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In this note we present a simple condition upon which a formal grammar produces a 
context-free language.

© 2017 Published by Elsevier B.V.

Context-free grammars are one of the most investigated families of grammars in formal language theory. They provide 
 precise mechanism for describing the basic recursive structure of sentences in human language, and also have played a 
entral role in compiler technology, as in the implementation of parsers, for example. In this note we give a characterization 
f context-free languages (i.e. languages generated by context free grammars), which is based on Greibach [1] normal form.

In order to state the result we revise the basic definitions. A grammar is a 4-tuple G = (V , T , S, P ), where V and T are 
nite sets of variables and terminals, respectively, S ∈ V is the start symbol and P is a finite set of productions of the form 
→ β , with α, β ∈ (V ∪ T )∗ and α non-empty. We assume that V and T are disjoint. The grammar G is context-free if all 

ts productions are of the form A → β where A ∈ V and β ∈ (V ∪ T )∗ . A language L is context-free if L can be generated by 
 context-free grammar. Let ε denote the empty string.

heorem 1. Let L be a language without ε. Then L is context-free if an only if L can be generated by a grammar for which every 
roduction is of the form α → aβ , where α is a non-empty string of variables, a is a terminal and β is a (possibly empty) string of 
ariables.

Before we prove the theorem, we need to state some notation and previous results. Let G = (V , T , S, P ) be a grammar. 
e write γ1 ⇒

G
γ2 when there exist λ1, λ2 ∈ (V ∪ T )∗ and a production α → β in P such that γ1 = λ1αλ2 and γ2 = λ1βλ2. 

or n ≥ 0, we write γ1
n⇒
G

γ2 when there exist α1, . . . , αn+1 such that

γ1 = α1, γ2 = αn+1 and αi ⇒
G

αi+1, i = 1, . . . ,n

note that γ1
0⇒
G

γ2 iff γ1 = γ2). We use ∗⇒
G

to denote the reflexive and transitive closure of ⇒
G

. As usual, we define the 

anguage generated by G to be

L(G) = {w ∈ T ∗ : S
∗⇒
G

w}.
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Let G = (V , T , S, P ) be a grammar for which every production is of the form α → aβ , where α is a non-empty string of
variables, a is a terminal and β is a (possibly empty) string of variables. We will write

γ1 ⇒
G

γ2 (leftmost)

when there exist λ1 ∈ T ∗ , λ2 ∈ (V ∪ T )∗ and a production α → β such that γ1 = λ1αλ2 and γ2 = λ1βλ2. We write

γ1
n⇒
G

γ2 (leftmost)

when there exist α1, . . . , αn+1 such that

γ1 = α1, γ2 = αn+1 and αi ⇒
G

αi+1 (leftmost), i = 1, . . . ,n.

Lemma 2. Let G = (V , T , S, P ) be a grammar for which every production is of the form α → aβ , where α is a non-empty string of

variables, a is a terminal and β is a (possibly empty) string of variables. Suppose β1x1β2x2 . . . βkxkβk+1
n⇒
G

w, with w ∈ T ∗ , n ≥ 1,

k ≥ 0, β1, . . . , βk+1 ∈ V ∗ , x1, . . . , xk ∈ T ∗ − {ε}. There exist w1, . . . , wk+1 ∈ T ∗ and n1, . . . , nk+1 ≥ 0 such that

1. βi
ni⇒
G

wi (leftmost), for i = 1, . . . , k + 1.

2.
∑k+1

i=1 ni = n.
3. w1x1 w2x2 . . . wkxk wk+1 = w.

Proof. We proceed by induction on n. The case n = 1 is trivial. Assume the result is valid for n and let

β1x1 . . . βkxkβk+1
n+1⇒

G
w.

Then there exist j ≥ 1 and δ1, δ2, α ∈ V ∗ such that β j = δ1αδ2, α → aγ ∈ P and

β1x1 . . . x j−1δ1aγ δ2x j . . . βkxkβk+1
n⇒
G

w.

By the inductive hypothesis, we have that there are w1, . . . , wk+2 ∈ T ∗ and n1, . . . , nk+2 ≥ 0 such that

1. βi
ni⇒
G

wi (leftmost) for i < j, δ1
n j⇒
G

w j (leftmost), γ δ2
n j+1⇒

G
w j+1 (leftmost) and βi

ni+1⇒
G

wi+1 for i > j (leftmost).

2.
∑k+2

i=1 ni = n.
3. w1x1 . . . x j−1 w jaw j+1x j . . . wk+1xk wk+2 = w .

So

β j = δ1αδ2
n j⇒
G

w jαδ2
1⇒
G

w jaγ δ2
n j+1⇒

G
w jaw j+1

and then we have

β j
n j+n j+1+1⇒

G
w jaw j+1 (leftmost).

The proof easily follows from this. �
Corollary 3. If α n⇒

G
w then α n⇒

G
w (leftmost).

Proof. It is a straightforward inductive argument. �
Proof of Theorem 1. Let L be a context-free language. We recall that a grammar G is in Greibach Normal Form if every
production rule is of the form A → aβ where A ∈ V , a ∈ T and β ∈ V ∗ . If L is a context-free language without ε then there
is a grammar in Greibach Normal Form G such that L = L(G) (see [1]), which proves one direction of Theorem 1.

Suppose that L = L(G) where G is a grammar such that every production rule is of the form α → aβ where α ∈ V ∗ \ {ε},
a ∈ T and β ∈ V ∗ . Define the following sets:

NG = {α ∈ V ∗ : α → aβ ∈ P for some a ∈ T , β ∈ V ∗},
MG = {β ∈ V ∗ : there is α ∈ NG such that β is a prefix of α and β �= α}.
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For α ∈ NG and β ∈ MG let Vα,β be a new variable. Let Ḡ = (V̄ , T , P̄ , V S,ε), where

V̄ = {Vα,β : α ∈ NG and β ∈ MG},
nd P̄ = P̄1 ∪ P̄2 where P̄1 = {Vα,β → a : α → aβ ∈ P and β ∈ MG } and

P̄2 = {Vα,β → aVβ1,τ1 Vτ1β2,τ2 . . . Vτk−1βk,τk : k ≥ 1,

α → aβ1 . . . βkβk+1 ∈ P , τi ∈ MG and βi �= ε for i = 1, . . . ,k,

β1 ∈ NG , τiβi+1 ∈ NG for i = 1, . . . ,k − 1, and β = τkβk+1 ∈ MG}.
The following example shows the construction of the grammar Ḡ for a given grammar G .

xample 4. Let G = (V , T , P , S) where V = {S, A, B}, T = {a, b, c, d} and P is the set of following production rules

S → aAB

A → aAB

AB → c

B B → d

B → b

According to the previous definition we have

NG = {S, A, B, AB, B B} and MG = {ε, A, B}.
he set of production rules P̄ is given by

V S,ε → aV A,ε V B,ε V A,ε → aV A,ε V B,ε V AB,ε → c

V S,ε → aV A,A V AB,ε V A,ε → aV A,A V AB,ε V B B,ε → d

V S,ε → aV A,B V B B,ε V A,ε → aV A,B V B B,ε V B,ε → b

V S,ε → aV AB,ε V A,ε → aV AB,ε

V S,A → aV A,ε V B,A V A,A → aV A,ε V B,A

V S,A → aV A,A V AB,A V A,A → aV A,A V AB,A

V S,A → aV A,B V B B,A V A,A → aV A,B V B B,A

V S,A → aV AB,A V A,A → aV AB,A

V S,B → aV A,ε V B,B V A,B → aV A,ε V B,B

V S,B → aV A,A V AB,B V A,B → aV A,A V AB,B

V S,B → aV A,B V B B,B V A,B → aV A,B V B B,B

V S,B → aV AB,B V A,B → aV AB,B

V S,B → aV A,ε V A,B → aV A,ε

bserve that even when the size of P̄ is much larger than the size of P , most of the new production rules are useless 
either unreachable or unproductive).

We will prove that, for any grammar G under the hypothesis of Theorem 1, L(G) = L(Ḡ). Indeed we will prove the 
ollowing more general result from which L(G) = L(Ḡ) follows.

laim 5. If α ∈ V ∗ \ {ε} and w ∈ T ∗ then α ∗⇒
G

w iff there exist k ≥ 1, βi �= ε for i = 1, . . . , k, and τ1, . . . , τk−1 ∈ MG , such that 

1 ∈ NG , τiβi+1 ∈ NG for i = 1, . . . , k − 1,

α = β1 . . . βk and Vβ1,τ1 Vτ1β2,τ2 . . . Vτk−1βk,ε
∗⇒̄
G

w

Original text:
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We remark that in the case k = 1 the expression Vβ1,τ1 . . . Vτk−1βk,ε
∗⇒̄
G

w should be interpreted as Vβ1,ε
∗⇒̄
G

w .

In order to prove this, first we will see that, for every n, α n⇒
G

w implies there exist β1, . . . , βk �= ε and τ1, . . . , τk−1 with

k ≥ 1 such that

α = β1 . . . βk and Vβ1,τ1 . . . Vτk−1βk,ε
∗⇒̄
G

w,

and we proceed by induction on n.
If n = 1 then we have α ⇒

G
w , which implies α → w ∈ P . By definition we have Vα,ε → w ∈ P̄ and then Vα,ε

∗⇒̄
G

w .

Now assume the result is valid for n and let α n+1⇒
G

w . By Corollary 3, we may assume that this is a leftmost derivation.

Then there are ᾱ, δ, γ ∈ V ∗ and w̄ ∈ T ∗ such that

α = ᾱγ , ᾱ → aδ ∈ P , w = aw̄ and δγ
n⇒
G

w̄.

So, by the inductive hypothesis, there exist β1, . . . , βk �= ε and τ1, . . . , τk−1 with k ≥ 1 such that

δγ = β1 . . . βk and Vβ1,τ1 . . . Vτk−1βk,ε
∗⇒̄
G

w̄.

We have here two possible situations, either δ is a prefix of β1 with δ �= β1, or β1 is a prefix of δ.
Case δ is a prefix of β1 and δ �= β1. Let ϕ ∈ V ∗ \ {ε} be such that β1 = δϕ . Observe that, in this case, γ = ϕβ2 . . . βk . We

take

k′ = k + 1
β ′

1 = ᾱ
τ ′

1 = δ

β ′
2 = ϕ

β ′
i = βi−1 for i = 3, . . . ,k + 1

τ ′
i = τi−1 for i = 2, . . . ,k

So we have

α = ᾱγ = β ′
1ϕβ2 . . . βk = β ′

1β
′
2β

′
3 . . . β ′

k+1

and since ᾱ → aδ and δ ∈ MG (δ is a prefix of β1 and δ �= β1)

Vβ ′
1,τ ′

1
→ a ∈ P̄

Also note that Vτ ′
1β ′

2,τ ′
2
= Vβ1,τ1 and then

Vβ ′
1,τ ′

1
Vτ ′

1β ′
2,τ ′

2
Vτ ′

2β ′
3,τ ′

3
. . . Vτ ′

kβ
′
k+1,ε

1⇒̄
G

aVβ1,τ1 Vτ1β2,τ2 . . . Vτk−1βk,ε
∗⇒̄
G

aw̄ = w.

Case β1 is a prefix of δ. If δ = β1 . . . βk , then γ = ε and α = ᾱ. Since ᾱ → aδ ∈ P , we have

α → aβ1 . . . βk ∈ P

which implies

Vα,ε → aVβ1,τ1 Vτ1β2,τ2 . . . Vτk−1βk,ε ∈ P̄

and then we have

Vα,ε ⇒̄
G

aVβ1,τ1 Vτ1β2,τ2 . . . Vτk−1βk,ε
∗⇒̄
G

aw̄ = w.

If δ �= β1 . . . βk , then γ �= ε. Since β1 is a prefix of δ and γ �= ε we have that k ≥ 2 and there is 1 ≤ j ≤ k − 1 and
ϕ, ψ ∈ V ∗ with ψ �= ε such that δ = β1 . . . β jϕ and β j+1 = ϕψ . We take

β ′
1 = ᾱ

τ ′
1 = τ jϕ

β ′
2 = ψ

β ′
i = β j+i−1 for i = 3, . . . ,k − j + 2

τ ′
i = τ j+i−1 for i = 2, . . . ,k − j + 1

′
Observe that τ jϕ is a proper prefix of τ jβ j+1 so we have τ1 ∈ MG . Since ᾱ → aβ1 . . . β jϕ , by definition we have
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Vβ ′
1,τ ′

1
→ aVβ1,τ1 Vτ1β2,τ2 . . . Vτ j−1β j ,τ j ∈ P̄

and then

Vβ ′
1,τ ′

1
Vτ ′

1β ′
2,τ ′

2
. . . Vτ ′

k−1β ′
k,ε

⇒̄
G

aVβ1,τ1 . . . Vτ j−1β j ,τ j Vτ jϕψ,τ j+1 . . . Vτ ′
k−1β ′

k,ε
∗⇒̄
G

w.

To see the other direction we will prove by induction on n that if there are β1, . . . , βk �= ε and τ1, . . . , τk−1 such that

Vβ1,τ1 Vτ1β2,τ2 . . . Vτk−1βk,ε
n⇒̄
G

w

then β1 . . . βk
∗⇒
G

w .

If n = 1 then k = 1 and Vβ1,ε → w ∈ P̄ which implies β1 → w ∈ P and then β1
∗⇒
G

w .

Now assume the result is valid for n and suppose there exist β1, . . . , βk and τ1, . . . , τk−1 such that

Vβ1,τ1 . . . Vτk−1βk,ε
n+1⇒̄

G
w

Without loss of generality, we may assume that the above derivation is leftmost. So there exist a ∈ T , w̄ ∈ T ∗ and ζ ∈ V̄ ∗
such that w = aw̄ , and

Vβ1,τ1 → aζ ∈ P̄ , (1)

ζ Vτ1β2,τ2 . . . Vτk−1βk,ε
n⇒̄
G

w̄. (2)

If ζ = ε then by definition of P̄ we have

β1 → aτ1 ∈ P ,

and by the inductive hypothesis on (2)

τ1β2 . . . βk
∗⇒
G

w̄.

Then we have

β1β2 . . . βk ⇒
G

aτ1β2 . . . βk
∗⇒
G

aw̄ = w.

If ζ �= ε then there are β ′
1, . . . , β

′
m �= ε and τ ′

1, . . . , τ
′
m ∈ V ∗ such that ζ = Vβ ′

1,τ ′
1
. . . Vτ ′

m−1β ′
m,τ ′

m
and

Vβ1,τ1 → aVβ ′
1,τ ′

1
. . . Vτ ′

m−1β ′
m,τ ′

m
∈ P̄

which implies that there is β ′
m+1 such that

β1 → aβ ′
1 . . . β ′

mβ ′
m+1 ∈ P and τ1 = τ ′

mβ ′
m+1.

Then we can rewrite (2) as

Vβ ′
1,τ ′

1
. . . Vτ ′

m−1β ′
m,τ ′

m
Vτ ′

mβ ′
m+1β2,τ2

. . . Vτk−1βk,ε
n⇒̄
G

w̄.

By the inductive hypothesis we have

β ′
1 . . . β ′

m(β ′
m+1β2) . . . βk

∗⇒
G

w̄

So

β1 . . . βk ⇒
G

aβ ′
1 . . . β ′

mβ ′
m+1β2 . . . βk

∗⇒
G

aw̄ = w

which concludes the proof of Claim 5.
Now by Claim 5 we have

L(G) = {w ∈ T ∗ : S
∗⇒
G

w} = {w ∈ T ∗ : V S,ε
∗⇒̄
G

w} = L(Ḡ)

and we have proved Theorem 1. �
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