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Argentina

Received 18 January 2018 / Received in final form 26 March 2018
Published online 23 May 2018 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2018

Abstract. We analyze the stability of synchronized periodic motion for two coupled oscillators, representing
two interacting oscillation modes in a nonlinear vibrating beam. The main oscillation mode is governed
by the forced Duffing equation, while the other mode is linear. By means of the multiple-scale approach,
the system is studied in two situations: an open-loop configuration, where the excitation is an external
force, and a closed-loop configuration, where the system is fed back with an excitation obtained from the
oscillation itself. The latter is relevant to the functioning of time-keeping micromechanical devices. While
the accessible amplitudes and frequencies of stationary oscillations are identical in the two situations, their
stability properties are substantially different. Emphasis is put on resonant oscillations, where energy trans-
fer between the two coupled modes is maximized and, consequently, the strong interdependence between
frequency and amplitude caused by nonlinearity is largely suppressed.

1 Introduction

The joint dynamics of mutually interacting oscillators is a
problem of high relevance to broad areas within physics,
chemistry, and biology, as well as to technological applica-
tions [1,2]. In the field of Continuum Mechanics, coupled
oscillator systems are at the basis of the modeling of vibra-
tions in structures of all kinds. The oscillatory dynamics
of solid beams, which was one of the foundational prob-
lems of continuum mechanics [3], has recently regained
much interest in view of its applications to microtech-
nologies [4–6]. In fact, micromechanical oscillators in the
form of tiny silica bars – which are readily built during
circuit printing, and are actuated by very small electric
fields – can be incorporated to miniaturized equipment,
as components of sensors and time-keeping devices [7].

To overcome the effects of thermal and electronic noise,
micromechanical oscillators must work within a regime
of large oscillation amplitude, where nonlinear effects are
unavoidable [8]. This brings about an undesirable inter-
dependence between the oscillation frequency and the
amplitude, which is obviously noxious for time keeping-
devices: any amplitude fluctuation – caused, for instance,
by noise, or by uncontrolled changes of a parameter –
will bring about a variation in the frequency, with the
consequent loss of precision in the clock. However, for
micromechanical oscillators consisting of a beam clamped
at its two ends, it has been recently discovered that the
frequency-amplitude interdependence can be drastically
reduced if the main oscillation mode resonates with a
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higher-harmonic mode – a phenomenon called internal
resonance. Under such conditions, the main oscillation
mode is able to efficiently transfer any energy surplus
to the other mode, thus damping the effect of amplitude
fluctuations and stabilizing the frequency [5].

Internal resonance is a well-known phenomenon in the
vibration of solid bodies, where two (or more) oscillation
modes synchronize with each other thanks to the cou-
pling which derives from nonlinearity [9]. Its application
to frequency stabilization, as described in the preceding
paragraph, naturally requires that these synchronized res-
onant oscillations are stable forms of periodic motion. In
this paper, we analyze the stability of synchronized motion
of two oscillation modes in the non-standard situation
where the main mode is excited by a force generated by
the oscillator itself. In fact, for the system to generate an
autonomous frequency – as required in any time-keeping
device [10] – a conditioned version of a signal read from
the same oscillator is reinjected as excitation. This self-
sustained (closed-loop) configuration contrasts with the
standard situation of an externally forced oscillator (open-
loop configuration), where the frequency is fixed from
outside the system.

In Section 2, we introduce the two-oscillator model
used to describe the resonant interaction between the
two modes. Focusing on a solid beam clamped at its
two ends [5], the main mode is represented by a nonlin-
ear Duffing oscillator – much as for a clamped-clamped
vibrating string [11,12]. The higher-harmonic mode, on
the other hand, is linear. Equations of motion for the
(slow) dynamics of oscillation amplitudes and phases are
formulated within the multiple-scale approximation [9].

https://epjb.epj.org/
https://doi.org/10.1140/epjb/e2018-90030-0
mailto:zanette@cab.cnea.gov.ar


Page 2 of 7 Eur. Phys. J. B (2018) 91: 89

Section 3 begins with the analysis of stationary oscilla-
tions, which are identical for both closed- and open-loop
configurations. Then, the stability in the standard open-
loop configuration is studied as a reference case and,
finally, stability in the closed-loop configuration is ana-
lyzed. In view of the application to frequency stabilization
in nonlinear micromechanical oscillators, the study is
focused in the parameter ranges where internal resonance
is realized. Section 4 is devoted to a summary of our results
and to some final remarks.

2 Two-oscillator model

As advanced in the Introduction, a traditional model
for the interaction between two oscillation modes in a
vibrating beam consists of two coupled one-dimensional
mechanical oscillators, described by coordinates x1(t) and
x2(t). In our case, the main oscillation mode is repre-
sented by an oscillator of natural frequency ω1 with a
cubic (Duffing) nonlinearity in its restoring force. By a
suitable choice of time units, we fix ω1 = 1. Moreover, the
main oscillation mode is excited by a harmonic force FΩ(t)
with frequency Ω. The secondary, higher-harmonic mode,
in turn, is represented by a linear oscillator with natural
frequency ω2. The interaction between the two oscillators
is assumed to be linear, as derived, for instance, from a
bilinear potential Vint(x1, x2) = Jintx1x2. The equations
of motion, normalized by the respective masses m1,2, are

ẍ1 + γ1ẋ1 +

(
1 +

4

3
βx21

)
x1 = Jx2 + fΩ(t), (1)

and

ẍ2 + γ2ẋ2 + ω2
2x2 = Jx1, (2)

where γ1,2 are the damping coefficients per unit mass, β is

the Duffing coefficient, fΩ(t) = m−1
1 FΩ(t), and x2(t) has

been rescaled in such a way that the coupling coefficient
J is the same in both equations.

Naturally, due to nonlinearity, equations (1) and (2)
cannot be exactly solved. An approximate solution, how-
ever, can be systematically constructed by assuming that
the time scales associated with oscillations, of order ω−1

1,2,

Ω−1, are much shorter than the time scales associated
with the relaxation of oscillation amplitudes and phases
toward their stationary values, of order γ−1

1,2 . This assump-
tion is indeed satisfied in a broad class of important
applications, including the dynamics of micromechani-
cal oscillators, for which the quality factor Q = ω/γ can
be of order 104 or larger [5]. Under these conditions,
it is possible to propose solutions of the form x1,2(t) =
A1,2(t) cos[Ωt + φ1,2(t)], where A1,2(t) and φ1,2(t) evolve
over scales much longer than the oscillation periods. The
first-order approximation, which is obtained keeping har-
monic contributions of frequency Ω, yields the following

equations for amplitudes and phases:

2ΩȦ1 = −γ1ΩA1 + JA2 sin(φ2 − φ1)− fs,
2ΩA1φ̇1 = (1−Ω2 + βA2

1)A1 − JA2 cos(φ2 − φ1)− fc,
2ΩȦ2 = −γ2ΩA2 − JA1 sin(φ2 − φ1),

2ΩA2φ̇2 = (ω2
2 −Ω2)A2 − JA1 cos(φ2 − φ1), (3)

where fc,s are defined by introducing the decomposition
fΩ(t) = fc cos(Ωt + φ1) + fs sin(Ωt + φ1). Their explicit
form will be obtained later for each case of interest. The
multiple-scale approximation used to obtain equations (3)
formally requires that all the forces acting on the oscilla-
tors are small as compared to the linear restoring force,
and that all the frequencies involved in the problem are
similar to each other, ω1 ≈ ω2 ≈ Ω [9]. Comparison with
numerical solutions to the equations of motion shows
however that, in practice, the method yields excellent
approximations over much less stringent conditions [13].

3 Stationary oscillations and their stability

Fixed points of equations (3) correspond to stationary
oscillatory motion where x1(t), x2(t) and the excitation
fΩ(t) are synchronized at frequency Ω. Irrespectively of
the form of fΩ(t), the last two of equations (3) make it
possible to solve the stationary problem for the amplitude
A2 and the phase difference ψ = φ2 − φ1 in terms of the
other variables, as

A2 cosψ = (ω2
2 −Ω2)JA1/[(ω

2
2 −Ω2)2 + γ22Ω

2],

A2 sinψ = −γ2ΩJA1/[(ω
2
2 −Ω2)2 + γ22Ω

2], (4)

which, in turn, implies

A2 =
|J |A1√

(ω2
2 −Ω2)2 + γ22Ω

2
. (5)

It is clear from this result that x2 responds resonantly to
its coupling to x1, with maximal response when Ω ≈ ω2.
The ratio A2/A1 is proportional to the coupling strength J
and, as a function ofΩ, follows the typical linear resonance
peak profile of width γ2 around ω2.

Replacing equations (4) into the stationary version of
the first two of equations (3), the remaining unknowns can
be found. This, however, requires to specify the form of
the excitation fΩ(t). As advanced, we here consider two
cases, corresponding to different setups in which internal
resonance can be realized: (I) an open-loop configuration,
where the oscillator is excited by an external force, and
(II) a closed-loop configuration, where the excitation is a
self-sustaining force generated from a signal read from the
same oscillator, with fixed amplitude and phase shift.

3.1 Case I: Open-loop configuration

Case I corresponds to the standard situation where
the system is excited by a harmonic force with exter-
nally controlled amplitude and frequency. Taking fΩ(t) =
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Fig. 1. Stationary solution of equations (3) for the oscilla-
tion amplitude A1 as a function of the excitation frequency Ω
(case I). Parameter values are γ1 = 0.009, β = 0.001, f0 = 1,
J = 0.01, ω2 = 1.5, and γ2 = 0.001. Full and dashed lines cor-
respond to stable and unstable solutions, respectively. Thin
light lines stand for the backbone curve. The insets are close-
ups of the zones indicated by the arrows. In the upper-left
inset, which shows the resonance gap at Ω ≈ ω2, Ω± are the
frequencies at the intersections between A1(Ω) and the back-
bone curve, while ΩB

± are the frequencies at the boundaries
between stable and unstable solutions. Note that, to the plot
resolution, Ω− and ΩB

− coincide.

f0 cosΩt, in equations (3) we have fs = f0 sinφ1 and
fc = f0 cosφ1. Once solutions (4) have been obtained, the
first two of equations (3) can be used to find A1 and φ1
in the stationary states. The stationary solution for the
amplitude A1 as a function of the excitation frequency Ω
has the overall form of the well-known Duffing resonance
curve [12], as shown in the main panel of Figure 1. How-
ever, due to the resonant transfer of energy between the
oscillators when Ω ≈ ω2, a gap opens in the curve (upper-
left inset) [5,13]. For values of Ω inside this resonance gap,
the only accessible value of A1 lies on the low-amplitude
branch, which locally develops a double peak (lower-right
inset).

As a function of Ω, A2
1 is the root of a third-order poly-

nomial equation, with one or three real positive solutions.
Working out their analytical expressions is impractical,
but accurate approximations can be obtained for the solu-
tions along the upper branches of the Duffing peak when
the peak is narrow enough. These approximate solutions
read

A2
1(Ω) =

Ω2 − 1 + uc
β

± 1

β

√
βf20

Ω2 − 1
− (γ1Ω + us)2, (6)

with

uc(Ω) = (ω2
2 −Ω2)J2/[(ω2

2 −Ω2)2 + γ22Ω
2],

us(Ω) = γ2ΩJ
2/[(ω2

2 −Ω2)2 + γ22Ω
2]. (7)

Fig. 2. Scaled gap width, J−2∆Ω = J−2(Ω+ − Ω−), as a
function of the parameter combination G = J2/γ2. The curve
corresponds to the approximation given by equation (8), and
symbols stand for the evaluation of Ω± from the exact station-
ary solution to equations (3), as the intersection between the
solution and the backbone curve (see Fig. 1), for several values
of J . Other parameters are as in Figure 1. Increasing G, the
gap opens at the critical value Gc.

The square root of the first term in the right-hand side
of equation (6), Ā1(Ω) =

√
[Ω2 − 1 + uc(Ω)]/β gives the

so-called backbone curve. It has been plotted as a thin
line in Figure 1. The backbone curve is always situated
between the two upper branches of the Duffing resonance
peak, thus providing a stylized representation of its overall
shape.

As shown in the upper-left inset of Figure 1, the frequen-
cies Ω± at the intersections between the solution A1(Ω)
and the backbone curve can be used to estimate the posi-
tion and width of the resonance gap. For Ω ∈ (Ω−, Ω+),
the argument of the square root in equation (6) is neg-
ative. When the quality factor Q2 = ω2/γ2 is sufficiently
large, the function us(Ω) attains significant values only in
the close vicinity of ω2. This makes it possible to give an
explicit approximate expression for Ω±, as

Ω± ≈ ω2 ±
γ2
2

√
J2/γ2ω2√

βf20 /(ω
2
2 − 1)− γ1ω2

− 1. (8)

Within this approximation, the gap width ∆Ω = Ω+−Ω−
vanishes when

J2

γ2
= ω2

√
βf20
ω2
2 − 1

− γ1ω2
2 ≡ Gc. (9)

Therefore, for given parameters in the equation of motion
for x1 and a fixed value of ω2, the opening of the gap
takes place when the combination G = J2/γ2 becomes
larger than the critical value Gc. In other words, the res-
onance gap occurs when the coupling strength J is large
enough or, equivalently, when the damping coefficient γ2
is sufficiently small.

Figure 2 shows the scaled gap width J−2∆Ω as a
function of the combination G = J2/γ2. The curve
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Fig. 3. Symbols: the frequencies ΩB
± at the boundary between

stable and unstable oscillations vs. G = J2/γ2, for two values
of J . Other parameters are as in Figure 1. Dashed lines are B-
spline interpolations, plotted as a guide to the eye. Full lines:
gap boundaries, Ω±, given by equation (8). In the vertical axis,
Ω is measured with respect to ω2 and, as in Figure 2, is rescaled
by a factor J−2.

corresponds to the approximation given by equation (8),
while symbols stand for the numerical evaluation of the
width from the stationary solutions to equations (3) for
various values of the coupling strength J , with Ω± given
by the intersection between the solution and the back-
bone curve, as defined above. The coincidence with the
approximation is excellent. As G grows – i.e. as the inter-
action becomes stronger, and/or the damping coefficient
γ2 decreases – the gap broadens rapidly for G & Gc, it
attains a maximal width, and then becomes progressively
narrower, with J−2∆Ω ∝ G−1/2 for large G.

Regarding the stability of the stationary states, full and
dashed lines in Figure 1 represent stable and unstable
solutions, respectively. Linear stability of fixed points is
assessed in the usual way, by determining the Jacobian
eigenvalues for system (3). Being the roots of a fourth-
degree polynomial, the eigenvalues could in principle be
found analytically. In practice, however, a numerical eval-
uation for each parameter set must be performed. As is
well known to happen with the externally forced Duffing
oscillator, for the values of Ω for which three solutions
for the amplitude exist, the two outer solutions are stable
while the one in the middle is unstable [9,12]. The upper-
left inset in Figure 1 shows how the stable and unstable
branches extend inside the resonance gap. We see that, to
the left of the gap (Ω < ω2), the boundary ΩB

− between
stable and unstable solutions practically coincides with
the intersection Ω− between the curve A1(Ω) and the
backbone curve. Analysis of the eigenvalue dependence
on the parameters shows that this boundary is associated
to a saddle-node bifurcation. On the other hand, to the
right of the gap (Ω > ω2), unstable solutions invade the
upper branch of the resonance curve, so that the bound-
ary ΩB

+ between stable and unstable solutions lies on the
upper branch, clearly to the right of the intersection Ω+

between A1(Ω) and the backbone curve. In this case, the
stability transition is a subcritical Hopf bifurcation.

To characterize these properties for other parameter
sets, we have detected the boundaries ΩB

± between sta-
ble and unstable solutions for several values of G and
two of the values of the coupling strength J considered
in Figure 2. Results are shown in Figure 3, where full
lines correspond to the gap ends Ω± calculated from
equation (8) and symbols stand for numerical estimation
of ΩB

±. In the plot, frequencies are measured with respect
to ω2 and rescaled as in Figure 2. We see that, for Ω < ω2,
ΩB

− and Ω− are virtually coincident. This indicates that,
to the left of the gap, stable and unstable solutions are
respectively confined to the upper and lower branches of
the resonance curve. Moreover, this boundary is always
associated to a saddle-node bifurcation.

On the other hand, for Ω > ω2, the boundary ΩB
+ is

well above Ω+, indicating that unstable solutions occupy
part of the upper branch, as illustrated in the upper-left
inset of Figure 1. Note that ΩB

+ does not verify the same
scaling with J as all the other data shown in the plot
(and in Fig. 2). In fact, results for different J lie on dif-
ferent curves, although their mutual deviation is not very
large for these values of the coupling strength. Note also
that, for sufficiently large G, the boundary slightly shifts
to larger frequencies in spite of the fact that the gap is
increasingly narrower. For all the parameter sets studied
here, ΩB

+ corresponds to a subcritical Hopf bifurcation.

3.2 Case II: Closed-loop configuration

In time-keeping devices, such as clocks and pacemakers,
the emergence of an autonomously generated frequency –
not depending on the action of an external periodic force
– is achieved by exciting the mechanical oscillator with a
force which results from conditioning a signal read from
the oscillator itself. In modern clocks, this self-sustaining
force is generated and reinjected into the system using
an electronic circuit. The circuit reads the phase of the
main oscillation mode, φ1, and generates a signal with
the same phase shifted by a fixed amount φ0, and a fixed
amplitude f0 [10]. Thus, in equation (1) we have fΩ(t) =
f0 cos(φ1 +φ0) while, in equations (3), fs = −f0 sinφ0 and
fc = f0 cosφ0.

Once equations (4) have been replaced into the right-
hand sides of equations (3), the stationary version of the
first two of these equations has the same form as in case
I, except that in fc,s the phase φ1 is replaced by −φ0. In
contrast with case I, however, the unknowns in these equa-
tions are A1 and Ω, and φ0 is a control parameter fixed
by the conditioning of the oscillator signal. The oscillation
frequency Ω emerges now from the interplay between the
internal dynamics of the system and the self-sustaining
force.

Notwithstanding these differences, it is not difficult
to realize that, in the present case, the interdependence
between the stationary values of A1 and Ω is exactly the
same as in case I. Indeed, once φ1 (in case I) or φ0 (in
case II) are eliminated from the first two of equations (3),
the respective functional relations between A1 and Ω are
identical. In particular, this means that – disregarding
the information about stability – the curves shown in
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Fig. 4. Upper panels: A1 vs. Ω (left) and Ω vs. φ0 (right) in the resonance zone, for case II. Full and dashed lines correspond
to stable and unstable solutions, respectively. The combination G = J2/γ2 = 0.022 is just below the critical value Gc ≈ 0.0222
at which the gap opens. Other parameters are as in Figure 1. Lower panels: as in the upper panels, for G = 0.1, with the gap
already opened. The horizontal lines in the rightmost panels indicate the value of ω2. In the lower plateau of the lower-right
plot, the dot at φ0 = π/2 indicates the state s0, whose stability is discussed in the text. The unstable segment around s0 has
width ∆φ0.

Figures 1 and 2 hold in both cases. Similarly, the approx-
imations given by equations (6) to (9) are also valid for
case II.

On the other hand, stability properties are not the same
for the two cases. In case I, in fact, the terms fc,s in
equations (3) depend on φ1, which is one of the dynamical
variables of the system, while in case II they are constants
determined by the control parameters f0 and φ0. This dif-
ference has direct impact in the form of the Jacobian and,
therefore, of its eigenvalues. For case II, it has been shown
that, in the absence of coupling between the oscillators
(J = 0), stationary oscillations of x1 are stable for any
φ0 ∈ (0, π), i.e. along the whole resonance curve, indepen-
dently of how many solutions for A1 exist for each value of
Ω [10,13]. When coupling is present, as shown below, the
opening of the resonance gap is preceded by the appear-
ance of a zone of instability around Ω = ω2, which persists
when the gap has opened. In contrast with case I, all the
transitions between stable and unstable solutions are now
subcritical Hopf bifurcations.

The two upper panels in Figure 4 show A1 vs. Ω (left)
and Ω vs. φ0 (right) in the resonance region, for a value
of the combination G = J2/γ2 just below Gc ≈ 0.0222,
namely, G = 0.022. The gap has not opened yet, but
an instability zone (dashed curves) has developed around
Ω = ω2. For G = 0.1, as shown by the lower panels, the
gap has now opened, and unstable solutions persist at
both sides of the gap.

It is clear from the lower-right panel that, for G > Gc,
the frequency Ω inside the gap exhibits two plateaus at
each side of ω2 where, over a wide interval of φ0, its

dependence with the phase shift is much smoother than
anywhere outside the gap. This is the zone of frequency
stabilization referred to in the Introduction, that has been
proposed as an operational regime where the variation
of Ω on the control parameters, caused by nonlinearity,
can be minimized. The frequency of nonlinear oscilla-
tors working in this zone exhibits robust behavior against
deterministic and random fluctuations of those parame-
ters, which is essential to the functioning of time-keeping
devices [5].

For the parameters of Figure 4, the upper plateau
inside the gap (Ω > ω2) corresponds to unstable solu-
tions. Although we are not able to give a general proof,
it turns out that solutions on the upper plateau remain
unstable over broad parameter ranges. Meanwhile, most
of the lower plateau (Ω < ω2) corresponds to stable solu-
tions, except for a segment around φ0 = π/2, where they
are unstable. Stability analysis shows however that this
unstable segment may disappear for different parameter
sets. In particular, it is not present for sufficiently large
values of the damping coefficient γ1 of the main oscillation
mode, and appears as γ1 decreases.

To analyze this behavior, we have determined the sta-
bility on the lower plateau at φ0 = π/2, using the criterion
that if this particular state is stable, then the unstable seg-
ment is absent, and vice versa. For brevity, we denote this
state as s0 (see the dot in the lower-right panel of Fig. 4).
Note that s0 coincides with the intersection between the
low-frequency part of the resonance curve and the back-
bone curve introduced for case I (cf. the upper-left inset
of Fig. 1). In particular, we have analyzed the stability

https://epjb.epj.org/
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of s0 as a function of G and J , for several values of γ1,
fixing the other parameters to the values indicated for
Figures 1–4. For γ1 & 0.01, whenever the gap is open, s0
is stable for any G and J , indicating that the unstable
segment is always absent. As the damping coefficient of
the main oscillation mode decreases to γ1 . 0.0095, how-
ever, a “tongue” appears in the G-J plane, inside which
s0 is unstable. The darkest curve in the upper panel of
Figure 5 shows the tongue boundary for γ1 = 0.0094. As
γ1 decreases further, the instability zone grows in size,
towards large values of G and J . For low G, it is always
limited by the value Gc at which the resonance gap opens.
The limit for γ1 = 0 is well defined, and is shown by the
lightest curve. Dark and light hatched regions show the
instability zone for γ1 = 0.0093 and the stability zone for
γ1 = 0, respectively.

Within the instability zone corresponding to a given
value of γ1, the width ∆φ0 of the unstable segment
depends on G and J . To illustrate this dependence, in
the lower panel of Figure 5 we plot ∆φ0 as a function of
G for various values of J and γ1 = 0.009. We see that ∆φ0
reaches a maximum inside the instability tongue, whose
value decreases as J grows. For large J , ∆φ0 vanishes at
the boundaries of the tongue, while for small J it reaches
a finite value at the lower-G end, where G ≈ Gc.

4 Conclusion

We have analyzed the stability of synchronized periodic
motion in a system formed by two coupled mechanical
oscillators. One of them is governed by the Duffing
equation and is excited by a harmonic force, while the
other is linear. They respectively model the main oscil-
lation mode and a higher-harmonic mode of a vibrating
solid beam clamped at its two ends. Regarding the har-
monic excitation, two cases were studied. On the one
hand, we have considered the standard situation where
the excitation is an external force with prescribed ampli-
tude and frequency (open-loop configuration) [9,12]. On
the other, we have studied the case in which the exci-
tation is a conditioned version of a signal read from the
oscillator itself, with prescribed phase shift with respect
to the oscillation, and fixed amplitude (closed-loop config-
uration). This feedback self-sustaining force insures that
the oscillation frequency is an emergent property of the
system, which thus results to behave as an autonomous
pacemaker suitable for time-keeping applications [10].

In the closed-loop configuration and under conditions of
internal resonance, where synchronization occurs near the
frequency of the higher-harmonic mode, a regime devel-
ops where the dependence of the frequency on the control
parameters is largely suppressed – much in contrast with
the situation outside internal resonance, where nonlin-
earity determines that the frequency is very sensible to
changes in the parameters. Physically, this effect is related
to the efficient power transfer that resonance establishes
between the oscillation modes, with the higher-harmonic
mode acting as a kind of “buffer” for energy variations
in the main mode. Functioning within this regime has
been proposed as a mechanism of frequency stabilization

Fig. 5. Upper panel: instability zones for s0, the state at φ0 =
π/2 on the lower plateau inside the resonance gap (see Fig. 4),
on the G-J plane, for various values of the damping coefficient
γ1. Hatched regions correspond to the instability zone for γ1 =
0.0093 and the stability zone for γ1 = 0. Other parameters are
as in Figure 1. Lower panel: the width of the unstable segment
on the lower plateau, ∆φ0, as a function of G, for several values
of J and γ1 = 0.009.

in micromechanical oscillators [5]. This application moti-
vated our focusing on internal resonance and, in partic-
ular, on the parameters that control energy transfer and
dissipation – namely, coupling and damping coefficients.
Other parameters, such as the higher-harmonic frequency,
the cubic restoring force coefficient, and the forcing ampli-
tude, determine the position of internal resonance and how
long and leaned the Duffing resonance peak is, but are
not expected to play an important role in determining the
stability of stationary synchronized oscillations.

We also mention here that all our results have been
obtained within the multiple-scale approximation of the
equations of motion, which allows for a systematic treat-
ment of nonlinearity. We have verified that these results
are in good agreement with direct numerical solutions of
equations (1) and (2) – not presented in this paper – for
several relevant parameter sets (see also [13]). This agree-
ment is not unexpected, in view that the multiple-scale
approximation improves as the time scales of oscillations
and of energy dissipation become more separated from
each other. As explained in Section 2, this separation
is measured by the quality factor which, in the cases
presented here, is in the range Q ∼ 102–103. In real
micro- and nanomechanical oscillators, the quality factor
reaches values from 104 to 108 [5,14], which makes the
approximation even more accurate.

A variation of the closed-loop configuration has recently
been proposed and tested experimentally, for which
the self-sustaining force depends linearly on either the

https://epjb.epj.org/


Eur. Phys. J. B (2018) 91: 89 Page 7 of 7

coordinate or the velocity of the main oscillation mode
[15]. Designs based on a linear self-sustaining force may
improve control and tunability and, at the same time,
decrease power consumption. On the other hand, to give
rise to oscillations of finite amplitude, they generally need
a certain degree of nonlinearity in the intrinsic mech-
anisms of energy dissipation [15,16]. As in the case of
the self-sustaining force considered here, however, the
exploitation of internal resonance to achieve frequency
stabilization relies on the stability of the resulting res-
onant oscillations. Consequently, a natural extension of
the present analysis should encompass the study of these
forms of linear feedback.
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