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Enhancing the nonlinear thermoelectric response of a correlated quantum dot in the Kondo regime
by asymmetrical coupling to the leads
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We study the low-temperature properties of the differential response of the current to a temperature gradient at
finite voltage in a single-level quantum dot including electron-electron interaction, nonsymmetric couplings to the
leads, and nonlinear effects. The calculated response is significantly enhanced in setups with large asymmetries
between the tunnel couplings. In the investigated range of voltages and temperatures with corresponding energies
up to several times the Kondo energy scale, the maximum response is enhanced nearly an order of magnitude
with respect to symmetric coupling to the leads.
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I. INTRODUCTION

During the last decade, the study of nanodevices that convert
heat into work has received great attention due to possible
applications [1]. These quantum thermoelectric machines are
usually considered to be composed of a system of a small
number of degrees of freedom coupled to a set of macroscopic
reservoirs. Among them, semiconducting [2–8] and molecu-
lar [9–18] quantum dots (QDs) play a fundamental role.

A permanent interest in enhancing efficiency and power of
such devices exists. In this sense, the charge and heat currents
through QDs have been the focus of intense research both
experimentally [19–22] and theoretically [19,23–40].

Mahan and Sofo have shown that a delta shape of the trans-
mission function maximizes the efficiency of thermoelectric
devices [23]. Since then, other mechanisms for increasing the
Seebeck coefficient (thermopower), S, have been proposed.
Among them, a time-dependent gate voltage [30], orbital
degeneracy [31,32], negative values of the Coulomb repul-
sion [29], quantum Hall bar with fractional filling factors [40],
and nonlinear (NL) transport effects [27,35,39] have been
investigated.

Recently, Dorda et al. studied the differential thermoelectric
response of a correlated impurity in the nonequilibrium Kondo
regime (KR) at finite voltage [35]. In addition to providing a
fundamental understanding of the system, the authors point
out the potential of QDs as possible nanoscale temperature
sensors. The study was limited to symmetric coupling of the
dot to both leads, and the authors state that further studies
including asymmetric couplings to the leads are required to
fully assess the potential of QD devices for nanoscale sensing
applications.

In this paper, we consider a QD asymmetrically coupled
to the leads and we show that for large asymmetry, which is
expected for molecular QD [41,42], the differential response
of the current to a temperature gradient at finite voltage is
increased nearly by an order of magnitude with respect to the
symmetric case.

Specifically, we investigate NL transport effects on the
differential thermopower. When a bias voltage is applied to
the system, a constant electric current in the steady state is
established. Assuming this regime, we analyzed its response
to an infinitesimal gradient of temperature between the leads,
as sketched in Fig. 1. We restrict our study to the case in which
transport is due to electrons. Vibrational effects were studied
in Refs. [22,27,37], among others. The model is suitable for
molecular QDs (for which asymmetric couplings are the most
usual situation) and semiconducting QDs, in which the tunnel
couplings can be tuned at will [8]. We find that the asymmetry
of the tunneling couplings, α = �L/�R , plays a nontrivial
role and large values of α boost the differential thermopower
in the NL regime. As it will be clarified below, the range of
parameters for this enhancement are within or near the KR.

II. MODEL AND EXPRESSION FOR THE CURRENT

We employ the single impurity Anderson Hamiltonian to
model the molecular or semiconducting QD. It is composed
by a single dot level of energy Ed connected to two metallic
reservoirs. The Hamiltonian is

H = Ednd + Und↑nd↓ +
∑
νkσ

εν
k c

†
νkσ cνkσ

+
∑
νkσ

(
V ν

k d†
σ cνkσ + H.c.

)
, (1)

where nd = ∑
σ ndσ , ndσ = d†

σ dσ , d†
σ creates an electron with

spin σ at the active level of the QD, c
†
νkσ creates a conduction

electron at the left (ν = L) or right (ν = R) lead, and V ν
k

describe the hopping elements between the leads and the QD.
When the temperatures Tν and/or chemical potentials μν of

the reservoirs are different, heat and electric (charge) currents
flow from one lead to the other. The sign of such currents
depend on the temperature and chemical potentials differences
and they are constant in the steady state. As a reference,
we assume Tν = T + γν�T/2 and μν = −eγν�V/2 with
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FIG. 1. Scheme of the model considered, with the electronic level
of the QD and their hybridization to the leads.

the sign γν = −(+) for L(R) being �T > 0 the temperature
difference and �V the bias voltage.

The charge current through the QD is given by [43]

JC = 2eπ

h
A(α)�

∫
dωρ(ω)(fL(ω) − fR(ω)), (2)

where � = �L + �R is the total coupling of the QD to the
leads with �ν = π

∑
k |V ν

k |2δ(ω − εν
k ) (assumed independent

of energy), and A(α) = 4α/(α + 1)2 represents the asymmetry
factor. In addition, fν(ω) = 1/(exp(ω−μν

Tν
+ 1)) is the Fermi

distribution associated to the lead ν, and the spectral function
of the QD per spin is given by ρ(ω).

In the following, we assume U → ∞, which is a realistic
limit for most molecular QDs. In fact, renormalizing the Kondo
energy scale TK , the physics discussed here is the same for
finite U as long as the Kondo peak (the one near the Fermi
energy and of width 2TK � �) in the spectral density of
states is well separated from the charge-transfer peaks at Ed

and Ed + U and voltages and temperatures are such that the
corresponding energy scales eV and T are much smaller than
the charge-transfer excitations (eV,T � |Ed |,Ed + U with
the Fermi energy set as εF = 0). Since the total width of
the charge-transfer peaks in the KR −Ed,Ed + U � � are
∼4� [44,45], and Ed can be tuned in QDs so that Ed ∼ −U/2,
our results are valid for systems such that U � 8�.

III. NONCROSSING APPROXIMATION

To calculate the spectral function of the QD, we use
the noncrossing approximation (NCA) in its nonequilibrium
extension [46,47]. The NCA is equivalent to a sum of an
infinite series of diagrams in perturbations in V ν

k [48,49].
In the KR, it is known to reproduce correctly the relevant
energy scale TK and its dependence on the different parameters.
The out-of-equilibrium NCA approach is one of the standard
techniques for calculating the current in mixed valence systems
within different regimes of the model, and especially within
the KR, where the dot occupancy is near 1. It has proved
to be a very valuable tool for calculating the differential
conductance through different systems such as two-level QDs
and C60 molecules displaying a quantum phase transition or
a nanoscale Si transistor [17,50–53], among others. It also
reproduces correctly the scaling of the conductance for small
bias voltage V and temperature T [54], and is able to repro-
duce finite-energy features in systems, where the numerical

renormalization group has difficulties, like the presence of a
step in the conduction band [55].

Alternatives to NCA for nonequilibrium problems have
some limitations. For example, renormalized perturbation
theory is limited to small ω, V and T [33,56–58] and the
method of the equation of motion [59–62] does not reproduce
correctly the functional dependence of TK on Ed [60,61].

The main limitations of the NCA for the Anderson model
we consider take place for moderate positive Ed and finite
moderate U . For positive Ed , the impurity self-energy has an
unphysical positive imaginary part and as a consequence ρ(ω)
presents a spurious peak at the Fermi energy. Similar spurious
peaks exist for finite magnetic field [46]. For finite U , the
NCA ceases to reproduce correctly the dependence of TK with
parameters, and vertex corrections should be included [63–65].
Since, in this paper, the parameters correspond to the KR
−Ed,Ed + U � � and we take U → ∞, we avoid these
limitations. A minor problem is that the intensity of the Kondo
peak is overestimated by about 15% compared to the value
expected from the Friedel sum rule [66].

More details on the formalism and tricks that we use to
solve the self-consistent integral equations can be found in
Refs. [47,67].

IV. RESULTS

Without loss of generality, we choose our unity of energy to
be � = 1. We present results for Ed = −4, which corresponds
to the KR. We choose a bandwidth of 2D with D = 10. We
define the Kondo temperature (TK ) as the temperature for
which the equilibrium conductance is half of the corresponding
one for the unitary limit, G(T = TK ) = G0/2 with G0 =
2A(α)e2/h. For our parameters, this leads to TK = 0.0086.
Due to the universality of the model in the KR, the results
presented here in units of TK are quite general in this regime
and do not depend on the particular values of �, Ed , or U . For
simplicity, we also take the Boltzmann constant and absolute
value of the electronic charge kB = e = 1 so that the Seebeck
coefficient S and V/T become dimensionless.

The Seebeck coefficient, S, and the electrical conductance,
G, within the linear response regime, �T = �V → 0, are
commonly defined in terms of equilibrium properties [26],
S = −I1(T )/[eT I0(T )], G = e2I0(T ) being

In(T ) = 2π

h
A(α)�

∫
dωωnρ(ω)(−f ′(ω)). (3)

Here, the asymmetry factor α does not modify the equilibrium
spectral density due to the fact that both the charge-transfer
peak near Ed and the Kondo one at the Fermi energy εF = 0
depend on the total coupling � = �L + �R and not on the
ratio α = �L/�R . While the charge-transfer peak has a width
of 4� in the KR [44,45], the width of the Kondo peak is of the
order of TK ∼ D exp(πEd/2�) and its intensity is fixed by the
Friedel sum rule ρ(0) ∼ 1/π�.

In Fig. 2(b), we show the spectral density for two extremely
different values of α. As explained above, they are identical.
Thus, the equilibrium conductance is strongly suppressed for
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FIG. 2. (a) Thermopower as a function of temperature for two
values of the asymmetry ratio α at equilibrium (�V = �T = 0). The
inset shows the differential conductance as a function of bias voltage
for two values of α (1 and 60). (b) Spectral density as a function of
energy at equilibrium for the same α as in (a). (c) Spectral density as
a function of energy for V/TK = 10 for the same α as in (a). In all
cases, T/TK = 0.05.

high values of the asymmetry α [due to the factor A(α) in
Eq. (2)] while the Seebeck coefficient remains unchanged due
to the cancellation of A(α) in I1(T )/I0(T ) as it can be seen in
the left panel of Fig. 2.

However, when finite values of the bias voltage are consid-
ered, nontrivial effects arise, which depend on α. The Kondo
resonance in the spectral density splits in two peaks, located
at μν [46,51]. The weights of both peaks are affected by α.
While they are approximately equal in the symmetric case,
α = 1, the one at μR (μL) decreases (increases) for increasing
α. For α � 1, the QD is nearly in equilibrium with the left
lead and the spectral density shows the full Kondo resonance
shifted to the chemical potential μL, see Fig. 2(c). On the other
hand, the differential conductance, G(�V ) = dJC/d(�V ),
is an even function of the bias voltage for α = 1 due to
left-right reflection symmetry, but in the case of α � 1 it mim-
ics the spectral density, G(�V ) ∼ e2

h
π�A(α)ρ(−e�V/2),

see inset of Fig. 2(a). Similar conclusions were drown in
Refs. [24,44].

In what follows, we focus on the analysis of NL effects
on the differential Seebeck coefficient and its dependence on
α. In analogy to bulk systems, when a temperature difference
�T is applied between both sides of a QD, keeping JC =
0, a voltage difference �V proportional to �T appears, S =
−�V

�T
|JC=0. NL effects following the line JC = 0 have already

been addressed [24,27,31,34,39]. However, Dorda et al. have
recently analyzed the NL regime across the line JC 
= 0,

S = −d(�V )

d(�T )

∣∣∣∣
JC=const.

= ∂JC

∂(�T )

/ ∂JC

∂(�V )
, (4)

which is expected to be a measurable quantity that con-
tributes to the better knowledge of the two decoherence
processes generated by the bias voltage and temperature, and
can be important for applications in nanoscale temperature
sensing [35].
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FIG. 3. Differential thermopower as a function of temperature
for several values of the asymmetry α, (a) with e�V/TK = 10 and
(b) with e�V/TK = −10.

We compute numerically both ∂JC/∂(�V ) from Eq. (2) and
∂JC/∂(�T ) using

∂JC

∂(�T )
= 2eπ

h
A(α)�

∫
dω

[
1

2T
ρ(ω)

∑
ν

(ω − μν)
dfν

dω
(ω)

+ (fL(ω) − fR(ω))
∂ρ(ω)

∂(�T )

]
. (5)

We will show that the differential thermopower at finite bias
voltage as described by Eq. (4) is largely enhanced for large
asymmetry between the tunnel couplings.

In Fig. 3, we show the results for the differential Seebeck
coefficient at finite voltage as a function of temperature and
for several values of the asymmetry factor α. For T � TK , S
does not depend on α independently of the sign of the current.
In fact, at high T there is no Kondo peak in the spectral density
and the electronic transport is holelike, mediated by the charge
transfer peak located at ω ∼ Ed < 0, that has a width of the
order of 4� [44,45], and is nearly not affected for the bias
voltage considered in the figure, of the order of a few TK . For
finite U , the other charge transfer peak at ω ∼ Ed + U > 0,
neglected in our approach, can modify the results. However,
we are interested in the regime of temperatures of the order
of a few times TK or less. For these temperatures, only the
spectral density at low energies is relevant due to the small
window of the Fermi functions. One can observe a significant
increment of the magnitude of S for larger values of α as
compared to the symmetric case. In particular for V = −10TK

and temperatures of the order of TK or below it, |S| is enhanced
by a factor near 5 as the asymmetry α increases from 1
(symmetric case) to 60.

V. INTERPRETATION AND FURTHER RESULTS

To understand the behavior of the thermoelectric response
as α is varied, we analyze qualitatively the low-temperature
features of the charge current in Eq. (2). As we have showed
in Fig. 2, for large enough asymmetry the dot tends to be in
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FIG. 4. Kondo resonance in the QD spectral density under a finite
bias voltage for several values of the asymmetry ratio α. (a) Positive
voltage, μL/TK =5, TK =0.008. (b) Negative voltage, μL/TK =−5,
TK = 0.01.

equilibrium with the left lead. The evolution of the spectral
density with α is explicitly shown in Fig. 4 for both signs of
the applied bias voltage.

If the dot is in equilibrium with the left lead, then∫
dωρ(ω)fL(ω) does not change with the applied voltage. Us-

ing this assumption and standard Sommerfeld expansion [22]
for the current in Eq. (2), the low temperature behavior of the
differential Seebeck coefficient reads as follows:

S(T ) ∼ [ρ(μR)]−1

[
−π2T

6e

∑
ν

ρ ′(μν)

+
∫ μL

μR

dωh(ω) + π2T 2

6e
(h′(μL) − h′(μR))

]
, (6)

being h = ∂ρ/∂�T and A′ ≡ dA/dω. Figure 4 demonstrates
that

∑
ν ρ ′(μν) in the first term of the right-hand side of

Eq. (6) increases as the coefficient α does. On the other
hand, the value of ρ(μR) continuously decreases when α is
increased. Interestingly, both tendencies contribute to boost
the coefficient S .

While the temperature dependence of S is qualitatively the
same for positive as well as negative bias voltage, as it is shown
in panel (a) (�V > 0) and (b) (�V < 0) of Fig. 3, the different
intensity between them is related to the relative sign of the
different contributions in Eq. (6). We have verified that for
α > 5, the magnitude h(ω) and h′(ω) are positive within the
relevant energy range, and therefore, the second term of Eq. (6)
is also positive.

In Fig. 5, we separately show for a positive value of voltage,
the first and second contributions to S from Eq. (5), namely
S1 and S2, respectively. While the total magnitude of S is still
larger for the asymmetric case, it is clear that both contributions
partially compensate each other. However, for negative voltage
(not shown) both terms have the same negative sign and boost
even further the magnitude ofS . The chain in sign is clearly due
to the third (last) term in Eq. (6). Therefore, larger intensity of
the differential response is obtained for μL < 0, that is, when
the current flows from the less coupled (right) lead to the other
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FIG. 5. Contributions to S of the first and second members of
Eq. (5), S1 and S2, respectively, as a function of temperature and for
positive bias voltage.

one. This observation can be used to determine experimentally,
in a very simple way, to what side (L or R) the molecule or
QD is closer or more coupled.

In Fig. 6, we show the behavior of the thermopower at two
different temperatures and for several values of the asymmetry
factor α as a function of the applied bias voltage. As a first
observation, for the bias voltage considered here, |e�V | ∼ TK ,
the sign of S is negative in agreement with Fig. 3 for T < TK ,
due to the electronic character of the transport.

In the case of symmetric couplings, α = 1, S as defined
in Eq. (4) is characterized by an even function of the applied
bias voltage [68]. The minimum at e�V = 0 is due to finite
temperature effects. From Eq. (5), S is expected to vanish in
the zero temperature limit. This tendency can be observed
by a comparison of the minimum value of S for the two
selected temperatures in Fig. 6, T = 0.2TK and T = 0.05TK .
On the other hand, for large values of e�V , the argument
of Eq. (5) tends to be an odd function within the relevant
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FIG. 6. Differential thermopower as a function of the bias voltage
in units of TK for several values of the asymmetry ratio α and at low
temperature.
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range of energies. Note that the latter can be written as
[ρ(ω + e�V/2) + ρ(ω − e�V/2)]ωf ′(ω) in case of the first
contribution [see Fig. 2(c)]. Regarding the second one, we
note that hν(ω) has structure at both μν and, therefore, the
product (fL(ω) − fR(ω))h(ω) approaches an odd function of
the energy.

On the other hand, the case of α � 1 is quite different.
While the behavior of S for |e�V |/TK � 1 is still governed
by temperature effects, its dependence on e�V has no parity.
The situation of finite values of the bias voltage, particularly at
values of a few times TK , is more involved. As soon as |e�V |
reaches TK , the absolute value of S is largely increased. Once
again, the mechanism behind this behavior is the displacement
of ρ(ω) toward ω ∼ μL. The same mechanism that explained
the behavior of S in Fig. 3 applies in the case of the voltage
dependence. Large values of S are obtained for large enough
asymmetry. In particular, the increment is even larger when
negative voltage is considered as explained before. Note that
for negative V , an increase in |S| for more than an order of
magnitude is obtained as α increases from 1 to 60.

VI. CONCLUSIONS

In summary, we have investigated theoretically the differen-
tial response of the electric current at finite bias voltage, when
an infinitesimal gradient of temperature is applied to a system
of a molecular or semiconducting QD coupled asymmetrically

to two conducting leads. We have concentrated on the elec-
tronic contribution to the differential Seebeck coefficient S ,
leaving aside phonon contributions.

We show that S is strongly enhanced for a large asym-
metry between the tunnel couplings. In particular, we find an
enhancement of S by an order of magnitude at temperatures
of the order of a fraction of the Kondo temperature TK and
bias voltage eV of the order of several times kBTK . This
becomes relevant for the standard cryogenic experimental
conditions, for which the Kondo effect emerges. In Sec. V,
we have provided an explanation of the nontrivial mechanism
behind our findings and we believe that it could be useful for
experimental purposes. Our findings can also be important for
nanoscale temperature sensing.

Although the calculation of the figure of merit is beyond
the scope of this paper, our results suggest that molecular
QDs, for which large tunneling asymmetries are expected, or
semiconducting QDs in which a large asymmetry can be tuned
easily, would be the most efficient quantum machines operating
as both heat engines or refrigerators.
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