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Abstract: A numerical-simulation tool is developed that is well suited for modeling the unsteady and nonlinear aerodynamics of flying
insects and small birds as well as biologically inspired flapping-wing micro air vehicles (MAVs). The tool consists of a combination of (1) an
aerodynamic model that is an extension of the widely used three-dimensional (3D) general unsteady vortex-lattice model, and (2) a general
kinematic model that is capable of describing multiple deformation patterns of lifting surfaces, such as spanwise twisting, in-plane and out-of-
plane bending, and any combination of these. Moreover, the present tool offers an attractive compromise between computational cost and
fidelity and is ideally suited to be combined with computational structural dynamics to perform aeroelastic analyses. The present tool was
successfully validated by comparing some of the present results with those obtained from existing numerical models based on both Euler
equations and vortex-lattice codes and with some experimental data. Using the numerical framework developed and for the deformation
mechanisms analyzed here, two distinctly different effects were found: the wing span’s twisting and in-plane bending affect the lift in specific
zones of the stroke cycle (called “local behavior”); and the wing span’s out-of-plane bending affects the lift throughout the stroke cycle (called
“global behavior”). In addition, the results found show that the wing’s flexibility certainly affects the lift production, at least for some flights
at small scales. These findings definitely suggest the strong likelihood that the unsteady vortex-lattice method combined with a general
kinematic model can be a very accurate and efficient tool for future aeroelastic studies. DOI: 10.1061/(ASCE)AS.1943-5525.0000677.
© 2016 American Society of Civil Engineers.

Introduction

In the early years, scientists and engineers used classical aerody-
namic theories developed for conventional aircraft to try to under-
stand how small insects and birds stay aloft. The application of these
theories to the study of flight in nature (natural flight) led to a fa-
mous paradox: “a bee cannot fly” (McMasters 1989). In fact, con-
ventional aerodynamic models yield very good results for steady
flows over stationary bodies. However, natural flight is character-
ized by highly nonlinear and unsteady flows because of the complex
combinations of the rigid and deforming motions of wings. Wing-
deformation patterns include time-dependent bending, camber,

spanwise twist, expansion and contraction of the lifting surfaces,
and so forth.

Over the past four decades, researchers around the world have
carried out several studies of the kinematics, aerodynamics, and
flight dynamics of flying insects. Some important insights into the
unsteady flow of flapping wings were obtained by assuming rigid-
flat wings (Dickinson et al. 1999; Ellington et al. 1996; Liu et al.
1998; Wang et al. 2004), and works intended for characterizing
the role of wing deformation on lift production, which is crucial
to clearly understanding natural flight. Dalton (1975, 1982) pub-
lished high-speed photographs of several free-flying insects, which
showed wing deformations in various maneuvers. Weis-Fogh
(1973) was the first to describe the unsteady aerodynamic mecha-
nism in insect flight known as clap and fling. In the same article, he
also proposed a series of additional mechanisms involving transient
wing deformation. Norberg (1972), in what may have been the first
experimental study of the structural mechanics of wings, high-
lighted the need of wings to adapt to resist aerodynamic twisting
in flight. A few years later, Ellington (1984) described an analytical
projection technique that allows one to study the angle of attack,
camber, transverse bending, and twist of the wings of a marmalade
hoverfly, a fruit fly, and a bumblebee. Subsequently, a variety of
techniques have been developed to identify and quantify deforma-
tion patterns on different insect wings (Ennos 1989; Zeng et al.
1996; Song et al. 2001; Wang et al. 2003, 2009a, b, c, Aguayo et al.
2010; Lehmann et al. 2011; Mountcastle and Combes 2013).

More recently, and because of advances in computational and
robotic technologies, two different approaches have been used to
quantify the importance of wing flexibility on the aerodynamic
forces of flapping wings. On the one hand, several numerical mod-
els were developed in order to study the fluid-structure interaction
(either by using or by not using prescribed deformation patterns) on
different flying insects; all of these predicted an increase in lift
when the wing is allowed to deform (Ishilhara et al. 2009; Vanella
et al. 2009; Young et al. 2009; Nakata and Liu 2012; Du and
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Sun 2008, 2010; Unger et al. 2012; Zheng et al. 2013). On the other
hand, studies based on robotic flapping devices have provided a
deeper understanding of the role of wing flexibility in the context
of flapping flight, supporting the results predicted by the aforemen-
tioned numerical tools. However, these experimental studies have
also shown, in contrast to the computational models, that rigid
wings can produce, in some cases, higher lift than flexible ones
can (Zhao et al. 2010; Tanaka et al. 2011). Particularly, Zhao
et al. (2010) concluded that rigid wings yield the greatest stroke-
averaged lift at angles of attack up to 50°, beyond which flexible
wings began to dominate.

Currently, the use of unsteady vortex-lattice methods (UVLMs)
has been increasing in the study of unsteady problems in which
free-wake methods become necessary due to geometric complexity,
such as extremely high-altitude long-endurance unmanned aerial
vehicles (X-HALE-UAVs), flapping-wing kinematics, morphing
wings, and rotorcraft, among others (Wang et al. 2010; Murua et al.
2012; Taha et al. 2012; Obradovic and Subbarao 2011; Wie et al.
2009). Related to flapping-wing aerodynamics, Fritz and Long
(2004) implemented the UVLM using object-oriented computing
techniques to model the oscillating plunging, pitching, twisting,
and flapping motions of a finite-aspect-ratio wing. This work
showed that the method is capable of accurately simulating many
of the features of complex flapping-wing flight, although the model
does not take into account the leading-edge–vortex phenomenon.
Stanford and Beran (2010) also used UVLMs to consider the de-
sign optimization of a flapping wing in forward flight with active
shape morphing, aimed at maximizing propulsive efficiency under
lift and thrust constraints. Ghommem et al. (2012) tackled the
same problem using global and hybrid optimization techniques.
Ghommem used a two-dimensional (2D) version of the UVLM
to obtain the hovering kinematics that minimizes the required aero-
dynamic power under a lift constraint. Willis et al. (2007) presented
a simulation tool, FastAero, which uses a panel method and an ap-
proach based on vortex particles to represent the wake shed from
the wing’s trailing edge. This approach was demonstrated to be
efficient and accurate to study a variety of problems involving un-
steady flows and highly flexible lifting surfaces undergoing com-
plex motions.

Taha et al. (2012) established that five terms could be identified
as the main contributors to flow quantities during hover. They in-
clude the effects due to the wing’s translation and rotation, the lead-
ing-edge vortices (LEVs), wake capture, viscosity, and added-mass
effects. UVLMs capture all of them except the viscous and LEV
effects. As shown by the experiments of Dickinson et al. (1999),
the viscous effects for the range of Reynolds numbers (75–4,000)
of hovering insects can be neglected, which makes the use of
UVLMs suitable for the study of flapping-wing aerodynamics.

In this paper, the authors present a new numerical simulation
framework to study the production of lift for flapping wings in
hover flight under different prescribed deformation patterns. The
aerodynamic framework implements (1) a kinematic model that
allows imposing different deformation patterns on the wing, such
as, torsion, in-plane bending (IPB), and out-of-plane bending
(OPB) and (2) a three-dimensional (3D) nonlinear and unsteady
version of an aerodynamic model based on UVLM, which was pre-
viously modified and extended by the authors of this work (Roccia
et al. 2013). This aerodynamic model accounts for all possible aero-
dynamic interference and allows one to predict (1) the flow field
around bodies and lifting surfaces; (2) the spatial-temporal vorticity
distribution attached to the solid bodies; (3) the vorticity distribu-
tion in wakes emitted from the sharp edges of the wings; (4) the
position and shape of wakes; and (5) the unsteady aerodynamic
loads acting on the wings.

The remainder of this work is organized as follows. Firstly, the
authors give a full description of the kinematic model of the
deforming wing. Then a brief description of the current version
of UVLM is presented. After that, numerical results of analyzing
different deformation patterns are discussed (based on limited
experimental data published by biologists and experimentalists)
and, finally, some general conclusions on how they affect the lift
production are stated. The authors conclude by stating the limita-
tions of the model and how they might be addressed to extend its
applicability.

Kinematic Model

The motion of each wing is described using two dextral orthonor-
mal reference frames: (1) a Newtonian or inertial frame N ¼
fn̂1; n̂2; n̂3g and (2) a reference frame fixed to each wing’s root in
order to facilitate the derivation of the equations B ¼ fb̂1; b̂2; b̂3g
for the left wing and A ¼ fâ1; â2; â3g for the right wing.

As the wing moves in a 3D space along a predetermined path, its
geometry changes according to specific deformation patterns such
as spanwise twisting and bending. Therefore, the movement of
a material point belonging to the wing can be written as a combi-
nation of large rotations and displacements in space (primary mo-
tions) and small rotations and displacements associated with elastic
deformations (secondary motions), as shown in Fig. 1. The lattice
(mesh or grid) is typical of what might be used in UVLM.

The following subsection presents a brief description of the pri-
mary motions and a detailed description of the deformation mecha-
nism used to describe secondary motions for the left wing. The
kinematic equations for the right wing can be obtained by following
the same procedure.

Primary Motions

The wing’s orientation at each time step is obtained by specifying
the values of three angles (stroke parameters): (1) stroke position
angle, ϕðtÞ; (2) stroke deviation angle, θðtÞ; and (3) rotation angle,
ψðtÞ. The coordinate transformation from the inertial reference
frame N to the wing-fixed reference frame B is performed using
a (1-3-2) sequence of rotations given by Euler’s angles ϕðtÞ, θðtÞ
and ψðtÞ, and represented by the rotation tensor QBN∶N → B.

Fig. 2 shows the angles defined in the preceding paragraph. The
stroke position angle is defined by the projection of the longitudinal
spanwise axis of the wing b̂2 onto the stroke plane and the unit
vector −n̂2. The stroke deviation angle is defined as the angle
formed by the longitudinal axis of the wing and the stroke plane,
and it is considered positive when the wings are above the stroke
plane. The rotation angle, ψðtÞ, is measured on a plane Π, which
has an orientation in 3D space that is always normal to the unit
vector b̂2 fixed to the wing; it is defined as the angle formed by
the wing’s chord and the straight line EE’. Line EE’ is fixed to

Time step it0t t=

Reference state

Primary motions "+"
secondary motions

Wing orientation at it t=

Wing deformation at it t=

Fig. 1. Wing motion and wing deformation during the stroke cycle
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the Π plane and coincides with the direction of the unit vector b̂1 at
t ¼ t0. This angle is positive during downstroke.

Roccia et al. (2011) provide a detailed description of the stroke
parameters and a full mathematical formulation of the flapping-
wing kinematics.

Secondary Motions

In order to impose different deformation patterns on the wing, a
“virtual” beam element is defined along the unit vector b̂2, which
provides the necessary ways to bend and twist the wing in a desir-
able manner. The beam element adopted is an Euler-Bernoulli
model, which is considered clamped at the wing root and free to
move at the tip. Bending motion in two perpendicular planes (in
plane and out of plane) is achieved using expansions in terms of
the eigenfunctions, and the spanwise torsion is given by a linear
interpolation function. The mechanism used to deform the wing
consists of two steps: (1) a deformation pattern is imposed on the
virtual beam element (also called elastic axis); and (2) the displace-
ment field is transferred to the rest of the wing by means of an in-
terpolation scheme, which is detailed later in the text.

Figs. 3(a and b) show the location of the virtual beam ele-
ment inside the wing and the position vector of an arbitrary point

belonging to the wing in the undeformed configuration. The point
P on the wing’s surface and the point P 0 on the elastic axis lie in the
same plane, which is perpendicular to the vector b̂2 in the unde-
formed state [Fig. 3(a)]. The cross section of the wing that contains
points P and P 0 is assumed to be rigid, and the position vector of
point P relative to point P 0 is denoted rP 0P. The position vector of
point P at the undeformed and deformed configurations can be
written, respectively, as follows:

RP ¼ Rroot þ rP 0 þ rP 0P; ~RP ¼ Rroot þ rP 0 þ uP 0 þ TrP 0P

ð1Þ
whereRroot = position vector of the origin of the reference frame B
fixed to the wing root; rP 0 = position vector of the point P 0 on the
elastic axis in the undeformed configuration; uP 0 = elastic displace-
ment vector associated with point P 0; and T = infinitesimal rotation
tensor (Baruh 1999).

Then the displacement vector of point P is obtained as the differ-
ence between the position vector of P at the deformed configuration
and the position vector of P at the undeformed configuration:

~RP −RP ¼ uP 0 þ ðT − 13ÞrP 0P ð2Þ
where 13 = second-order identity tensor.

Stroke plane

( )tφ

rooto

o

2b̂

1b̂

B

1n̂

2n̂

N

( )tθ

2b̂

3b̂ B

rooto

o

Stroke plane
N

2n̂

3n̂

o

N

3n̂
1n̂

2n̂

rooto

( )tψ

B

3b̂
1b̂

2b̂

'E

E

Stroke plane

planeΠ

(a) (b) (c)

Fig. 2. Stroke parameters, with Oroot indicatingwing root: (a) stroke-position angle; (b) stroke-deviation angle; (c) rotation angle

Undeformed configuration Deformed configuration

1b̂

3b̂

rooto

( )
Beam element
 elastic axis 2b̂'P

Arbitrary 
point P

1b̂

2b̂

3b̂

rooto

PR

'PR

P

'P

'P Pr

rooto

η
2b̂

1n =

2n =

3n =

(a)
(b)

(c)

Fig. 3. (a) Undeformed and deformed configurations of the wing; (b) definition of the position vector of point P at the undeformed configuration;
(c) eigenfunctions for a clamped-free Euler-Bernoulli beam
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After some algebraic manipulations and by expressing the result
in a given basis, the position vector of P at the deformed configu-
ration can be expressed as

f ~RPg ¼ fRPg þ fuP 0 g − ½r̄P 0P�fθg ð3Þ
where fθg ¼ ðθ1; θ2; θ3ÞT = small rotations due to the elastic axis
deformation; and ½r̄P 0P� = skew-symmetric matrix given by

½r̄P 0P� ¼

2
64

0 −r3 r2

r3 0 −r1
−r2 r1 0

3
75 ð4Þ

where r1, r2, and r3 = components of vector frP 0Pg—that
is, frP 0Pg ¼ ðr1; r2; r3ÞT .

Each of the components of the elastic displacement vector
fuP 0 g ¼ ðu1; u2; u3ÞT is expressed as the product of an eigenfunc-
tion, SðηÞ and a generalized coordinate pðtÞ:

uiðη; tÞ ¼ SiðηÞpiðtÞ for i ¼ 1,2; 3 ð5Þ
The eigenfunctions SiðηÞ (for i ¼ 1,2; 3) are obtained from the

analytical solution of the differential equation that governs the free-
vibration problem of an Euler-Bernoulli beam with clamped-free
boundary conditions (Karnovsky and Lebed 2000) [Fig. 3(c)].
The component u2ðη; tÞ, which accounts for the axial displacement,
is identically zero for all t. The generalized coordinates piðtÞ are
expressed in terms of harmonic functions. The elastic rotations
θ1ðη; tÞ and θ3ðη; tÞ are obtained by evaluating the partial derivative
of the displacement’s components u3ðη; tÞ and u1ðη; tÞ with respect
to η, respectively. Moreover, the rotation θ2ðη; tÞ is interpolated by
a linear function and represents the twist angle around the elastic
axis:

θ1ðη; tÞ ¼ ∂ηu3ðη; tÞ ¼ dη½S3ðηÞ�p3ðtÞ;
θ2ðη; tÞ ¼ StwistðηÞptwistðtÞ ¼

η
R
ptwistðtÞ and

θ3ðη; tÞ ¼ −∂ηu1ðη; tÞ ¼ −dη½S1ðηÞ�p1ðtÞ ð6Þ

where ∂η = partial derivative with respect to η; dη = total derivative
with respect to η; ptwistðtÞ = generalized elastic coordinate that reg-
ulates the time variation of the wing torsion; and R = wing span.

This formulation allows one to rewrite the elastic displacement
vector of an arbitrary point P on the wing as

fuPg ¼ fuP 0 g − ½r̄P 0P�fθg ¼ ½NðηÞ�fpðtÞg ð7Þ
where

½NðηÞ� ¼

2
64

S1ðηÞ 0 0

−r1dη½S1ðηÞ� 0 0

0 −r1StwistðηÞ S3ðηÞ

3
75 and

fpðtÞg ¼ ½p1ðtÞ;ptwistðtÞ;p3ðtÞ�T ð8Þ
Here ½NðηÞ� = matrix of shape functions; and fpðtÞg = array con-
taining the elastic generalized coordinates.

The velocity of P in the N reference frame can be obtained
by evaluating the total time derivative of the position vector ~RP
performed by an observer fixed to the inertial reference frame N:

~̇RP ¼ ṘP þ Q̇NBuP þQNBu̇P ð9Þ
where the dot = Nd=dt; andQNB∶B → N = rotation tensor from the
B reference frame to the N reference frame and is obtained as the
inverse of tensor QBN.

Finally, Eq. (9) can be expressed as follows:

VP ¼ ~̇RP ¼ ṘP þQNBðω̄uP þ u̇PÞ ð10Þ
where ω̄ = skew-symmetric tensor associated with the axial vector
NωB; and NωB = angular velocity vector for primary motions,
which is found using the angular velocity addition theorem and
the stroke parameters detailed previously.

Aerodynamic Model

Wings are considered surfaces. The boundary layers on the upper
and lower sides of these surfaces are merged into a single layer of
vorticity to form a single vortex sheet, referred to as a lifting sur-
face. Here the terms lifting surface, vortex sheet, and wing may be
used interchangeably. A lifting surface is bound to, and hence
moves and deforms with, a wing. As a result of prescribing the
motion of a lifting surface, there is a discontinuity in the pressure
across it when the distribution of vorticity in it is determined by
imposing the no-penetration condition on it. This discontinuity
produces the aerodynamic forces.

Wakes are also vortex sheets. They form along those edges of
the lifting surfaces where the pressure jump across the surface is
made to vanish, a requirement often labeled the unsteady Kutta
condition. Making the pressure continuous requires vorticity to
be “shed” (emitted) from the lifting surface. After being shed, vor-
ticity moves downstream with the fluid particles so that the pres-
sure in the wake remains continuous. The distribution and position
of vorticity in the force-free wake are determined as part of the
solution.

On the other hand, the additional leading-edge separation (LEV)
plays a fundamental role in flight at small scales (flying insects,
rotating seeds, and small birds); this phenomenon explains the high
lift generated by these natural fliers (Pitt Ford and Babinsky 2013;
Lentink and Dickinson 2009). Although an integral aerodynamic
study of MAV-like flapping wings should include a LEV model,
the numerical framework presented here does not take into account
this phenomenon. Some proofs were carried out by implementing
the on/off mechanism proposed by Roccia et al. (2013) to account
for the leading-edge separation, but the authors found significant
numerical instabilities when the wing was allowed to deform ac-
cording to prescribed deformation patterns presented in this work.
On this basis, it was decided to neglect the LEV phenomenon
(being aware of the restriction that it supposes) and focus on how
these deformation patterns affect lift production.

The proposed model considers a flow of an incompressible fluid
characterized by a very high Reynolds number. The governing
equation is the well-known Laplace’s equation of continuity for
incompressible and nonrotational flows. The velocity at point x
in the flow field, Vðx; tÞ, associated with a straight vortex-line seg-
ment is given by the Biot-Savart law:

Vðx; tÞ ¼ ΓðtÞ
4π

ωðx; tÞ × x1

kωðx; tÞ × x1k22 þ ðδkωk2Þ2
½ωðx; tÞ · ðê1 − ê2Þ�

ð11Þ
where x1 and x2 = position vectors of the point where the velocity is
being computed relative to the ends of the straight vortex segment;
ê1 and ê2 = unit vectors parallel to x1 and x2; ω ¼ x1 − x2; and δ =
cutoff radius (Roccia et al. 2013; Van Garrel 2003) used to elimi-
nate the singularity at points on the vortex line.

In the unsteady vortex-lattice method, a lattice of short, straight
vortex segments of circulation ΓiðtÞ replaces the bound-vortex
sheets. These segments divide the surface of the insect’s wings into

© ASCE 04016079-4 J. Aerosp. Eng.
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a number of area elements (panels). The model is completed by
joining the free-vortex lines, representing the free-vortex sheets,
to the bound-vortex lattice along the edges of separation, such as
the trailing edges and wingtips.

Unlike aircraft wings or helicopter blades, where the trailing
edge and wingtip are well defined, in MAV-like flapping wings in-
spired by biology, such as those discussed in this paper, the trailing
edge and wingtip are not well demarcated and merge into a single
sharp edge (with high curvature) where vortex shedding takes
place. With this in mind, the shedding zone is defined from the
wing root to the tip of the insect wing.

The governing equation of the problem has the following boun-
dary conditions:
• Regularity at infinity, which requires that all disturbances due to

a moving body in a fluid, initially at rest, decay away from the
body and its wakes; and

• The no-penetration condition, which requires that the normal
component of the fluid’s velocity relative to the wing’s moving
surface be zero:

ðVfluid −Vlifting surfacÞ · n̂¼ 0→ ðV∞ þVB þVW −VPÞ · n̂¼ 0

everywhere on the lifting surfaces ð12Þ
where V∞ = free-stream velocity, as mentioned before; VB
and VW = velocities associated with the vorticity in the lifting
surfaces and wakes; VP = velocity of the body’s surface de-
fined in Eq. (10); and n̂ = unit vector normal to the lifting
surface.
Because there are a finite number of panels, and hence unknown

circulations, Eq. (12) can only be satisfied at a finite number of
points; here it is at one point in each panel, called the control point.

Eq. (12) is used to compute VB, which is expressed in terms of
the unknown values for the loop vortex circulations GjðtÞ and the
aerodynamic influence coefficients AijðtÞ (Konstandinopoulos
1981; Preidikman 1998).

Once the resulting linear system is solved for GjðtÞ, the distri-
bution of vorticity in the lifting surface is known at t; then the pres-
sure jump across the lifting surface, Δpðx; tÞ, is calculated by
means of the unsteady Bernoulli’s equation:

∂tφðx; tÞ þ
1

2
Vðx; tÞ · Vðx; tÞ þ pðx; tÞ

ρ
¼ HðtÞ ð13Þ

where ∂t = partial derivative with respect to time at a fixed
location in an inertial reference frame; pðx; tÞ = unknown pressure;
ρ = constant density of the fluid; and HðtÞ has the same value at
every point in the flow field at any instant.

Details of the treatment of each term in Eq. (13) and the full
formulation of the unsteady vortex-lattice method are given by
Konstandinopoulos (1981), Preidikman (1998), Preidikman and
Mook (2000), and Roccia et al. (2013). The last reference contains
all the extensions needed to attack the problem of flapping wings.

Numerical Results

In this section, the authors present some results obtained with the
present numerical model. The computer code was written in Intel
Corporation (2003) and compiled on a Windows platform. Auto-
matic optimization options, which are specific for Intel processors,
were used to enhance performance. For all cases, the code was run
on a desktop computer with an i7 processor (Intel, Santa Clara,
CA), RAM DDR3 of 4 GB, and a hard disk of 2 TB.

Validation of the aerodynamic simulation framework used in this
work was formerly addressed in Roccia et al. (2013). However,

some of these validations are in the next subsection for convenience.
Finally, the authors investigate the influence of different patterns
of deformation on the lift and compare them against a rigid-wing
model.

Validations

In this subsection, two well-known problems documented in
the literature are presented. The first one is the case of a flapping/
twisting wing, and the second one is the case of a hovering wing.

Flapping/Twisting Wing
Neef and Hummel (2001) considered a rectangular wing of
AR ¼ 8, a NACA 0012 (National Advisory Committee for Aero-
nautics) profile, a flapping amplitude of 15°, and a reduced fre-
quency k ¼ 0.1 (k is defined as ωc=2V∞, where ω = the
flapping frequency; c = the wing chord; and V∞ = the free-stream
velocity magnitude). The sinusoidal flapping motion has an out-of-
phase twisting rotation around the leading edge superimposed lin-
early along the span, from 0° at the root to 4° at the tip. The flapping
period, Tf, was discretized into 40 equal time steps.

To describe the flapping/twisting motion of Neef’s and
Hummel’s wing, the authors use another kinematic model that
allows one to prescribe only twist deformation by means of finite
rotations. The systems B and C were located at the leading edge,
and the rotation matrix from C to B is defined as follows:

½QBC� ¼

2
64
cos β 0 − sin β

0 1 0

sin β 0 cos β

3
75 ð14Þ

The angle β determines the orientation of SystemC with respect
to System B; it is associated with the twisting motion. The location
of the origin of System C along the span is determined by ζ, a func-
tion of position along the span. Fig. 4 shows the location of the
reference systems. The angles that describe the motion of the wing
are expressed as follows:

β ¼ −
�
4π
180

��
2ζ
b

�
sinðωtÞ ð15Þ

Fig. 5(a) provides the kinematic pattern. Fig. 5(b) provides two
sets of comparative results for the time-dependent lift coefficient of
the flapping/twisting wing described previously with its fixed root
chord inclined at two constant angles of attack (αroot) of 0° and 4°.
The results of Neef and Hummel were computed by solving the
Euler equations, and the results of Stanford and Beran (2010), us-
ing their own version of the unsteady vortex-lattice method to solve
for the flow past a flat plate. Agreement among the three sets of
results is excellent. The minor differences between the lift com-
puted by Stanford and Beran and the one calculated in this work
lie in the specification of some user-defined parameters, such as the

b

90º
p

ζ

1b̂

2b̂

1ĉ

2ĉ

Center line

Leading edge

Trailing edge

Fig. 4. Location of the reference systems on the flapping/twisting wing
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cutoff radius and differences in the two versions of Bernoulli’s
equation. In this numerical experiment, the wing-tip vortex system
was omitted.

Hovering Wing
Here the lift obtained with the present numerical simulation is com-
pared with the experimental data of Dickinson et al. (1999), whose
experiment was performed with a dynamically scaled model of a
Drosophila melanogaster, dubbed Robofly. The motion of the
model’s two wings was driven by an assembly of six computer-
controlled stepper motors so that each wing was capable of
rotational motion about three axes. The wings were immersed in
a 1 × 2-m cross-section tank filled with mineral oil with density
ρ ¼ 880 kg=m3 and kinematic viscosity ν ¼ 115 cSt, where cen-
tistokes (cSt) is the unit of kinematic viscosity.

The wing performed an insect-like flapping motion at a
frequency of nf ¼ 0.145 Hz, with its tip tracing out a flat
figure-of-eight. The kinematic pattern consisted of a stroke ampli-
tude of 160° and an angle of attack at midstroke of 40° for both
upstroke and downstroke. Fig. 6(a) shows the wing’s kinematics
for a pattern in which the rotation precedes the reversal stroke by

8% of the wing-beat cycle. Fig. 6(b) compares the lifts obtained in
the present simulation and in the experiments.

The present results are very encouraging because they agree
more closely with those of Dickinson et al. than the results reported
in two previously published comparisons: the computational fluid
dynamics (CFD ) study by Sun and Tang (2002), and the 2D aero-
dynamic model developed by Ansari et al. (2006a, b). These results
are significant because they justify use of the nonlinear-unsteady
vortex-lattice method to characterize the 3D aerodynamic behavior
of insects executing different maneuvers.

To further justifyusing a modified version of the unsteady
vortex-lattice method applied to flapping wings, the reader can con-
sult the work of Roccia et al. (2013).

Case Studies

In this subsection, the aerodynamic framework developed is used to
analyze how the lift force changes because of the imposition of
different deformation patterns on a flapping wing.

According to observations performed by Ellington (1984) and
Ennos (1989) on the wing kinematics of hoverflies, involving
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Fig. 5. (a) Flapping and twisting motions (data from Neef and Hummel 2001); (b) comparison of the current lift coefficient with previous numerical
simulations during one cycle
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Fig. 6. (a) Wing kinematics (solid line for the stroke angle; broken line for the angle of rotation); (b) comparison of the present numerical results (solid
line) with the experimental measurements for the Robofly apparatus (circles)
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quantitative measurements of wing-tip paths and qualitative de-
scriptions of wing deformation, twist is increased from zero to
some constant value at the beginning of either downstroke or up-
stroke and kept constant during the midportion of the half-stroke.
Near the end of the half-stroke, the twist starts decreasing until it
becomes zero at the end of the half-stroke. Ellington and Ennos also
detected that the geometric angle of attack varies approximately
linearly along the wing span (termed linear twist). Walker et al.
(2009a) showed that twist is approximately constant in the mid
half-stroke, similar to that described by Ellington and Ennos,
but around the stroke reversal the twist is much larger than at
the mid half-stroke. On the basis of these observations, it was as-
sumed in the current study that the twist deformation varies linearly
along the wing span. The temporal evolution of the spanwise twist
through the stroke cycle can be approximately matched using har-
monic functions. The effect described by Walker and colleagues on
the reversal stroke might be partially modeled by changing the
phase angle between the twist deformation and the wing motion.

Because of the lack of data on how flying insects bend their
wings during the flapping cycle, the authors propose, as a first ap-
proach, to use eigenfunctions to prescribe the bending along the
wing span (normal and tangential to the wing chord) and harmonic
functions to account for the time variation during the stroke cycle.

To carry out such analyses, the robofly kinematics shown in
Fig. 6(a) and an example of the actual kinematics of a fruit fly in
hover (Bos et al. 2007) were used. In all cases, the wing geometry,
the wing-beat frequency, and the fluid density correspond to the
experiment performed by Dickinson et al. which was briefly de-
scribed previously.

The deformation patterns investigated in this section are
(1) spanwise twist; (2) out-of-plane bending (normal to the wing
chord); and (3) in-plane bending (tangential to the wing chord).
Finally, the authors present a case that combines all the aforemen-
tioned deformation patterns in order to increase lift during the entire
stroke cycle.

The generalized coordinates piðtÞ for i ¼ 1; twist; 3, which
control temporal variation in the bending and wing torsion, are
specified by the following harmonic function:

piðtÞ ¼ ai sinðωitþ βiÞ for i ¼ 1; twist; 3 ð16Þ

where ωi = circular frequencies; βi = phase angles between the tem-
poral coordinates piðtÞ and the stroke position angle; and ai = de-
formation amplitudes associated with the wingtip. To obtain the
influence of the deformation pattern on the lift, a parametric study
varying the phase angle βi was performed; specifically, three cases
were considered: (1) the imposition of the deformation preceding
the reversal stroke (advanced deformation pattern, 0 < βi ≤ 0.5π);

(2) the deformation occurring symmetrically with respect to the re-
versal stroke (symmetrical deformation pattern, βi ¼ 0); and (3) the
deformation is delayed with respect to the reversal stroke (delayed
deformation pattern, −0.5π ≤ βi < 0). The parameters in Eq. (16)
are given in Table 1 for the three different deformation patterns
analyzed.

As mentioned previously, the spatial variation associated with
the spanwise-twist deformation is linear, and both out-of-plane and
in-plane bending deformations are described by the eigenfunction
corresponding to the fundamental free-vibration mode of a Euler-
Bernoulli beam perfectly clamped at one end and free to move at
the other [Fig. 3(c)].

The results in the following subsections are from numerical ex-
periments that were carried out on an aerodynamic mesh composed
of 200 panels per wing and a stroke cycle discretized into 100 time-
steps. For reasons concerning the limitations of the current aerody-
namic model, only the first stroke cycle is analyzed. A typical run
of the code for the case studies presented in this section was ap-
proximately 55 min.

A cutoff radius value of δ ¼ 0.15 (15%) was used to compute the
influence of the trailing-edge vortex (TEV) over itself and over the
bounded-sheet. Cutoff radius values smaller than 15% produce too
much noise on lift forces. It is noteworthy that the ad hoc procedure
in this paper uses an embedded cutoff. Furthermore, the modified sin-
gular coreKðR −R0; δÞ in Eq. (11) depends on themagnitude of the
vorticity segment. This feature makes this technique well suited to
treat problems involving structures undergoing complex motions.

Twisting
Fig. 7 shows how the lift is affected by the twist of the wing for
different values of the phase angle. The shaded region around the
lift for the rigid wing represents the maximum possible deviation
that can be achieved by varying the phase angle βtwist between−0.5π and 0.5π.

Essentially, the twist angle increases or decreases the effective
angle of attack, which directly affects the aerodynamic forces. The
timing between the stroke-position angle and the twist angle is pri-
marily responsible for the changes observed in Figs. 7(a and b). For
the robofly kinematics and an advanced twisting pattern, the most
noticeable change in the lift occurs in rotational phases (pronation/
supination) [Fig. 7(a)]. Specifically, this pattern increases lift dur-
ing the reversal stroke and decreases it during downstroke/upstroke.
Whereas the phase angle βtwist varies from 0.5π to −0.5π, the effect
is completely reversed to obtain, for a delayed twisting pattern, an
increase in lift during downstroke/upstroke and almost no change
during the rotational phases.

A similar analysis using the real kinematics of a fruit fly and an
advanced twisting pattern reveals substantially different behavior

Table 1. Summary of Deformation Pattern Configurations

Pattern
Phase angle,
βi (rad)

Circular frequency,
ωi (rad=s)

Amplitude,
ai Denomination

Twisting (i = twist) −0.5π 2πnf 10° Delayed twisting pattern
0.0 2πnf 10° Symmetrical twisting pattern
0.5π 2πnf 10° Advanced twisting pattern

Out-of-plane bending (i ¼ 3) −0.5π 2πnf 0.1R Delayed OPB pattern
0.0 2πnf 0.1R Symmetrical OPB pattern
0.5π 2πnf 0.1R Advanced OPB pattern

In-plane bending (i ¼ 1) −0.5π 2πnf 0.1R Delayed IPB pattern
0.0 2πnf 0.1R Symmetrical IPB pattern
0.5π 2πnf 0.1R Advanced IPB pattern

Note: IPB = in-plane bending; nf ¼ 0.145 Hz [see the experiment carried by Dickinson et al. (1999)]; R ¼ 19 cm; OPB = out-of-plane bending.

© ASCE 04016079-7 J. Aerosp. Eng.
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and less influence of twist on lift. Nevertheless, one can see an
increase in lift over the upstroke; elsewhere in the stroke cycle, lift
is almost not affected by twist.

For the cases presented in this subsection, the influence of the
wing’s twist on mean lift is very small. However, this fact suggests
that a mechanism to twist the wing could be used in devices such
as MAV-like flapping wings in order to maximize lift at certain
moments in the stroke cycle.

Out-of-Plane Bending
In this subsection, the effect of out-of-plane bending on lift is
analyzed. To perform these analyses, two different deformation
patterns related to the imposition of bending are considered. They
differ only in the sign of the wingtip displacement relative to the
wing’s motion. In Fig. 8, the two configurations for out-of-plane
bending (OPB1 and OPB2) are shown.

In the OPB1 configuration, the wingtip displacement is opposite
to the wing motion [Fig. 8(a)]; in contrast, in the OPB2 configu-
ration the wingtip displacement is in the same direction as the wing
motion [Fig. 8(b)]. The analysis presented in this subsection was
performed for both configurations, OPB1 and OPB2, and for three
different values of the phase angle (Table 1).

The analyzed cases show that OPB either increases (OPB1)
or decreases (OPB2) lift throughout the stroke cycle (Fig. 9).
Although the numerical experiments carried out here are restricted
to small deformations, because of the adopted kinematic model, a

significant increment in the mean value of the lift can be observed
(Table 2). Moreover, the results for the cases studied show that
a deformation pattern such as OPB acts globally over the entire
stroke cycle by increasing or decreasing lift; this is substantially
different from twisting, which acts locally over specific areas of
the stroke cycle.

In Table 2, the results show that the configurations (OPB1,
β3 ¼ 0.5π) and (OPB2, β3 ¼ −0.5π) produce maximum lift for
both real and robofly kinematics. The values in parentheses indicate
the percentage difference with respect to the rigid wing. Further-
more, the configuration (OPB2, β3 ¼ −0.5π) produces identical
results to the configuration (OPB1, β3 ¼ 0.5π). This is because
the deformation patterns specified by them are exactly the same.
Also, the lift curves computed with phase angles −0.5π and 0.5π
generate a boundary that contains all lift curves associated with a
phase angle in the interval ½−0.5π; 0.5π�, as can be seen in shaded
region in Figs. 9(a–d)].

In-Plane Bending
In this subsection, the effects of in-plane bending on lift are studied.
Two deformation patterns are analyzed, as before, related to the
imposition of the displacement sign at the wingtip relative to the
wing motion (Fig. 10).

The IPB1 configuration imposes a positive displacement at the
wingtip (in the direction of the unit vector b̂1) during the down-
stroke and a negative value during the upstroke. Conversely, the
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Fig. 7. Influence of twist angle on lift for (a) robofly kinematics; (b) real kinematics of a fruit fly in hover
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Fig. 8. Out-of-plane bending configurations: (a) OPB1 configuration; (b) OPB2 configuration (uwt is the displacement at the wingtip)
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IPB2 configuration imposes a negative displacement at the wingtip
during the downstroke and a positive value during the upstroke. Lift
curves for both IPB1 and IPB2 are presented in Fig. 11.

The effects on lift after imposing in-plane bending are similar
to those observed after applying twist (Fig. 11). On the one hand,
using the robofly kinematics and the configuration (IPB1, β1 ¼
0.5π), the lift slight decreases during the downstroke and slightly
increases at the beginning of pronation. In the second half-stroke,
the lift slightly increases during the upstroke and supination also
[Figs. 11(a and b)]. The configuration (IPB2, β1 ¼ −0.5π) produ-
ces results identical to the results for configuration (IPB1, β1 ¼
0.5π) for the same reasons discussed for the out-of-plane bending.

On the other hand, the real wing motion of a fruit fly in hover
produces almost the same effects on lift as observed for the robofly
kinematics. Some differences can be distinguished in the rotational
phases pronation/supination at t ¼ 0.1Tf and t ¼ 0.6Tf, where the
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Fig. 9. Influence of out-of-plane bending on lift: (a) robofly kinematics for OPB1; (b) robofly kinematics for OPB2; (c) real kinematics for OPB1;
(d) real kinematics for OPB2

Table 2. Mean Lift—Out-of-Plane Bending

Kinematics
Phase angle,

β3

Mean lift (N)

OPB1 configuration OPB2 configuration

Robofly Rigid wing 0.24056 —
0.5π 0.26760 (þ11.20%) 0.22419 (−6.80%)
0.3π 0.26619 (þ10.65%) 0.23264 (−3.30%)
0 0.24355 (þ1.35%) 0.24614 (þ2.30%)

−0.3π 0.23030 (−4.30%) 0.26257 (þ9.10%)
−0.5π 0.22700 (−5.70%) 0.26705 (þ11.00%)

Real Rigid wing 0.37642 —
0.5π 0.40916 (þ8.70%) 0.35000 (−7.01%)
0.3π 0.40957 (þ8.80%) 0.35064 (−6.85%)
0 0.38565 (þ2.50%) 0.36815 (−2.20%)

−0.3π 0.36004 (−4.35%) 0.39282 (þ4.35%)
−0.5π 0.34946 (−7.20%) 0.40645 (þ8.00%)
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Fig. 10. In-plane bending configurations
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current configuration has a more significant incidence [Figs. 11
(c and d)]. Fig. 12 presents a series of results related to the behavior
of the mean lift as a function of the phase angle for both the OPB
and the IPB configurations.

From Fig. 12, it is clear that out-of-plane bending has a much
stronger influence on the mean value of lift than in-plane bending.
The maximum difference between the wing with OPB and the rigid
wing for the mean value of lift is 11.2% for the robofly kinematics
and 8.8% for the real kinematics. As in the case of twist, results
presented in this subsection suggest that in-plane bending can
be used in MAVs for increasing lift at specific stages of the stroke
cycle.

Combined Deformation Patterns (Twisting + OPB + IPB)
In this subsection, the results of a numerical experiment to quantify
the influence of a combination of different deformation types on lift
are presented. Particularly, three cases were carefully selected on
the basis of the results previously obtained for each deformation
pattern in order to maximize lift over the entire stroke cycle.

The analyzed cases differ from each other only in the in-plane
bending configuration; the patterns of twist and out-of-plane bend-
ing are the same for the three cases (Table 3). In Case 3, IPB is zero
throughout the entire flapping cycle. Fig. 13 gives the lifts as func-
tions of time for each configuration in Table 3.

The three cases analyzed in this subsection show a significant
increase in lift along a large portion of the stroke cycle. A more
precise quantification of this increase produced by each case in
Table 3 is obtained by comparing the mean value of the lift against
the rigid-wing model as shown in Table 4.

The numerical results presented in this section are a first attempt
to qualitatively and quantitatively describe the influence of wing
deformations on the lift of flapping wings. Two main deformation
mechanism groups can be identified according to the effect they
have on lift. The first group is global in nature—that is, increases
or decreases in lift occur throughout the entire stroke cycle; such
behavior is characteristic of out-of-plane bending. In contrast, the
second group can produce the same effects in some, but not all,
areas of the stroke cycle or even opposite effects in different areas
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Fig. 12. Mean lift versus phase angle βi: (a) OPB1 and IPB1 configurations for the robofly kinematics; (b) OPB2 and IPB2 configurations for the
robofly kinematics; (c) OPB1 and IPB1 configurations for the real kinematics; (d) OPB2 and IPB2 configurations for the real kinematics
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of the stroke cycle; such behavior is characteristic of twist and
in-plane bending and generally manifests itself as an increase in
lift in the rotational phases (pronation/supination) and a decrease
in the translational phases (downstroke/upstroke) or vice versa
(Figs. 7 and 11).

An important aspect is the way in which different deformation
patterns can be combined to produce a specific effect on the aerody-
namic performance of a MAV. In this subsection, the main goal is to
maximize lift throughout the entire stroke cycle. However, a number
of different effects can be achieved by combining deformation mech-
anisms in different ways. For instance, one can design a deformation
pattern that keeps lift constant during the translational phases and
maximizes it in the rotational phases, or uses a specific deformation
mechanism for the left wing and a different one for the right wing
(asymmetric flight) in order to perform some kind of maneuver.

It is noteworthy that all flow fields associated with the cases
discussed in this work have very slight differences to discern their
relation to the force generation; because of this and in order to
keep the article as short as possible, only the flow field of the wing-
deformation pattern analyzed in this section is presented. Fig. 14(a)

shows how the fluid particles are driven downward as they are shed
from the sharp edges, thereby revealing the presence of lift (robofly
kinematics). In addition, it can be seen that the aerodynamic model
used in this work captures in great detail the simultaneous aerody-
namic interference among the wings and wakes and between the
two wakes.

In order to expose how the wings deform through the stroke
cycle, the shape forms of the wings at several time steps are shown
in Fig. 14(b). The deformation of the wings was amplified four
times to properly visualize the change in geometry of such lifting
surfaces.

Finally, a comprehensive study of wing flexibility on aerody-
namic force generation in flapping wings should include phe-
nomena such as wing area expansion and contraction, wing chord
bending, and modification and reversal of camber between up-
stroke and downstroke, among others (Shyy et al. 1999). Another
aspect to consider is the development of geometrical nonlinear kin-
ematic models in order to remove limitations such as small dis-
placements/rotations originating in elastic deformations.

Discussion and Future Improvements to Overcome
the Limitations of the Model

Although the numerical results obtained using the present model
match experimental observations and predict good results for an
insect in hover (Roccia et al. 2013), it still is an inviscid model
and therefore, has some limitations.

In the computation of the velocity field from the Biot-Savart
law, a control point sometimes happens to be very close to a vortex
segment. The result is an unreasonably high predicted velocity
and therefore an excessive displacement of the aerodynamic nodes
(connectors) defining each vortex segment in the wake. These

Table 3. Configurations of the Cases Studied

Case Twisting Out-of-plane bending In-plane bending Kinematics

1 Advanced pattern Advanced OPB1 pattern Advanced IPB1 pattern Robofly and real
2 Advanced pattern Advanced OPB1 pattern Delayed IPB1 pattern Robofly and real
3 Advanced pattern Advanced OPB1 pattern Null Robofly and real
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Fig. 13. Influence of the combination of different deformation patterns on lift: (a) robofly kinematics; (b) real kinematics

Table 4. Comparison of Mean Lift—Combined Deformation Patterns

Kinematics Case Mean lift (N)

Robofly Rigid wing 0.24056
1 0.26389 (þ9.70%)
2 0.26490 (þ10.10%)
3 0.26455 (þ10.00%)

Real Rigid wing 0.37642
1 0.42106 (þ11.80%)
2 0.42000 (þ11.60%)
3 0.41584 (þ10.50%)
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numerical instabilities are much more significant in flight configu-
rations in which the wakes remain close around the wings, hovering
being an extreme condition (in which the free-stream velocity is
zero). Another significant limitation is related to the common sit-
uation when a hovering wing cuts through its own wake. Such lim-
itations produce a messy wake from the second translation phase
onward, which is directly reflected as a disturbing noise during the
second half stroke of all force time-history showed in this work.

The current aerodynamic model needs to be extended to describe
wakes as collections of vortex particles, which will improve the
numerical treatment and smoothness of wakes (Willis et al. 2007;
Koumoutsakos 2005; Winckelmans and Leonard 1993; Cantaloube
and Huberson 1984) and, therefore, the resolution of aerodynamic
loads. The use of the fast-multipole method to rapidly compute the
velocity contribution from the time-varying wakes is also very de-
sirable (Willis et al. 2007; Greengard and Rohklin 1997).

t / Tf = 0.15

t / Tf = 0.25

t / Tf = 0.35

t / Tf = 0.45

t / Tf = 0.55

t / Tf = 0.65

Motion direction
“downstroke”

Motion direction
“upstroke”

(a)

(b)

Fig. 14.Numerical simulations for Case I: (a) pattern wake for the first half-stroke; (b) wing deformation through the first stroke cycle (amplified by a
factor of four)
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Another limitation is related to the kinematic model, which uses
a virtual beam element based on the Euler-Bernoulli model. Be-
cause of the importance of wing flexibility to the generation of lift,
the current model needs to be extended to investigate the effect of
larger deformations on the aerodynamic performance of flapping-
wing vehicles.

Despite the limitations outlined in the preceding paragraphs,
the modified model presented in this article is an excellent tool
for studying the aerodynamics of flying insects, small birds, and
flapping-wing MAVs inspired by biology.

Conclusions and Future Work

In this paper, the authors presented a computational framework in-
tended to study the influence of wing flexibility on lift generation in
flying insects, small birds, and flapping-wing MAVs.

The aerodynamic model was successfully validated by com-
paring some present results with the numerical and experimental
results of other researchers; the current model is indeed capable of
predicting, with notable accuracy, the forces and the flow field gen-
erated by insects and MAV-like flapping wings.

Some important conclusions can be drawn from the results pre-
sented in the preceding sections. The use of harmonic functions to
describe the temporal evolution of in-plane and out-of-plane bend-
ing has produced interesting effects on lift. Although this model
does not accurately represent the deformation patterns observed
in natural flyers, it can be used as a possible mechanism for regu-
lating the aerodynamic forces in MAV-like flapping wings. From
the cases considered in this work, the following conclusions can be
established:
• Twisting and in-plane bending have a local effect on the lift;

they can produce a variety of effects during the stroke cycle,
from some changes in specific areas to antagonistic effects be-
tween different zones of the flapping cycle, and such influence
mainly depends on the timing between the stroke position angle
and the generalized coordinate that regulates the deformation
pattern;

• Out-of-plane bending, on the contrary, has a global effect on
aerodynamic forces; this deformation produces a stronger influ-
ence on mean lift than that mentioned previously, either by rais-
ing or decreasing it; it was also found that out-of-plane bending
strongly depends on the timing between the stroke position an-
gle and the generalized coordinate governing the time variation
of this deformation pattern; and

• Through an appropriate combination of the mechanisms of de-
formation, it is possible to achieve excellent aerodynamic per-
formance; it was shown that a combination of deformation
patterns, such as those studied in this work, can lead to a clear
increase in lift.
The numerical results presented in this work definitely suggest

the strong likelihood that the UVLM can be a very accurate and
efficient tool to address further investigations. Currently, a numeri-
cal algorithm is being developed to combine the aerodynamic
model presented in this work with a dynamical model based on
a multibody approach that is also being developed by the authors.
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