jo (1-e 2H(1-e

= A(s)+B(s)+C(s)+D(s), (4)
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where {(s,v) is Hurwitz’ zeta function. This expressidinvariant undera«b) is, in principle,
well defined forfRs>2. Since the analytic structure of &Y and B(S) is well known, we will
concentrate on the Barnes terms(which will be extended t@Rs> — 2.

To this end, we will use the expansfdn

! ! +at2 -~ )k;, (5)

eil_g at 2at (at)?+ (kmr)?

thus obtaining

co=zuia 2 L 11 focolttsz—_(mmt
(=200 T(s) | 2al; T

S —(a+b+c)t = ’
+af dtts———— E (=1 m]—Fa

=Cy(s)+Cx(s). (6)

)

The first term, G(s), can be easily seen to be

ab 1 1 a+2b+c

Ci(s)=2u"0— — ( -1,
S 2 2 7a (s yapy S 2

+ a«<b. (7)

As all the terms we have analytically extended up to this poin{sCin Eq. (6) involves an
integral which diverges a=0. In order to isolate this singularity, we will rewrite this term as

ab 1 . e—(a+b+c)t *© 1
Cy(s)=2 4Q——a dtts— —1)k -
2(S)=2u —2T(s) (ebt_e—bt)[k_l (at)2+ (km)? (k)2
+ —1)k + a<b
g‘l( ) (kw)2]

=CF,(s)+ CDy(s). (8

The integral appearing in GIDs) is divergent as=0 but, after performing the sum, this term is
easily seen to be

ab a S
CDy(s)=—p*— = {

atc
472 6 (2b)°"1 s+1,1+ ——

2b

+ a«b. 9

Now, once the difference between brackets is performed(JFean be rewritten as

4 ab 1 3§ (_1)k . ) —(a+2b+c)t 1
CRy(s)= —2u%0 > = fdttS+ +a<b.
2(S) 472 1(s) " iE1 (km)2Jo (1—e %Y (at)?+(km)? -
(10

As is easily seen, this integral converges #s> — 2. We have thus obtained an analytic exten-
sion for the{ of the operator as a meromorphic function with only simple poles. Such extension
is valid for Rs>—2.

Now, the factor /(at)?+ (k)?] can be written as an integral. In fact,
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1 !
(at)2+ (km)? 2ikm

1 1 —1f°°d _—
attike  at—ika| k), due " sinkmu).

When replaced in Eq10), this gives

CFRy(s)= — 240 =

© K re —(a+2b+c)t
1 ( 1) f dtt5+ze—

du e @sin(k7u)+ a«b
2F(s) k=1 (k)% Jo (1—e25Y fo (k)

or, after interchanging the integrals

ab ad

— 4
CRy(s)=—2u Q4 2F(s)k 1(kw)3f dusin(k 7-ru)

3) a+2b+c+au
( b)s+3 2b

+ a<b.

When the{ function is written in terms of its series developméwhich is valid for Rs>
—2) one hagafter interchanging this series and the integral

ab a® TI'(s+3) —(s+3)

472 I'(s) (2b)st3 k=1 (kw)3

a+c+au
2b

CFy(s)= —2u%0 —

E f dusin(kmu)

+ a<b.

Finally, after performing the remaining integral and making use of the functional relations
between incomplete gamma functidiisne gets

]

ab I'(s+3) _ 1 (—1)k

CRy(s)= a
A SRS P e

2

s+2 kn-/a)(2b|+a+c)1-( —s

kar ) ko
—li—(2bl+a+c) —(—i)S+2e—'<k”’a>(2b'+a+°>r< —s—1-i—(2bl+a+c)

+ a«<b. (11

The replacement of Eq$7), (9) and (11) into Eq. (4) completes the analytic extension of the
relevant{ function. Its value as=0 can be easily computed, which gives

=c?+

‘0 (1 a2+ b2
2 3

)
0:D'D)= 2
4 ) e

(12
The agreement with the known results for null and equal fields is shown in Appendix A.

IV. THE EFFECTIVE ACTION AND ITS RENORMALIZATION

This section contains the main result in this article, i.e., the one-loop correction to the Euclid-
ean effective action. According to E(R), to obtain such result, one must perform the derivatives
ats=0 of the various terms in Ed4).

We start from AE), which contributes with

1(7AJ—4QabI21CII‘ 11|2 13
3 75 (S)S:O—,LL a2 og(2a) 5T 5] Tlodl| 52 —509( . (13

In a completely analogous way, one has
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19 J 4 ab 1
Ea_B(S) —,u Q— Iog(2b)(2 2b)+|ogF —zlog(Zn-) . (14

20

It is also through a direct calculation that one gets

14 J _ ,.ab 1 a+c
§£C1(S) S=O—,U, Q—— 2b(— 1+|Og(2b))§ 11+2—b

+ acb. (15)

2b iJ 11+a+c
B I AT

sS=

+ a<b. (16)

laCD J =u*0 ap a I 2b+\If1+—aJrC
375 2(3)510—,% a2 2 09g(2b) b

As regards CK(s), due to the presence é1(s) in the denominator, the required derivative
reduces to the produdt(s) CF,(s) ats=0, i.e.,

i ab & (—1)k &
a2 & km &

190 ik
- i(kw/a)(2bl+a+c) R
5 as_CFZ(S) [ F( 1, a (2bl+a+c)

e i(kn/a)(2bl+a+o) + a<b. (17

ik
-1, 7(2bl+a+c)

Summarizing, the Euclidean effective action is given by the sum of the partial contributions in
Egs.(13)—(17), plus

b
D(S)J =—u*Q a—zlog(c). (18
s=0 87

N -
&l

Notice that even though the result is finite, it depends on the arbitrary paramettwever, this
effective action still admits a finite renormalization. We will perform it by adopting the criterium
(used, for instance, in Ref. 2Zhat a very massive field does not fluctuate. Thus, we will subtract
the one loop correction to the effective action in the limit>c. From Eq.(B6) in Appendix B,

the effective action in this limit can be seen to be

3
=——log(c) |c?— —(b2+ az)log(c)] (19

1
40—
wo |

After doing this subtraction, all dependence on the parametédisappears, and the Euclidean
effective action is given by

A w? b2 4 0 ab I 4ab\ 1 (a2+b2)I 4ab . cI a
LA = g7 (767 %05 glodl =] = 235 —too| | 75000l
c? I 4ab I I'(c/2a+1)| b L1t a+tc\ b o ( 11
1eab Y °9 L2 ag ' 2b ads s:Og ST
atc| '_ % ) i i(kn/a) (2b1+a+ ) 1”(—W(2bl+a+c)
2b 2¢&0 ko (=1 "a
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el (kw/a)(2b|+a+c)r( _ 1,Lk77(2bl +a+c)
a

a vl 1 a+c
o\t op

3 c?
—1—654' a<—bi. (20

The renormalization performed amounts to subtracting the zero field effective d@ttion
redefining the cosmological constarand renormalizing the classical action. As a result, one gets
the following running charge relationship:

1 1 1 u

lo . (21
e? el 127° e

Equivalently, for the fine structure constant one has

Qg

a= .
1+ (ao/3m)logu?/m?

(22

Note that this expression reduces, in the perturbative limit, to the well known readt for
example, Ref. 28

2

Qg M

a=ag

V. COMPARISON WITH THE PROPER TIME RESULT

In Appendix B we show that, in the weak field limit, our result for theegularized effective
action coincides, once renormalized, with the Euclidean version of the well known Schwinger’s
proper time one.

In this section, we will show that this is also the case for arbitrary field strengths. In fact,
Schwinger’s integral expression for the one loop correction to the effective action is given, after
subtracting the divergent terms, by

ab o 1 o)
SH=put0{ — f dt t5 e C'coth bt)coth at) — —— f dtts—3ect
872Jo 8m2Jo
a’+b? (=
- J dets e (24
2472 Jo

s=0

Now, performing the integrals in the last two terms and comparing with(&qg(with the
Hurwitz's zetas written in integral forinthe previous expression can be rewritten as

w*Q

472

. a’+b?
(c ST (s—2)+ 3 ¢ S1“(5))] ) (25
s=0

1
Sf,lT)=§{F(s)§(s;IZ)TIZ))—

After developing around=0, it is easy to see that

¢ a%+b?
+

©'Q
42 4 6

472

3
v
g¢

SEy=s{M - log c|, (26)
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Wheres(gl) is the Z-regularized one loop correction to the effective action, as defined ifZgq.
and the remaining terms are precisely the ones we have subtracted through renormalization. So,
the exact agreement between both renormalized effective actions is apparent.
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APPENDIX A: THE LIMITS OF NULL AND EQUAL FIELDS

In this section, we will show the agreement of our genérainction with the results obtained
by other authors for some particular cases, i.e., the case of a null electric or magnétic fed
that of equal electric and magnetic fiefds.

We will start with the B—0 limit. It is easy to see that lign,oA(s)=0. As regards
lim,_oB(s), it can be studied by making use of the asymptotic expansion for Hurivftm\ction
(see, for example, Ref. 24

N
1 1 I'(s+2n—-1)
1-SP(a_ ~ . -s 1-s—2n —2N-s—1
{(s,v)= F(S)[ I'(s—1)+ 5V F(S)+r121 By, 2n)! v ]+O(v ),
(A1)
_ _ ab 2 F(s—l)( c )1‘5 u*Q a
limB(s)=lim{ u*Q— —— —— | ——+1 = ——cts, (A2)
b—0 ( bao[“ a7% (2b)s T'(s) \2b 472 s—1
The only contribution to Cf) in this limit comes from G(s), which gives
4 2-s 1-s
: pn"Q (2a) c
l!ILNOC(S)— 472 S——l 15 - 2_a . (AS)

Finally, D(s) vanishes forb=0. Then, replacing all these partial results into E4), one
obtains

c
2a

M4Q (2)173 . c
s, D'D)]p—o= e S_—132 [25(5—1.5 -

1-s
] . (A4)

which is in complete agreement with previous restit¥.

Of course, thee— 0 limit gives an analogous expression, which can be obtained by changing
a—bin Eq. (A4).

We will now study the equal fields limit. In this situation, takiag-b in the different terms
appearing in the function (4), we have

DTD _ 4Q a2 4 C 1 _s 22fsafs 13 C
{(s;D'D)Jq=p= p a2 (2a)5§ Sioptl| et s—15+ 5
1 B 3 ¢ o
—g(2a) g stls+ | —i2a (st 1)s
*© )k+1 *®

E 2

(kﬂ_)l S =

is+Zeikw(2I+l+c/a)I~< —5— l,ikﬂ( 21+ 1+ g
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_ ( —j )S+2e—ik7'r(2l+l+c/a)1" —5— 1,_ ik

c
20+1+ =
a

L

In order to compare this expression with the result in Ref. 13, we use the functional relations
between incomplete gamma functions once more, thus getting

szsafs

— ¢

3 ¢
s—1-+—

+c 5+
¢ 2" 2a

c
s, =—+1

472 2a

2
§(S:DTD)Ja—b=M49a—[
(2a)®

—i2a" sZ e SI; —sikm| 21+1+

i s+2eik1-r(2I +1+c/a)1-<

. c
— ()52 K@D (—s, —ikm(21 + 1+c/a))

] . (AB)
We now use the integral representation for the incomplete gamma function
F(a,x)zf dte ft* 1,
X

When doing so, and after interchanging the integral and the suml pther last term in EGA6)
can be written as

) 52(— )de - 13 c 13 c iu
(28) 582 ez o U S gt e 2k st ot ot ok
2 —(3/2+cl2a)t 1

=2(2a) S=— - kJ dess
(2a) F() (=) 1 (km2+ (122

where we have used the integral form for the Hurwitz’s zeta functions, interchanged the integrals
and performed the interior one.
Interchanging now the integral with the sum, and using (&f.we obtain

1 (= g~ (B2+c2a)t] o-ti2 1
22*Sa*3—f dets* -<
I'(s)Jo 1-e! |1-et
=2%"%a" T 41— t1)gl s =1 - ! 13+ .
- 1457122 2at1)¢5 2, 145712 %
When replaced ifA6), the final result is
((s;D'D) )= 4Qa—2 c S+2%27%a7 ¢ s— 1—+1 — s£+1
’ asb= MR 2a ) 2a°|™2a
=u’Q i “S+4(2a)s 1~ ¢ A7
TR 2 C (2) | & s=1g ]~ 534825 | |- (A7)

This expression coincides with the result obtained in ReflsE® Eqgs(5.2.6 and(5.2.4 in that
referencé
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APPENDIX B: THE WEAK-FIELD LIMIT

An unavoidable test our effective action must resist is its coincidence with the well known
result for weak fields:® In order to check this is the case, we will develop the different contribu-
tions to the effective actiofEqgs.(13)—(18)] in powers of the fields over the squared mass. In the
cases of Eqs(13)—(16), such development can be obtained by making use of the well known
asymptotic expansiof§for log I'(X), #(x), and(s,x) [see also our EqA1)]. When doing so,
and retaining terms up to the order of squared fields over mass to the fourth, one gets, after a
straightforward though tedious calculation,

190 4 ab [1 1 1
2 75 (s) Q— 6ac +—Iog(c)+—(|og(c) 1)cy, (B1)
14 J N E P L . -
5 758(5) SiO—M 1206 ¢+ 3log(c)+ 5 (log(e)—1)cy, (B2)
e J 4Qab L2 Lioget S)ezr | E(ath) - S (atb) > (a2
378 1(3)5:0—M a-2ab|la 299 g >(atb)—5(a+b)logejc— 7 (a
+b?)
1 1
—Eablogc—ﬂ(Sba2+5ab2+a3+b3)c*1
1 1 1 7 7
3 a3 T h2452 4
b +24ab+ bca +1440a 1440b)c ] (B3)
1(;CD J 4Qab ! a+b| + +b+az+b2 -1
295 D] =0 g |p T a)losetl Aty T g
1 a3 3
_ 2 2, _ _ -2
22{:1+2b+b+a+3bac ] (B4)

As regards;(d/ds)CF,(s) |s—o, One has to use the asymptotic expansions for the incomplete
I' function and for the Hurwitz’ zeta functiorj&q. (A1)]. After doing so, one obtains
a’ 2,2 b3
b

ab 7

4 -2
—,LLQ4 2 1440 c e (B5)

Lo CF,
375 2(S)
s=0

By summing up the contributions in Eq®1)—(B5), plus the one coming frord/ds)D(S) Js—o,
the one-loop correction to the effective action is seen to reduce, in this weak-field limit, to

(B6)

c’— —(b2+a2)log(c)+

1
2_ 21 122
0(ab) 9O(a +b%)

3
(1) = 4 D N I
S Q Hs 4Iog(c)

Now, renormalizing according to the criterium discussed in Sec. 1V, one is left with

e4

Q
_n2 2 _
Seti= (B2 +E?)+ 7| 25(EB)?— 25

! - —(E?+ BZ)Z}, (B7)

where the definitions of, b andc given in the paragraph following E¢3) were used.
The expression iiB7) is precisely the Euclidean version of the Euler—Heisenberg effective
action for weak field$:®



J. Math. Phys., Vol. 42, No. 8, August 2001 Effective action for QED, 3269

1J. Schwinger, Phys. Re€28, 2425(1962.
2R. E. G. SaraviM. A. Muschietti, F. A. Schaposnik, and J. E. Solomin, Ann. Plipari9 157, 360 (1984.
3H. Euler and W. Heisenberg, Z. Phy@8, 714 (1936.
4V. Weisskopf, K. Dan. Vidensk. Selsk. Mat. Fys. Medd, 1 (1936.
5J. Schwinger, Phys. Re82, 664 (1951).
SW. Dittrich, J. Phys. A9, 1171(1976.
7J. S. Heyl and L. Hernquist, Phys. Rev.95, 2449(1997).
8G. V. Dunne and T. M. Hall, Phys. Rev. B0, 065002(1999.
SW. J. Mielniczuk, J. Phys. A5, 2905(1982.
10y, M. Cho and D. G. Pak, “Effective Action - A Convergent Series - of QED,” hep-th/0006057.
1J. S. Dowker and R. Critchley, Phys. Rev.13, 3224(1976.
123, W. Hawking, Commun. Math. Phys5, 133(1977.
183, K. Blau, M. Visser, and A. Wipf, Int. J. Mod. Phys. & 5409(1991).
MR. Soldati and L. Sorbo, Phys. Lett. 426, 82 (1998.
15A. Bassetto, Phys. Lett. B22, 443(1989.
16E. W. Barnes, Trans. Cambridge Philos. Sb@,. 374 (1903.
7E. W. Barnes, Trans. Cambridge Philos. Sb@, 426 (1903.
M. Bordag, K. Kirsten, and J. S. Dowker, Commun. Math. PH@2 371 (1996.
19M. Holthaus, E. Kalinowski, and K. Kirsten, Ann. Phy@®arig 270, 137 (1999.
20, S. Gradshteyn and L. M. RyzhiRable of Integrals, Series and Produdscademic, San Diego, 2000
2I\M. Abramowitz and I. Stegurklandbook of Mathematical Functiori®over, New York, 1970
22M. Bordag and K. Kirsten, Phys. Rev. 60, 105019(1999.
23C. Itzykson and J.-B. ZubeQuantum Field TheoryMcGraw—Hill, New York, 1980.
24The Bateman Manuscript Project: Higher Trascendental Functiedited by A. Erdiyi, W. Magnus, F. Oberhettinger,
and F. G. TricomiMcGraw—Hill, New York, 1953.



