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Abstract 

Aims: We have previously demonstrated that absence of functional GABA B receptors 

(GABABRs) disturbs glucose homeostasis in GABAB1KO mice. The aim of this work 

was to extend our studies of these alterations in GABAB1KO mice and investigate the 

sexual differences therein. 

Main Methods: Male and female, GABAB1KO and WT mice were used. Glucose and 

insulin tolerance tests (GTT and ITT), and insulin and glucagon secretion tests (IST and 

GST) were performed. Blood glucose, serum insulin and hyperglycemic hormones were 

determined, and HOMA-IR calculated. Skeletal muscle insulin receptor  subunit (IR, 

insulin receptor substrates 1/2 (IRS1, IRS2) and hexokinase-II levels were determined 

by Western Blot. Skeletal muscle insulin sensitivity was assessed by in vivo insulin-

induced Akt phosphorylation (Western Blot). Food intake and hypothalamic NPY 

mRNA expression (by qPCR) were also evaluated. 

Key Findings: Fasted insulin and HOMA-IR were augmented in GABAB1KO males, 

with no alterations in females. Areas under the curve (AUC) for GTT and ITT were 

increased in GABAB1KO mice of both genders, indicating compromised insulin 

sensitivity. No genotype differences were observed in IST, GST or in IR, IRS1, IRS2 

and hexokinase-II expression. Akt activation was severely impaired in GABAB1KO 

males while no alterations were observed in females. GABAB1KO mice showed 

increased food intake and NPY expression. 

Significance: Glucose metabolism and energy balance disruptions were more pronounced 

in GABAB1KO males, which develop peripheral insulin resistance probably due to 

augmented insulin secretion. Metabolic alterations in females were milder and possibly 

due to previously described reproductive disorders, such as persistent estrus. 

Keywords: insulin resistance; food intake; Akt activation; GABAB1KO mice
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Introduction 

Type 2 diabetes (T2D) involves chronic dysregulation of glucose metabolism and 

impaired insulin sensitivity. More than 80% of patients progressing to T2D are 

hyperinsulunemic and insulin resistant (Pal 2009). In T2D, defects in insulin-stimulated 

glucose uptake in skeletal muscle are major factors inducing impaired glucose 

homeostasis, including alterations in protein expression, enzyme activation/deactivation 

or sensitivity to endogenous ligands. 

GABA, the main inhibitory neurotransmitter in the brain, is found at high 

concentrations in Langerhans islets (Franklin and Wollheim 2004). Although a 

complete islet GABA system was demonstrated, the role of GABA in pancreatic 

physiology is less characterized. GABA inhibits high glucose-stimulated insulin 

secretion through GABAB receptors (GABABRs) in MIN6 cells and in rat/mouse islets 

(Bonaventura et al. 2012; Braun et al. 2004; Brice et al. 2002). We have recently 

described that GABAB agonists and antagonists alter glucose homeostasis in mice 

(Bonaventura et al. 2012). Previously we demonstrated that absence of functional 

GABABRs in GABABR knock-out mice (GABAB1KO) induced high pancreas insulin 

content and insulin resistance (Bonaventura et al. 2008). 

Regarding insulin signaling, it binds to its receptor (IR), which is autophosphorylated 

and in turn phosphorylates IRS1 and IRS2. pIRS1/2 activate phosphoinsitol PI-3-kinase 

(PI3K) (Okada et al. 1994) which activates protein kinase B (PKB/Akt) (Franke et al. 

1997). Akt is the major effector exerting the metabolic effects of insulin, including 

glucose transport, glycogen synthesis, fat deposition and protein synthesis. Loss of Akt 

signaling leads to glucose homeostasis impairment (Saltiel and Kahn 2001).  

In addition to insulin, other hormones involved in blood glucose control are glucagon, 

growth hormone (GH) and corticosterone. GH increases plasma glucose by decreasing 

peripheral glucose uptake. An increased GABAergic tone inhibits GH secretion 

(Tuomisto and Mannisto 1985). Moreover, somatotropes express GABABRs 

(Mayerhofer et al. 2001) and stimulation of pituitary GABABRs increases GH secretion 

(Gamel-Didelon et al. 2002). Glucagon is secreted by -cells in response to low blood 

glucose and its secretion is inhibited by insulin. Wendt et al. (Wendt et al. 2004) 

demonstrated that GABA released from -cells inhibits glucagon release from -cells in 

rat pancreas, confirming results in mice (Gilon et al. 1991). Ohers proposed that insulin 

sensitized -cells to -cell-secreted GABA (Xu et al. 2006). Cortisol increases blood 
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glucose by inhibiting glucose uptake and utilization; it also stimulates appetite and 

changes fat metabolism (van Raalte et al. 2009). As GABA, through GABABRs, alters 

the corticotropic axis (Marques and Franci 2008), it could modulate the hyperglycemic 

effects of cortisol.  

GABA is also considered an orexigenic stimulus (King 2006), and a role for central 

GABABRs controlling food intake has been suggested (Ebenezer and Prabhaker 2007). 

Neuropeptide Y (NPY), is expressed in the arcuate nucleus, and is a potent stimulant of 

food intake. Evidences suggest that the anorexigenic effects of insulin are exerted by 

inhibition of NPY in the arcuate, acting through GABAARs and GABABRs present in 

NPY neurons (Sato et al. 2005). 

Therefore, here we evaluated how the lack of functional GABABRs affects different 

targets participating in blood glucose control in GABAB1KO mice and the sexual 

differences therein. 
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Materials and Methods 

Animals. GABAB1KO mice, generated in the BALB/C inbred strain (Schuler et al. 

2001), were obtained by intercrossing heterozygous animals and the day of birth was 

recorded. Mice were genotyped by PCR analysis, as described previously (Catalano et 

al. 2005). Animals were fed ad libitum. All studies were performed according to 

protocols for animal use, approved by the Institutional Animal Care and Use Committee 

(IBYME-CONICET) that follows the NIH guidelines. Adult 2-3 month-old female and 

male WT and GABAB1KO mice were used. For each experimental design animals 

were age-matched littermates. Animals were sacrificed by decapitation in minimal 

conditions of stress. 

Basal blood glucose titers and glucose tolerance test. Blood glucose was measured by 

a One touch® Ultra™ glucose meter (Lifescan, Scotland Ltd, strips were kindly 

donated by Johnson & Johnson, Argentina) from tail blood. For the glucose tolerance 

test (GTT) intraperitoneal (ip) glucose (3 g/kg body weight (BW) (Bonaventura et al. 

2008)) was injected to overnight fasted mice (15-18 h) and blood glucose was 

evaluated at 0, 30, 60 and 75 minutes post glucose administration. Results were 

informed as Area under the curve (AUC). 

Insulin determination and insulin secretion test (IST). Serum insulin was measured with 

an Ultrasensitive insulin mouse ELISA kit (Chrystalchem, Chicago, Il) at 0, 10, 20, 30 

and 60 min after the ip glucose injection of 3 g/kg BW in mice fasted for 15-18 h in 

samples taken during the GTT. Results were informed as AUC. 

HOMA index calculation. HOMA of insulin resistance (HOMA-IR) was calculated with 

basal blood glucose and basal insulin measured after overnight fasting, as previously 

decribed (Bonaventura et al. 2012). HOMA-IR= Fasting insulin (U/ml) x Fasting 

glucose (mmol /L) / 22.5. 
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Insulin tolerance test (ITT). Blood glucose was measured as above in 2-4 h fasted 

mice after 0, 10, 20, 30 and 60 min of an ip injection of 1 U/kg BW of porcine 

humanized insulin (a gift from Laboratorios Beta, Buenos Aires, Argentina). Results 

were informed as AUC. 

Glucagon secretion test (GST). 3-4 h fasted animals were injected with insulin (1U/kg 

i.p.) and blood was collected from tail at 0 and 30 min post-injection (Zhou et al. 2004). 

Glucagon was determined by RIA (Glucagon RIA KIT, Millipore, MA) according to 

the manufacturer protocol. Results were informed as AUC. 

Basal hyperglycemic serum hormones determinations. Glucagon was determined by 

RIA, as above. For corticosterone determination, serum samples were extracted with 

dichloromethane and corticosterone content determined by RIA, as previously described 

(Bonaventura et al. 2012; Repetto et al. 2010). Growth hormone (GH) was also 

determined by RIA, as previously described (Catalano et al. 2005). 

In vivo peripheral tissue response to insulin. Fasted animals (2-4 hs) were anesthetized 

with avertin 2% (12 ml/kg i.p.). The abdominal cavity was opened, the portal vein 

exposed, and 2 U/kg of insulin was injected (in 0.5 ml saline) into the portal vein. At 

time points 0, 1 and 5 minutes post-injection, portions of skeletal muscle were excised 

and flash frozen in liquid N2 and stored at -70ºC until used. Tissues were disrupted in 10 

volumes of lysis buffer (1% SDS, NaCl, 10 mM EDTA, Tris.HCl) containing 

phosphatases and proteases inhibitors (LiCl, Na3VO4, PMSF, ZPCK, TAME, TPLC, -

glicerolphosphate) at 4ºC with a Polytron homogenizer, samples were centrifuged at 

10000 rpm and pellets discarded. Supernatants were kept frozen until used. 

Western Blot analysis. Western blot analysis for IRS1, IRS2, IR subunit, hexokinase-

II, pAkt, Akt, and actin were performed in skeletal muscle homogenates of WT and 

GABAB1KO of both genders. 50 g of proteins and biotinylated molecular weight 
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markers were subjected to 8% SDS-PAGE and proteins were transferred onto 

nitrocellulose membranes. Non specific protein binding to nitrocellulose was reduced 

by preincubating membranes with 5% non-fat milk in 0.5% Tween PBS (PBS-T). For 

IRS-1, IRS-2 and IRmembranes were incubated over night (ON) at 4ºC with the first 

antibody diluted in PBS-T, 5% non-fat milk (Millipore, CA, IRS1, cat # 06-248: 1:500, 

IRS2, cat # 06-506: 1:500; IRcat # 07-724: 1:125) followed by 2 hs incubating with 

HRP conjugated anti-rabbit (Vector, CA, cat # PI-1000:  1:3000) and anti-biotin (Cell 

Signalling, MA, cat # SP-3010: 1:4000) in PBS-T, 1% BSA, at room temperature (RT). 

For Hexokinase-II, membranes were incubated ON at 4ºC with first antibody generated 

in rabbit diluted in PBS-T, BSA 1% (Cell Signalling, cat # 2867: 1:500) followed by 

incubation with second antibody as described above. Membranes were stripped with 

stripping buffer (Tris-HCl 62,5 mM, SDS 2%, β-mercaptoethanol 100 mM, pH=6.7) 

and re-used for actin determination: membranes were incubated 1 h with mouse 

generated first antibody diluted in PBS-T, BSA 2% (Sigma, MI, cat # CP01: 1:5000) 

followed by incubation with HRP conjugated anti-mouse (Vector, CA, cat # PI-2000: 

1:3000) and anti-biotin (Cell Signalling 1:4000) in PBS-T, 1% BSA, at RT. 

For p-Akt, membranes were incubated ON at 4ºC with first antibody generated in rabbit 

diluted in PBS-T, BSA 5% (Cell Signalling, MA, cat # 9271: 1:1000) followed by 

incubation with second antibody as described above. Membranes were stripped, as 

described, and re-used for Akt; membranes were incubated 1 h with goat generated first 

antibody diluted in PBS-T, 1% BSA (Santa Cruz Biotechnology Inc, CA, cat # sc-1618: 

1:500) followed by 1 h incubation with HRP conjugated anti-goat (Santa Cruz 

Biotechnology Inc, CA, cat # sc-2953: 1:4000) and anti-biotin (Cell Signalling 1:4000) 

in PBS-T, 1% BSA, at RT. 

Detection was performed using an enhanced chemiluminescence Western Blot analysis 
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system (Western Blotting Chemiluminescence Luminol Reagent, Santa Cruz 

Biotechnology) followed by image analysis with G-Box documentation system 

(Syngene, Unitek, BA). 

Body weight and food intake. Body weight (BW) and food intake were monitored. Food 

intake was informed relative to body weight (g of food/g BW). 

Expression of NPY in medial basal hypothalamus (MBH). To determine NPY expression by 

qRT-PCR, total RNA was isolated from homogenates of MBH, excised as previously 

described (Catalano et al. 2010). RNAs were obtained using TRIZOL reagent (Invitrogen, 

CA) according to the manufacturer’s protocol and kept at -70ºC until used. The RNA 

concentration of all final preparations was calculated using the Qubit Quantitation Platform 

(Invitrogen) according to the manufacturer’s protocol. First strand cDNA was synthesized 

from 2 µg of total RNA in the presence of 10 mM MgCl2, 50mM Tris–HCl (pH 8.6), 75 

mM KCl, 0.5 mM deoxy-NTPs, 1 mM DTT, 1 U/µl RnaseOUT (Invitrogen), 0.5 µg 

oligo(dT)15 primer (Biodynamics, BA), and 20 U of MMLV reverse transcriptase 

(Epicentre, WI). To ensure absence of genomic DNA the reverse transcriptase was omitted 

in control reactions. The absence of PCR-amplified DNA fragments in these samples 

indicated the isolation of RNA free of genomic DNA. For quantitative real-time PCR 

oligonucleotide primers sequence used were as follows: cyclophilin sense 

GTGGCAAGATCGAAGTGG, cyclophilin antisense TAAAAATCAGGCCTGTGG; 

NPY sense GATGCTAGGTAACAAGCGAATG, NPY antisense 

TCAGCCAGAATGCCCAAAC (Garcia-Tornadu et al. 2009). Quantitative measurements 

of cDNA were performed by kinetic PCR using SYBR
®
 Green PCR Master Mix (Applied 

Biosystems, UK) according to the manufacturer’s protocol, with an annealing step at 58ºC, 

40 s. and an appropriate dilution of cDNA in a final volume of 13 l. 
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The accumulating DNA products were monitored by the ABI7500 sequence detection 

system (Applied Biosystems), and data were stored continuously during the reaction. 

The results were validated based on the quality of dissociation curves, generated at the 

end of the PCR runs by ramping the temperature of the samples from 60°C to 95°C, 

meanwhile continuously collecting fluorescence data. Product purity was confirmed by 

2% agarose gel electrophoresis. Each sample was analyzed in triplicate along with non-

template controls to monitor contaminating DNA. The relative gene expression was 

normalized to that of cyclophilin housekeeping gene using the comparative method of  

ΔΔCt, described by the Livak & Schmittgen (Livak and Schmittgen 2001). 

Results are expressed as arbitrary units (AU) for comparison among samples. AU is defined 

as the expression level relative to a sample of wildtype male mice (calibrator sample). 

Statistical analysis. All results are expressed as means ± SEM. Statistical analyses were 

performed with Statistica Six Sigma Edition. The differences between means were 

analyzed by one-way or two-way ANOVA, followed by Newman-Keuls test or Tukey 

HSD test for unequal N. For multiple determinations in the same animal, two–way 

ANOVA with repeated measures design was used, followed by the same post-hoc tests. 

p<0.05 was considered statistically significant. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 10 

Results 

Blood glucose and serum insulin. Fasted and non-fasted glycemia and insulinemia are 

summarized in table I. Fasted insulin was significantly higher in GABAB1KO male 

mice, (Two-way ANOVA, factors genotype and sex, interaction: p<0.04, GABAB1KO 

males significantly different from all the other groups, p<0.01 or less), but no 

differences in fasted glycemia were observed among groups. When calculating HOMA-

IR, we observed a significant increase of this index in male GABAB1KO mice, pointing 

to the development of insulin-resistance in this group (Two-way ANOVA, factors 

genotype and sex, interaction: p<0.03, GABAB1KO males significantly different from 

all the other groups, p<0.03 or less). No HOMA-IR alterations were observed in 

females. In non-fasted mice only sex differences in blood glucose and serum insulin 

were observed (males > females for both parameters) without genotype differences. 

Evaluation of blood glucose regulation. Since HOMA-IR was altered in male 

GABAB1KO mice, we performed functional tests to evaluate the clearance of serum 

glucose in a GTT, the glucose-induced insulin secretion in an IST, the insulin-induced 

glucagon release in a GST, and the peripheral insulin sensitivity in an ITT. The area under 

the curve (AUC) for each of these dynamic tests is shown in Fig. 1. The GTT was altered 

in GABAB1KO mice (Fig. 1A), showing an increase of AUC both in male and females 

with respect to their WT controls, in addition to a sex difference (males > females) (Two-

way ANOVA, interaction: ns, factor genotype: p<0.01, factor sex: p<0.02). These results 

indicate that the clearance of glucose form blood is impaired in GABAB1KO mice. To 

define whether these alterations are due to reduced insulin secretion or to diminished 

insulin sensitivity, we performed the IST and ITT. The IST AUC was not altered in 

GABAB1KO mice with regard to their same sex controls; a statistically significant sex 

differences was observed in the IST AUCs, males > females, in both genotypes (Fig. 1B). 
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However, insulin sensitivity was diminished in GABAB1KO mice, since AUCs of ITTs 

were increased in this genotype (Fig. 1C); in addition a gender difference was also 

observed (males > females) (Two-way ANOVA, interaction: ns, factor genotype: p<0.01, 

factor sex: p<0.01). This result indicates that, in response to the same insulin stimulus, 

depuration of glucose from blood is impaired in GABAB1KO mice. Finally, we found no 

genotype alterations in the GST in response to insulin although GST AUCs were 

increased in females with regard to males (Fig. 1D) (Two-way ANOVA, interaction: ns, 

factor genotype: ns, factor sex: p<0.01), suggesting that alterations in glucagon secretion 

were not involved in the observed phenotype in GABAB1KO mice. 

Evaluation of hyperglycemic hormones. When analyzing other hormones involved in 

the control of glucose homeostasis, we found diminished serum corticosterone levels in 

GABAB1KO respect to WT females (Fig. 2A). In addition, in GABAB1KO mice the 

expected sex difference observed in WTs (females > males) had disappeared. GH and 

glucagon showed neither sex nor genotype differences (Fig. 2B and C, respectively). 

Expression of proteins involved in the insulin signaling pathway in peripheral tissue. 

Since dynamic tests showed an alteration of peripheral insulin sensitivity, we evaluated 

the insulin signaling pathway on skeletal muscle, the main tissue involved in glucose 

depuration. We first evaluated the expression of main proteins involved on this cascade, 

finding no differences in basal expression of IRS1, IR2, IRβ or hexoquinase (Fig. 3A, 

3B, 3C and 3D, respectively). 

Insulin-induced Akt phophorylation. Activation of Akt is the key event responsible for 

the increase in insulin-induced glucose uptake by skeletal muscle. Activation of Akt 

(Fig. 4) showed no genotype alterations in females (Two way ANOVA, interaction: ns, 

factor genotype: ns, factor time: p<0.01, time 0 min: significantly different from 1 and 5 

min, p<0.01). In contrast, in GABAB1KO males phosphorylation of Akt was markedly 
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impaired at 5 minutes post insulin administration (Two way ANOVA, interaction: 

p<0.04, WT males at 5 min: significantly different from 0 and 1min, p<0.02 and also 

significantly different from GABAB1KO males at 5 min, p<0.01).  

Body weight, food intake and NPY expression. Figure 5 shows food intake relative to 

BW and expression of NPY mRNA of animals in this study. GABAB1KO mice show 

increased food intake compared to WTs (Fig. 5A) (Two way ANOVA, factors genotype 

and sex, interaction: ns, factor genotype: p<0.05). Despite this increase, no genotype 

differences were found in body weight (not shown), as previously described (Catalano 

et al. 2005). Interestingly, expression of NPY mRNA was also altered in GABAB1KO 

mice, being significantly higher than in WT mice (Fig. 5B) (Two way ANOVA, factors 

genotype and sex, interaction: ns, factor genotype: p<0.05). 
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Discusion 

The worldwide rise in the incidence of obesity, metabolic syndrome and diabetes, and 

the increasing costs in the management of these diseases and their complications require 

a comprehensive knowledge of the factors regulating glucose homeostasis in order to 

advance in the treatment of these disorders. 

GABA is present at high concentrations in Langerhans islets and its participation in islet 

physiology is multifactorial, including actions in cell metabolism and viability (Ligon et 

al. 2007; Soltani et al. 2011; Sorenson et al. 1991; Winnock et al. 2002) and species-

specific autocrine and paracrine effects on hormone release (Bonaventura et al. 2008; 

Braun et al. 2004; Braun et al. 2010; Brice et al. 2002; Robbins et al. 1981; Soltani et al. 

2011; Wendt et al. 2004; Xu et al. 2006). 

We have demonstrated that GABAB agonists and antagonists, administered both 

acutely or chronically, disturb the regulation of glucose homeostasis in BALB/C mice 

(Bonaventura et al. 2012). In addition, we reported that the absence of functional 

GABABRs in male GABAB1KO mice revealed signs of insulin resistance and 

increased pancreas insulin content (Bonaventura et al. 2008). As sex differences in the 

incidence of diabetes has been reported in various animal models such as NOD mice 

(Rosmalen et al. 2001) and STZ-induced diabetes (Vital et al. 2006) here we performed 

an in depth study of the alterations in the glucose homeostasis regulation in 

GABAB1KO mice comparatively in both genders. 

There were no genotypes differences in blood glucose or serum insulin in animals in 

non-fasting state. However, fasted insulin was significantly increased in GABAB1KO 

males, while maintaining euglycemia. The presence of hyperinsulinemia accompanied 

by euglycemia suggests a reduced sensitivity to insulin of peripheral tissues. This 

phenomenon is further put into evidence by HOMA-IR index, which was significantly 
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increased in GABAB1KO males, as also reported in another model of insulin resistance 

(Maiztegui et al. 2009). Supporting this hypothesis, GABAB1KO males also showed 

impaired ITTs, indicating decreased glucose depuration. Putting these results together, it 

can be inferred that GABAB1KO males developed an impaired glucose tolerance 

derived from diminished insulin sensitivity in peripheral tissue. The sustained, 

increased, fasted insulin secretion observed in GABAB1KO males, due to the absence 

of functional GABABRs, which is in agreement with increased pancreas insulin content 

described previously (Bonaventura et al. 2008), may induce, over time, insulin 

resistance in peripheral tissues, as described in functional insulinomas, in which 

alterations in insulin receptor splice variants, signaling, and binding have been 

demonstrated (Nankervis et al. 1985; Sbraccia et al. 1996; Skrha et al. 1996). In this 

line, in mouse C2C12 muscle cells constant insulin stimulus triggered insulin resistance 

(Kumar and Dey 2003; Rui et al. 2001), which was evidenced by decreased expression 

and/or phosphorylation of different elements of the insulin signaling cascade. 

Given the evidence that GABAB1KO male mice develop insulin resistance 

spontaneously, we evaluated whether any elements of the insulin signaling cascade were 

altered in these animals, especially in skeletal muscle, the main tissue involved in the 

insulin-stimulated-glucose uptake from blood. No differences in the expression of IR, 

IRS1/2 and hexokinase-II were observed in our model. Interestingly, several studies 

have shown that the number and function of the insulin receptors are normal or slightly 

reduced in patients and animal models of insulin resistance, and that this is not 

sufficient to explain the marked reduction in insulin function, thus suggesting that major 

alterations are downstream the receptor (Draznin 2006). Therefore, we then assessed the 

activation of Akt, the main effector in the cascade that leads to membrane translocation 

of glucose transporter in muscle (GLUT-4). We observed that the insulin-induced Akt 
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phosphorylation was profoundly impaired in GABAB1KO males compared to their WT 

controls. This result is in agreement with other authors who report a decrease in insulin-

stimulated Akt phosphorylation in skeletal muscle of mice spontaneously developing 

glucose intolerance and insulin resistance (Oh et al. 2008). Thus, this severely 

diminished activation of Akt could justify the insulin resistance observed in 

GABAB1KO males. Conversely, no alterations were found in hyperglycemic hormones 

such as glucagon, GH and corticosterone between genotypes in male mice. 

In GABAB1KO females, glycemia and serum insulin were normal in both the fasting 

and non-fasting states. Furthermore, we found no alterations in the HOMA-IR index, as 

opposed to GABAB1KO males. However, results from ITTs and GTTs are somewhat 

puzzling, since they are compatible with diminished insulin sensitivity of peripheral 

tissues. The hyperglycemic hormones studied showed diverse results in females; GH 

and glucagon showed no differences between genotypes, but corticosterone was altered 

in GABAB1KOs. Corticosterone was augmented in WT females compared to males, in 

agreement with bibliography (Bastida et al. 2007; Vasan et al. 2004). In contrast 

GABAB1KO females presented significantly lower serum corticosterone, thus losing 

the expected gender difference. Anyway, these results cannot justify the genotype 

differences observed in glucose disposal.  One possible explanation of the discrepancy 

in GTTs and ITTs with respect to glycemia and serum insulin is the fact that 

GABAB1KO females show persistent estrus (Catalano et al. 2010), an estrous cycle 

stage characterized by low serum estradiol (Neill 1980); this can also explain the 

differences observed in corticosterone, given that estrus is also characterized by lower 

levels of this glucocorticoid (Atkinson and Waddell 1997). Regarding the effects of 

estradiol on insulin resistance, Bruns and Kemnitz (Bruns and Kemnitz 2004) described 

that women in the luteal phase, characterized by lower serum estradiol, have decreased 
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insulin sensitivity during a GTT. Additionally, the authors also described diminished 

insulin sensitivity and disposition during a GTT in the luteal phase of female monkeys. 

Hence, we suggest that GABAB1KO females do not have primary insulin resistance but 

the diminished sensitivity observed is secondary to alterations in their reproductive axis, 

which we have previously described (Catalano et al. 2005; Catalano et al. 2010). The 

protective effect of estradiol against the development of insulin-resistance and diabetes 

mellitus is widely discussed in bibliography (Prasannarong et al. 2012; Sakata et al. 

2010). In this regard we can postulate that, even in estrus, females, both GABAB1KO and 

WT, are less prone to develop these conditions than males, and this can explain the gender 

differences we observed in glucose tolerance and insulin sensitivity. This hypothesis is 

also strongly supported by the lack of modification in the insulin signaling pathway in 

skeletal muscle, although alterations in other insulin sensitive tissues such as adipose or 

liver may be involved in the weak disturbances observed in GABAB1KO females. 

So far, we conclude that male GABAB1KO mice present a clear insulin-resistance 

syndrome probably developed as a consequence of persistent insulin secretion, while 

female GABAB1KO mice present some features of diminished insulin sensitivity, which 

are not due to augmented insulin, and probably due to alterations in the reproductive axis. 

The mechanisms involved in the regulation of energy metabolism are complex and 

varied. GABA modulates the expression/release of several factors that modulate food 

intake and its effect varies in different hypothalamic areas and also depends on the 

GABA receptor involved (Ebenezer 2012; Kamatchi and Rathanaswami 2012; Perdona' 

et al. 2011; Stanley et al. 2011). NPY is among the most studied orexigenic factors 

(Kalra and Kalra 2004; Mercer et al. 2011; van den Pol 2003) and is also regulated by 

GABA (Sato et al. 2005). We found an increase in food intake in GABAB1KO animals 

compared to WTs. This increase, however, was not accompanied by weight gain, 
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indicating that the energy balance might be altered in these mice possibly due to 

increased locomotor activity described previously (Schuler et al. 2001). Based on these 

results, we evaluated the expression of NPY in MBH finding a significant increase in 

GABAB1KO mice of both genders. Some studies have postulated that GABA acting on 

GABAB receptors decreases food intake (Perdona' et al. 2011). Therefore, lack of 

functional GABAB receptors may have induced the increase in food intake. Others have 

determined that GABA has orexigenic effects in the ventromedial hypothalamus 

(Perdona' et al. 2011). In this regard, several authors described that muscimol, given 

ICV or directly in ventromedial hypothalamus or paraventricular nucleus, induced 

increases in food intake (Choquette et al. 2009; Jonaidi et al. 2012; Kalra and Kalra 

2004; King 2006). Lack of RGABAB expression may also cause changes in other 

components of the GABA system; our laboratory has described an increase in GAD67 

mRNA in MBH (Catalano et al. 2010), so an increase in GABA content could be 

expected and this could also justify the increase in food intake. Moreover, NPY neurons 

in the arcuate nucleus that monitor serum glucose levels have GABAergic innervation, 

and GABA, through GABAB and A receptors, inhibits neuron activity attenuating the 

orexigenic effects of NPY (Muroya et al. 2005). Therefore lack of GABAB receptors 

could have potentiated the effect of NPY on food intake. In addition, Sato et al also 

suggest that insulin increased GABA release, which in turn acted on GABABRs to 

suppress NPY gene expression (Sato et al. 2005). These results are in agreement with 

our findings since the lack of inhibition due to GABABR absence may have lead to an 

increase in NPY expression and the consequent increase in food intake.  
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Conclusion 

In sum, the absence of functional GABAB receptors induce multiple, sex-dependent 

metabolic alterations put into evidence in the GABAB1KO mouse. GABAB1KO males 

share many characteristics with the insulin resistance syndrome, including increased 

fasted insulin and HOMA-IR, dysfunctional GTTs and ITTs and peripheral 

desensitization to insulin-stimulated AKT phophorylation, as well as increased food 

intake, although these parameters do not lead to weight increase. The female phenotype 

is less severe showing mild food intake increase and glucose intolerance, this last 

condition being possibly secondary to reproductive disruptions. These observations 

further emphasize the importance of GABA and its GABAB receptors in metabolic 

regulation and reinforce the gender differences often observed in related diseases. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 19 

Acknowledgements 

This work was supported by grants from Consejo Nacional de Investigaciones 

Científicas y Técnicas, Argentina (CONICET; PIP 2010-2012 Nº363), Agencia 

Nacional de Promoción Científica y Tecnológica, Argentina (BID PICT 2007 Nº 0150 

to CL and BID PICT 2006 Nº 00200 to VL-L), Universidad de Buenos Aires, Argentina 

(UBA, M043). We also acknowledge the contribution made by Johnson & Johnson who 

kindly provided glucose reactive strips. 

 

Conflict of interest: 

Authors declare that there are no conflicts of interest involved in this manuscript. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 20 

 References 

Atkinson HC and Waddell, BJ. Circadian variation in basal plasma corticosterone and 

adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. 

Endocrinology 1997;138:3842-3848. 

Bastida CM, Cremades, A, Castells, MT, Lopez-Contreras, AJ, Lopez-Garcia, C, 

Sanchez-Mas, J, Penafiel, R. Sexual dimorphism of ornithine decarboxylase in the 

mouse adrenal: influence of polyamine deprivation on catecholamine and corticoid 

levels. Am J Physiol Endocrinol Metab 2007;292:E1010-E1017. 

Bonaventura MM, Catalano, PN, Chamson-Reig, A, Arany, E, Hill, D, Bettler, B, 

Saravia, F, Libertun, C, Lux-Lantos, VA. GABAB receptors and glucose homeostasis: 

evaluation in GABAB receptor knockout mice. Am J Physiol Endocrinol Metab 

2008;294:E157-E167. 

Bonaventura MM, Crivello, M, Ferreira, ML, Repetto, M, Cymeryng, C, Libertun, C, 

Lux-Lantos, VA. Effects of GABA(B) receptor agonists and antagonists on glycemia 

regulation in mice. Eur J Pharmacol 2012;677:188-196. 

Braun M, Ramracheya, R, Bengtsson, M, Clark, A, Walker, JN, Johnson, PR, Rorsman, 

P. Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human 

pancreatic beta-cells. Diabetes 2010;59:1694-1701. 

Braun M, Wendt, A, Buschard, K, Salehi, A, Sewing, S, Gromada, J, Rorsman, P. 

GABAB receptor activation inhibits exocytosis in rat pancreatic {beta}-cells by G-

protein-dependent activation of calcineurin. J Physiol 2004;559:397-409. 

Brice NL, Varadi, A, Aschcroft, SJH, Molnar, E. Metabobropic glutamate and GABAB 

receptors contribute to the modulation of glucose-stimulated insulin secretion in 

pancreatic beta cells. Diabetologia 2002;45:242-252. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 21 

Bruns CM and Kemnitz, JW. Sex hormones, insulin sensitivity, and diabetes mellitus. 

ILAR J 2004;45:160-169. 

Catalano PN, Bonaventura, MM, Silveyra, P, Bettler, B, Libertun, C, Lux-Lantos, VA. 

GABA(B1) Knockout Mice Reveal Alterations in Prolactin Levels, Gonadotropic Axis, 

and Reproductive Function. Neuroendocrinology 2005;82:294-305. 

Catalano PN, Di Giorgio, N, Bonaventura, MM, Bettler, B, Libertun, C, Lux-Lantos, 

VA. Lack of functional GABA(B) receptors alters GnRH physiology and sexual 

dimorphic expression of GnRH and GAD-67 in the brain. Am J Physiol Endocrinol 

Metab 2010;298:E683-E696. 

Choquette AC, Lemieux, S, Tremblay, A, Drapeau, V, Bouchard, C, Vohl, MC, 

Perusse, L. GAD2 gene sequence variations are associated with eating behaviors and 

weight gain in women from the Quebec family study. Physiol Behav 2009;98:505-510. 

Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of 

insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a 

coin. Diabetes 2006;55:2392-2397. 

Ebenezer IS. Effects of intraperitoneal administration of the GABA(B) receptor positive 

allosteric modulator 2,6-di tert-butyl-4-(2-hydroxy-2,2-dimethyl-propyl)-phenol 

(CGP7930) on food intake in non-deprived rats. Eur J Pharmacol 2012. 

Ebenezer IS and Prabhaker, M. The effects of intraperitoneal administration of the 

GABA(B) receptor agonist baclofen on food intake in CFLP and C57BL/6 mice. Eur J 

Pharmacol 2007;569:90-93. 

Franke TF, Kaplan, DR, Cantley, LC, Toker, A. Direct regulation of the Akt proto-

oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997;275:665-668. 

Franklin IK and Wollheim, CB. GABA in the endocrine pancreas: its putative role as an 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 22 

islet cell paracrine-signalling molecule. J Gen Physiol 2004;123:185-190. 

Gamel-Didelon K, Corsi, C, Pepeu, G, Jung, H, Gratzl, M, Mayerhofer, A. An autocrine 

role for pituitary GABA: activation of GABA-B receptors and regulation of growth 

hormone levels. Neuroendocrinology 2002;76:170-177. 

Garcia-Tornadu I, Diaz-Torga, G, Risso, GS, Silveyra, P, Cataldi, N, Ramirez, MC, Low, 

MJ, Libertun, C, Becu-Villalobos, D. Hypothalamic orexin, OX1, alphaMSH, NPY and 

MCRs expression in dopaminergic D2R knockout mice. Neuropeptides 2009;43:267-274. 

Gilon P, Bertrand, G, Loubatieres-Mariani, MM, Remacle, C, Henquin, JC. The 

influence of gamma-aminobutyric acid on hormone release by mouse and rat endocrine 

pancreas. Endocrinology 1991;129:2521-2529. 

Jonaidi H, Abbassi, L, Yaghoobi, MM, Kaiya, H, Denbow, DM, Kamali, Y, Shojaei, B. 

The role of GABAergic system on the inhibitory effect of ghrelin on food intake in 

neonatal chicks. Neurosci Lett 2012;520:82-86. 

Kalra SP and Kalra, PS. NPY and cohorts in regulating appetite, obesity and metabolic 

syndrome: beneficial effects of gene therapy. Neuropeptides 2004;38:201-211. 

Kamatchi GL and Rathanaswami, P. Inhibition of deprivation-induced food intake by 

GABA(A) antagonists: roles of the hypothalamic, endocrine and alimentary 

mechanisms. J Clin Biochem Nutr 2012;51:19-26. 

King BM. The rise, fall, and resurrection of the ventromedial hypothalamus in the 

regulation of feeding behavior and body weight. Physiol Behav 2006;87:221-244. 

Kumar N and Dey, CS. Development of insulin resistance and reversal by 

thiazolidinediones in C2C12 skeletal muscle cells. Biochem Pharmacol 2003;65:249-257. 

Ligon B, Yang, J, Morin, SB, Ruberti, MF, Steer, ML. Regulation of pancreatic islet cell 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 23 

survival and replication by gamma-aminobutyric acid. Diabetologia 2007;50:764-773. 

Livak KJ and Schmittgen, TD. Analysis of relative gene expression data using real-time 

quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-408. 

Maiztegui B, Borelli, MI, Raschia, MA, Del Zotto, H, Gagliardino, JJ. Islet adaptive 

changes to fructose-induced insulin resistance: beta-cell mass, glucokinase, glucose 

metabolism, and insulin secretion. J Endocrinol 2009;200:139-149. 

Marques dS and Franci, CR. GABAergic mediation of stress-induced secretion of 

corticosterone and oxytocin, but not prolactin, by the hypothalamic paraventricular 

nucleus. Life Sci 2008;83:686-692. 

Mayerhofer A, Höne-Zell, B, Gamel-Didelon, K, Jung, H, Redecker, P, Grube, D, 

Urbanski, HF, Gasnier, B, Fritschy, JM, Gratzl, M. Gamma-aminobutyric acid 

(GABA): a para- and/or autocrine hormone in the pituitary. Federation of American 

Societies for Experimental Biology 2001;15:1089-1091. 

Mercer RE, Chee, MJ, Colmers, WF. The role of NPY in hypothalamic mediated food 

intake. Front Neuroendocrinol 2011;32:398-415. 

Muroya S, Funahashi, H, Uramura, K, Shioda, S, Yada, T. Gamma aminobutyric acid 

regulates glucosensitive neuropeptide Y neurons in arcuate nucleus via A/B receptors. 

Neuroreport 2005;16:897-901. 

Nankervis A, Proietto, J, Aitken, P, Alford, F. Hyperinsulinaemia and insulin 

insensitivity: studies in subjects with insulinoma. Diabetologia 1985;28:427-431. 

J.D.NEILL, Neuroendocrine regulation of Prolactin secretion., L.Martini and W.Gannong 

(Eds), Frontiers in Neuroendocrinology., 129-155, Raven Press, New York (1980). 

Oh YS, Khil, LY, Cho, KA, Ryu, SJ, Ha, MK, Cheon, GJ, Lee, TS, Yoon, JW, Jun, HS, 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 24 

Park, SC. A potential role for skeletal muscle caveolin-1 as an insulin sensitivity 

modulator in ageing-dependent non-obese type 2 diabetes: studies in a new mouse 

model. Diabetologia 2008;51:1025-1034. 

Okada T, Kawano, Y, Sakakibara, T, Hazeki, O, Ui, M. Essential role of 

phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in 

rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem 

1994;269:3568-3573. 

Pal M. Medicinal chemistry approaches for glucokinase activation to treat type 2 

diabetes. Curr Med Chem 2009;16:3858-3874. 

Perdona' E, Costantini, VJ, Tessari, M, Martinelli, P, Carignani, C, Valerio, E, Mok, 

MH, Zonzini, L, Visentini, F, Gianotti, M, Gordon, L, Rocheville, M, Corsi, M, Capelli, 

AM. In vitro and in vivo characterization of the novel GABAB receptor positive 

allosteric modulator, 2-{1-[2-(4-chlorophenyl)-5-methylpyrazolo[1,5-a]pyrimidin-7-yl]-

2-piperidinyl}eth anol (CMPPE). Neuropharmacol 2011;61:957-966. 

Prasannarong M, Vichaiwong, K, Saengsirisuwan, V. Calorie restriction prevents the 

development of insulin resistance and impaired insulin signaling in skeletal muscle of 

ovariectomized rats. Biochim Biophys Acta 2012;1822:1051-1061. 

Repetto EM, Sanchez, R, Cipelli, J, Astort, F, Calejman, CM, Piroli, GG, Arias, P, 

Cymeryng, CB. Dysregulation of corticosterone secretion in streptozotocin-diabetic rats: 

modulatory role of the adrenocortical nitrergic system. Endocrinology 2010;151:203-210. 

Robbins MS, Grouse, LH, Sorenson, RL, Elde, RP. Effect of muscimol on glucose-

stimulated somatostatin and insulin release from the isolated, perfused rat pancreas. 

Diabetes 1981;30:168-171. 

Rosmalen JG, Pigmans, MJ, Kersseboom, R, Drexhage, HA, Leenen, PJ, Homo-



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 25 

Delarche, F. Sex steroids influence pancreatic islet hypertrophy and subsequent 

autoimmune infiltration in nonobese diabetic (NOD) and NODscid mice. Lab Invest 

2001;81:231-239. 

Rui L, Fisher, TL, Thomas, J, White, MF. Regulation of insulin/insulin-like growth 

factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J 

Biol Chem 2001;276:40362-40367. 

Sakata A, Mogi, M, Iwanami, J, Tsukuda, K, Min, LJ, Jing, F, Iwai, M, Ito, M, 

Horiuchi, M. Female exhibited severe cognitive impairment in type 2 diabetes mellitus 

mice. Life Sci 2010;86:638-645. 

Saltiel AR and Kahn, CR. Insulin signalling and the regulation of glucose and lipid 

metabolism. Nature 2001;414:799-806. 

Sato I, Arima, H, Ozaki, N, Watanabe, M, Goto, M, Hayashi, M, Banno, R, Nagasaki, 

H, Oiso, Y. Insulin inhibits neuropeptide Y gene expression in the arcuate nucleus 

through GABAergic systems. J Neurosci 2005;25:8657-8664. 

Sbraccia P, D'Adamo, M, Leonetti, F, Caiola, S, Iozzo, P, Giaccari, A, Buongiorno, A, 

Tamburrano, G. Chronic primary hyperinsulinaemia is associated with altered insulin 

receptor mRNA splicing in muscle of patients with insulinoma. Diabetologia 

1996;39:220-225. 

Schuler V, Luscher, C, Blanchet, C, Klix, N, Sansig, G, Klebs, K, Schmutz, M, Heid, J, 

Gentry, C, Urban, L, Fox, A, Spooren, W, Jaton, AL, Vigouret, J, Pozza, M, Kelly, PH, 

Mosbacher, J, Froestl, W, Kaslin, E, Korn, R, Bischoff, S, Kaupmann, K, van der Putten, 

H, Bettler, B. Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic 

GABA(B) responses in mice lacking GABA(B(1)). Neuron 2001;31:47-58. 

Skrha J, Sindelka, G, Haas, T, Hilgertova, J, Justova, V. Comparison of insulin 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 26 

sensitivity in patients with insulinoma and obese Type 2 diabetes mellitus. Horm Metab 

Res 1996;28:595-598. 

Soltani N, Qiu, H, Aleksic, M, Glinka, Y, Zhao, F, Liu, R, Li, Y, Zhang, N, 

Chakrabarti, R, Ng, T, Jin, T, Zhang, H, Lu, WY, Feng, ZP, Prud'homme, GJ, Wang, Q. 

GABA exerts protective and regenerative effects on islet beta cells and reverses 

diabetes. Proc Natl Acad Sci U S A 2011;108:11692-11697. 

Sorenson RL, Garry, DG, Brelje, TC. Structural and functional considerations of GABA 

in islets of Langerhans. Beta-cells and nerves. Diabetes 1991;40:1365-1374. 

Stanley BG, Urstadt, KR, Charles, JR, Kee, T. Glutamate and GABA in lateral 

hypothalamic mechanisms controlling food intake. Physiol Behav 2011;104:40-46. 

Tuomisto J and Mannisto, P. Neurotransmitter regulation of anterior pituitary hormones. 

Pharmacol Rev 1985;37:249. 

van den Pol AN. Weighing the role of hypothalamic feeding neurotransmitters. Neuron 

2003;40:1059-1061. 

van Raalte DH, Ouwens, DM, Diamant, M. Novel insights into glucocorticoid-mediated 

diabetogenic effects: towards expansion of therapeutic options? Eur J Clin Invest 

2009;39:81-93. 

Vasan RS, Evans, JC, Benjamin, EJ, Levy, D, Larson, MG, Sundstrom, J, Murabito, 

JM, Sam, F, Colucci, WS, Wilson, PW. Relations of serum aldosterone to cardiac 

structure: gender-related differences in the Framingham Heart Study. Hypertension 

2004;43:957-962. 

Vital P, Larrieta, E, Hiriart, M. Sexual dimorphism in insulin sensitivity and 

susceptibility to develop diabetes in rats. J Endocrinol 2006;190:425-432. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 27 

Wendt A, Birnir, B, Buschard, K, Gromada, J, Salehi, A, Sewing, S, Rorsman, P, 

Braun, M. Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by 

GABA released from neighboring beta-cells. Diabetes 2004;53:1038-1045. 

Winnock F, Ling, Z, De Proft, R, Dejonghe, S, Schuit, F, Gorus, F, Pipeleers, D. 

Correlation between GABA release from rat islet beta-cells and their metabolic state. 

Am J Physiol Endocrinol Metab 2002;282:E937-E942. 

Xu E, Kumar, M, Zhang, Y, Ju, W, Obata, T, Zhang, N, Liu, S, Wendt, A, Deng, S, 

Ebina, Y, Wheeler, MB, Braun, M, Wang, Q. Intra-islet insulin suppresses glucagon 

release via GABA-GABAA receptor system. Cell Metab 2006;3:47-58. 

Zhou H, Tran, PO, Yang, S, Zhang, T, LeRoy, E, Oseid, E, Robertson, RP. Regulation 

of alpha-cell function by the beta-cell during hypoglycemia in Wistar rats: the "switch-

off" hypothesis. Diabetes 2004;53:1482-1487. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 28 

Figure legends 

Figure 1. A) Area under the curve (AUC) for the glucose tolerance test (AUC GTT). 

Two-way ANOVA: interaction: NS, factor sex (#): p<0.02, genotype (*): p<0.002. B) 

AUC for the insulin secretion test (AUC IST). Two-way ANOVA: interaction: NS, 

factor sex: p<0.001, genotype: NS. C: AUC for insulin tolerance test (AUC ITT), Two-

way ANOVA: interaction: NS, factor sex: p<0.01, factor genotype: p<0.01. D) AUC for 

the glucagon secretion test (AUC GST). Two-way ANOVA: interaction: NS; factor sex: 

p<0.04, factor genotype: NS.  

Figure 2. Basal serum levels of hyperglycemic hormones. A) GH: two-way ANOVA: 

NS; B) Glucagon: two-way ANOVA: NS; C) Corticosterone: two-way ANOVA: 

interaction, p<0.01, *: WT females significantly different form all groups, p<0.05 or less. 

Figure 3.  Expression of proteins involved in the insulin signaling pathway in skeletal muscle. 

A) IRS-1, B) IRS-2, C) IR and D) Hexokinase. In all cases two-way ANOVA: NS. 

Figure 4. Insulin-induced Akt activation in skeletal muscle. Females: two-way 

ANOVA: interaction: NS, factor genotype: NS, factor time: p<0.01, a: 1 and 5 min 

significantly different from 0 min, p<0.01. Males: two-way ANOVA: interaction: 

p<0.04, *: WT males at 5 min significantly different from 0 and 1 min, p<0.02; a: WT 

males at 5 min significantly different from GABAB1KO males at 5 min, p<0.01 

Figure 5. A) Food Intake (g/BW(g)). Two-way ANOVA: interaction: NS, factor sex: 

NS, factor genotype: p<0.03, *: GABAB1KO different from WT. B) Hypothalamic 

NPY mRNA expression. Two-way ANOVA: interaction: NS, factor sex: NS, factor 

genotype: p<0.04, *: KO different from WT. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Table I. Basal blood glucose, serum insulin and HOMA-IR index  

 Males Females 

 WT GABAB1KO WT GABAB1KO 

Non-fasted Blood Glucose (mg/dl) 129 ± 4
#
 123 ± 5

#
 103  ± 4 104 ± 6 

Fasted Blood Glucose (mg/dl) 78 ±3 89 ± 9 82 ± 4 86 ± 4 

Non-fasted Serum Insulin (ng/ml) 0.40 ± 0.08
#
 0.41 ± 0.09

#
 0.27 ± 0.05 0.25 ± 0.03 

Fasted Insulin (ng/ml) 0.18 ± 0.03 0.45 ± 0.11* 0.14 ± 0.02 0.14 ± 0.02 

HOMA-IR 0.84 ± 0.16 2.24 ± 0.48* 0.63 ±0.07 0.59 ± 0.08 

 

Values are expressed as Media ± SEM. Non-fasted blood glucose: two-way ANOVA: 

interaction: NS, factor sex: #: p<0.001, factor genotype: NS. Non-fasted serum insulin: 

two-way ANOVA: interaction: NS, factor sex: #: p<0.05, factor genotype: NS. Fasted 

serum insulin: two-way ANOVA: interaction: p<0.04, *: GABAB1KO males different 

from the other groups, p<0.01 or less. HOMA-IR: two-way ANOVA: interaction: 

p<0.03, *: GABAB1KO males different from the other groups, p<0.03 or less. Number 

of animals: 15-20 animals each group. 


