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pt functions of scalar CFT operators via a non-back-reacting Klein-Gordon field for both

backgrounds and confront the results. When solving for the field we find that the gluing

leads to a geometric realization of the Unruh trick via a completely holographic prescription.
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1 Introduction

The study of the gravity/gauge correspondence at finite temperature was initiated by

Witten in [1], where the CFT was formulated in periodic imaginary time, i.e. the Matsubara

formalism. In this setup, the conformal field theory (CFT) is formulated on the Sd−1×S1
β

boundary. Since the work of Hawking-Page [2], two aAdS gravity solutions are known to

fulfill the boundary conditions: the so-called Thermal AdS and the Euclidean AdS black

hole, which dominate in the low temperature and high temperature limit respectively.

However, a real time extension of the formalism is needed for the study of non-

equilibrium and finite temperature dynamical processes. The initial steps in this direction

started with [3] (see also [4, 5]) where, with a Schwinger-Keldysh perspective, the CFT finite

temperature propagator matrix elements were reproduced using the maximally extended

AdS-BH geometry. Nevertheless, the procedure involved imposing infalling boundary con-

ditions at the horizon, which contrasts with the holographic viewpoint.

In [6] (see [7–10] for previous work), a Lorentzian formulation of the correspondence

was presented. By gluing Euclidean and Lorentzian regions, the prescription relied only

on boundary data without resorting to boundary conditions inside the bulk. Within this

setup, the Thermal AdS real time extension was easily built [11]. The high temperature

CFT matrix elements were re-obtained, but at the expense of requiring two copies of the

maximally extended AdS black hole [11, 12].
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The Skenderis-van Rees (SvR) prescription [6, 11], provides the natural framework to

study gravity duals to Schwinger-Keldysh (SK) closed paths [13–16]. Among the possible

closed path in the complex t-plane, Umezawa singled out a particular one which connects

the SK and Thermofield Dynamics (TFD) formalisms [15, 17, 18]. It is worth mentioning

that already in [3] the authors stress that their prescription acquires nice properties for the

SK contour highlighted by Umezawa. It is this particular path that we will elaborate on in

this work. The TFD interpretation is central in our study and it has already proved useful

in the AdS/CFT context in [19] where, based in the Hartle Hawking construction [20],

Maldacena showed that the half Euclidean black hole geometry maps to the TFD vacuum

state in the boundary field theory. See [21, 22] for other works on maximally extended AdS

black holes.

In this work, we present an exact spherically symmetric solution to Einstein gravity

dual to the CFT on a SK path mentioned above. It is genuinely holographic geometry in

the sense that is completely determined by asymptotic boundary data, and in addition, is

the natural real-time extension of the Euclidean AdS-BH by inserting the two-sided exterior

of a single black hole. This is in line with Israel’s interpretation of the TFD degrees of

freedom as being physically realized within the two-sides of BH geometry [23]. The present

solution can also be thought of as the real time evolution of the Hartle-Hawking-Maldacena

state [19] under the TFD Hamiltonian.

This work is organized as follows: in section 2, we review the SvR prescription and its

relation to SK thermal paths, i.e. closed time contours. We will describe the CFT theory

defined by our contour in the TFD picture and study the predictions for the bulk theory

via the duality. We will consider the large N limit and the two contributions to the saddle

point approximation of the gravitational path integral, noting that the path admits also

a second Thermal-AdS dual which we should compare our results with. In section 3 we

describe in detail the construction of the geometry as well as the boundary conditions for

the field inhabiting our geometry. Section 4 will deal with the KG field computations inside

our geometry and the gluing procedure. For completeness in section 4.2 we briefly describe

the Thermal-AdS geometry. Section 5 compares the 2-pt bulk correlators obtained for both

geometries with the CFT predictions. We find specially interesting the correlators between

the two disconnected CFT’s. Finally, section 6 summarizes the results and possibilities for

future work.

2 Holography for a closed time-contour and TFD

This section is devoted to elaborate on the SvR prescription when considering a conformal

field theory defined on a closed time contour in the complex plane which involves two

imaginary-time intervals (of length β/2) as shown in figure 1a [13–15]. It will be argued

how the external sources on these intervals univocally define states of the CFT, which

can be described as pure bra/kets in the TFD framework so that the CFT path integral

describes a in/out scattering process. Finally, we will discuss the gravitational dual to the

thermal SK path in the large N approximation, and present a new solution involving a

two-sided black holes that solves the boundary problem and dominates over Thermal AdS
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Figure 1. (a) Closed Schwinger-Keldysh path in the complex t-plane. The horizontal lines represent

real time evolution and the vertical lines give imaginary time evolution. Regions I and II have

identical lengths equal to β/2. The red dots are identified, resulting in a closed path. (b) Dual

bulk geometry filling the path on the left. The semicircular pieces represent the Euclidean sections,

while the horizontal plane depicts the two sided AdS BH exterior represented as triangular wedges

L and R. The arrows along the boundary display the path ordering shown in the left figure. The

red dot from the path is also represented. Angular coordinates have been suppressed.

at high temperatures. We will also highlight the relation between the Lorentzian part of

the geometry and the TFD-extended evolution operator in the dual field theory.

The SvR holographic prescription can be summarized in the following formula

ZCFT [φ(C)] = Zgrav [Φ|∂ = φ (C)] (2.1)

where the l.h.s. is the generating function for correlation functions of CFT operators O
with the sources φ having support on any continuous path C in the complex t-plane. The

r.h.s. is the partition function for the bulk field Φ, dual to O, on an aAdS spacetime with

asymptotic boundary conditions φ.

This is a remarkable path integral expression that captures all possible spacetimes

combining regions of both signatures for a specific contour choice C [6, 11]. In particular,

it applies to the purely Euclidean set up [24, 25], and e.g. the current closed-contour case.

In the Schwinger-Keldysh context the path C is closed and the l.h.s. of (2.1) is expressed

as follows

ZCFT = Tr U U ≡ P e−i
∫
C dθ (H+O φ(θ)) (2.2)

where U is the evolution operator for a (CFT) Hamiltonian deformed with the source φ.

Here we consider the path in figure 1a: it consists in four intervals and the evolution

operator factorizes as U = ULUFURUI , where UL/R are ordinary real time evolution oper-

ators, and UI,F , on imaginary time intervals, are naturally associated to the states of the

– 3 –



J
H
E
P
1
1
(
2
0
1
8
)
1
2
9

system at different times. The path ordering P defined in figure 1a, corresponds to the

arrowed lines depicted in figure 1b, on the boundary of the spacetime.

The simplest check for this interpretation is by taking TI,F → 0 and vanishing sources,

then one recovers the conventional thermal density matrix

ρ0 ≡ lim
φI,F→0

UF UI = e−βH . (2.3)

In the next section we will show that via the TFD formalism we can associate the operators

UI,F ≡ P e−i
∫
I,F dθ (H+O φ(θ)) (2.4)

to the in/out states of a scattering process in a Hilbert space duplicated according to the

TFD rules. Notice that θ is pure imaginary in this sections. The matrix elements of UI,F
represent amplitudes so as pure states do, and its explicit connection with TFD kets is

described below.

2.1 The TFD formulation and the in/out scenario

The Thermo-Field Dynamics (TFD) formalism [18] is entirely equivalent for the com-

putation of time ordered correlation functions at finite temperature to the conventional

Schwinger-Keldysh (SK) method with σ = β/2 [17]. Nevertheless, an expected feature

of the TFD formulation is that deviations from the thermal vacuum state constructed by

inserting sources in the imaginary-time intervals, immediately get interpreted as in/out

excitations of a scattering set up in a thermal bath.

Let 〈n|Uφ|m〉 denote the matrix elements of the evolution operators in an Euclidean

piece, say I of eq. (2.4), where n,m belong to a complete basis of the Hilbert space H
of the field theory (CFT). In the TFD formalism, one constructs a second copy of the

system by taking the CPT conjugate,1 namely H̃, so that the total new system consist of

the original CFT and its TFD copy living on disconnected asymptotic boundaries of the

gravity dual, whose total states space is H ⊗ H̃. Within this context, the TFD in-states

|Ψφ〉〉 are defined as

(〈n| ⊗ 〈m̃|) |Ψφ〉〉 ≡ 〈n|Uφ|m〉 (2.5)

where |n〉, |m̃〉 are orthonormal basis of H and H̃ respectively.

Using this definition, the dual, 〈〈Ψφ|, of an initial (excited) state constructed with the

source φ(τ) in the lower half of S1 (τ ∈ (−π, 0)) is related to the adjoint of its matricial

form: (Uφ)†, and this is obtained by defining on the upper half (τ ∈ (0, π)) of the circle [26]:

(φ(τ))∗ ≡ φ(−τ). This relation has been argued in the holographic context in [27].

The solution to (2.5) is

|Ψφ〉〉 = (Uφ ⊗ I)|1〉〉 = Uφ |1〉〉 , (2.6)

where the unit state |1〉〉 is defined as [28]

|1〉〉 ≡
∑
n

|n〉 ⊗ |ñ〉 . (2.7)

1The precise rules to construct the tilde states/operators can be found in [18].
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Figure 2. (a) A finite Euclidean time evolution depicted in terms of matrix elements 〈n|Uφ|m〉.
(b) The same geometry can be also understood as the component (〈n| ⊗ 〈m̃|) |Ψφ〉〉 of a ket |Ψφ〉〉
defined in the TFD Hilbert space H⊗ H̃.

This can be verified by noticing that 〈m̃|(Uφ⊗I)|1〉〉 = Uφ〈m̃|1〉〉 = Uφ|m〉. Expression (2.5)

is schematically represented in figure 2: Uφ is depicted on the left as an evolution oper-

ator on a single Hilbert space, and the corresponding TFD-ket |Ψφ〉〉 is illustrated on the

right with its two ends now representing the d.o.f. of the TFD double intersected at some

spacelike surface of fixed time t.

From |Ψφ〉〉 one can define an Hermitian (reduced) density matrix

ρφ ≡ TrH̃ |Ψφ〉〉〈〈Ψφ| = TrH̃ Uφ |1〉〉〈〈1|U †φ = Uφ U
†
φ , (2.8)

where we have used

TrH̃ |1〉〉〈〈1| =
∑
n

|n〉〈n| = IH . (2.9)

Hermiticity of ρφ follows immediately

ρ†φ ≡
(
Uφ U

†
φ

)†
=
(
U †φ

)†
U †φ = ρφ (2.10)

where in the last step, we have transposed and then commuted. These expressions explicitly

show the connection between the pure state (2.6) in the TFD setup and the mixed matrix

density (2.8) in a single Hilbert space, both univocally determined by the evolution operator

Uφ through β/2 Euclidean time.

Working in the large N limit, we have shown in [27] that non-trivial Euclidean sources

φ on open contours lift the system from the vacuum to coherent excited states, with
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Figure 3. (a) Schwinger-Keldysh path in the complex t-plane. The vertical lines set up the initial

and final states, while the horizontal lines represent the real time evolution of the TFD system. (b)

Two-sided exterior regions of the AdS-BH showing the surfaces on which we insert the in/out-wave

functions. The arrows depict the boost like character of the TFD evolution.

eigenvalues essentially given by the Fourier modes of φ. In the present context, we can carry

a similar analysis to conclude that holographic excitations, built by imposing sources in

the Euclidean boundaries as in (2.4) and (2.6), correspond to thermal coherent states [29]

in the bulk Fock space at large N [30]. However, we postpone the analysis of Euclidean

sources to an upcoming paper [31].

We would like to conclude this section with two important observations. First, by

virtue of (2.6), as φ→ 0 the state reduces to the TFD vacuum:

lim
φ→0
|Ψφ〉〉 = e−

β
2
H |1〉〉 ≡ |Ψ0〉〉 . (2.11)

As shown in [19], the high-temperature gravity dual of (2.11) is the Hartle-Hawking wave

functional which in the semi-classical approximation is given by half of the Euclidean black

hole solution. Secondly, the on-shell action evaluated on the Lorentzian part of the solution

(see figure 3) nicely represents the CFT evolution operator that connects the initial/final

states, namely

U ≡ P UL ⊗ UR = e−i∆t (H⊗ I−I⊗H) = e−i∆t (H−H̃) , (2.12)

where ∆t ≡ TF − TI ≥ 0 corresponds to the standard boost-like time in the gravity dual.

The operator (2.12) is obtained by considering only the path ordering of the two real time

components of C. It preserves the state |Ψ0〉〉.
Summarizing, the TFD framework re-interprets the CFT partition function as an In-

Out process in a duplicated space. Combining expressions (2.11) and (2.12) allow to express

the l.h.s. of (2.2) as

ZCFT = 〈〈Ψ0| U[φL, φR] |Ψ0〉〉 , (2.13)

where Lorentzian sources φL/R shall be considered for computational purposes. These

remarks will be studied more in-depth and generalized to include excited states in [31].
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2.2 The Schwinger-Keldysh boundary problem in the large N limit

The CFT path integral over fields on the Schwinger-Keldysh closed path described above,

see figure 1a, corresponds to consider all non-trivial gravitational solutions with such con-

tour as asymptotic boundary.

Noticeably, this problem has two classical solutions such as in the purely Euclidean

closed path: the first one is the pure AdS torus whose global time coordinate must be

substituted by the complex parameter of the path C (see figure 6 below); and the second

one is the solution presented in this work. It involves the exterior of the maximally extended

AdS black hole in real time properly glued with Euclidean black hole pieces as depicted in

figure 1b.

On these gravitational backgrounds, one may also consider, for example, a non-back

reacting scalar field with aAdS boundary conditions given by the SK path in the CFT. In

the large N semi-classical limit, the holographic recipe simplifies by using the saddle point

approximation on the right hand side of (2.1). This can be expressed as

ZCFT[φ(C)] ≈ e−SAdS[φ(C)] + e−SBH[φ(C)] (2.14)

where each term is the exponential of the on-shell action valued on each of both aAdS

solutions, depending only on the boundary data φ on Sd−1 × C. They are topologically

distinct solutions, and the second term based in the new geometry, is the main object

in our study. This situation resembles the conventional description of the Hawking-Page

phase transition but now with a real time interval t ∈ [TI , TF ] inserted between the two

Euclidean halves (see figure 1). The bulk Euclidean actions are nothing but the free energies

of each solution, determining the preferred background at a given β, while the Lorentzian

terms provide the n-point correlation functions for boundary operators. The high/low

temperature regimes are dominated by the BH/Thermal solution.

In the forthcoming sections we study the dual geometries to figure 1a via 2-pt corre-

lators for a non-backreacting scalar field. The causal properties of these correlators are

completely determined by the path ordering shown in figure 1a. Therefore, the structure

of the l.h.s. of eq. (2.2) is known providing expressions to directly compare the bulk results

we are going to compute. Differentiation w.r.t. the Lorentzian sources φl, l = {L,R}, give

the Schwinger-Keldysh propagator,

− i δ
2 lnZCFT

δφl δφl′
≡
∫
ddk e−ik(x−y)〈〈Ψ0|

(
OL(k)OL(k) OL(k)OR(k)

OR(k)OL(k) OR(k)OR(k)

)
|Ψ0〉〉 , (2.15)

where the matrix elements are

〈〈Ψ0|OL(k)OL(k)|Ψ0〉〉 =
eβω

eβω − 1
GR(k)− 1

eβω − 1
GA(k) , (2.16)

〈〈Ψ0|OR(k)OL(k)|Ψ0〉〉 = 2
eβω/2

eβω − 1
(GA(k)−GR(k)) = 〈〈Ψ0|OL(k)OR(k)|Ψ0〉〉 , (2.17)

〈〈Ψ0|OR(k)OR(k)|Ψ0〉〉 =
1

eβω − 1
GR(k)− eβω

eβω − 1
GA(k) .

– 7 –
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In the expressions above, GR/A(k) stand for the Fourier transform of the retarded and

advanced propagators of the theory, analytic in the upper and lower half of the complex

ω ≡ k0 plane. The symmetric property of the matrix is a consequence of the two Eu-

clidean pieces having equal β/2 length. The general matrix was presented in [3], where

this particular path was already seen to appear naturally in gravity.

3 Building up the gravity solution

In this section we describe in detail the construction of the geometry, depicted in figure 1b,

dual to the SK path shown in figure 1a. We will define the coordinates we will work with

and take care of the gluing conditions between the different signature regions. We will

work in 2 + 1 dimensions for the ease of calculation, but the whole construction follows

straightforwardly to higher dimension examples.

The geometry is built from the Lorentzian AdS-BH exteriors L and R and the Euclidean

BH manifold halved in two pieces as shown in figure 4. The two Euclidean pieces are glued

to the constant t-hypersurfaces (red lines in figure 4a) located at t = T±. The standard

metrics for the BTZ black hole are (RAdS ≡ 1) [32, 33]

ds2 = −
(
r2 − r2

S

)
dt2+

dr2

r2 − r2
S

+r2dϕ2 and ds2 =
(
r2 − r2

S

)
dτ2 +

dr2

r2 − r2
S

+r2dϕ2 ,

(3.1)

in Lorentzian and Euclidean signature respectively. In these metrics, t ∈ R, ϕ ∼ ϕ + 2π

and τ ∼ τ + β with β = T−1 = 2π/rS . Rescaling the coordinates as

r → rS r , t→ t

rS
, τ → τ

rS
, ϕ→ ϕ

rS
, (3.2)

turn the metrics (3.1) into

ds2 = −(r2−1)dt2 +
dr2

(r2 − 1)
+ r2dϕ2 ds2 = (r2−1)dτ2 +

dr2

(r2 − 1)
+ r2dϕ2 (3.3)

with τ ∼ τ+2π and the BH temperature absorbed in the angular periodicity ϕ ∼ ϕ+2πrS .

We will work with metrics (3.3) for our geometry throughout this paper.

3.1 Continuity conditions

We now show that our geometry meets the appropriate C1 gluing conditions, this is, con-

tinuity of the metric and extrinsic curvature across constant time surfaces. The metrics

on any constant Lorentzian and Euclidean time slices coincide and can therefore be con-

tinuously glued. The staticity of the spacetime guarantees that this can be done at any

value2 of t and τ . The continuity of the conjugate momentum of the metric is equivalent to

demand continuity of the extrinsic curvatures Kµν across the gluing surface [11]. Explicitly,

Kµν ≡
1

2
LnPµν =

1

2
nα∂α

(
gµν − n2nµnν

)
+ ∂µ (nα)

(
gαν − n2nαnν

)
(3.4)

2By writing metrics (3.3) in Kruskal coordinates one can check continuity at u = 0 and v = 0 surfaces,

i.e. in the t→∞ limit.
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Figure 4. (a) Static patches of the AdSBH with constant t, r surfaces depicted. Time runs upward

in the left wedge (L) and downward in the right wedge (R). The angular variable ϕ in (3.1) has

been suppressed. (b) Euclidean AdSBH: time becomes an angular variable τ ∼ τ + 2π. The two

pieces are identical and their temporal extension is β/2.

where Pµν = gµν −n2nµnν is the first fundamental form of a hypersurface with normal nµ.

In the present case, the unitary time-like vector is nµ ≡ δµ0 (r2 − 1)−1/2. The first term

in (3.4) vanishes due to staticity while the second gives

Kµν = ∂µ (nα)
(
gαν−n2nαnν

)
= δrµ

(
−r

(r2−1)
3
2

)(
g0ν−n2n0nν

)
= δrµδ

0
ν

(
−r

(r2−1)
3
2

)
P00 = 0

(3.5)

which follows from P00 = 0. The expression above shows the C1 continuity of the metric

across the Σt and Στ gluing surfaces. The point r = 1 shows no special pathology, as

limr→1Kµν = 0.

We stress that the L and R sections, depicted in figure 4, are connected through the

wormhole, located at r = 1, as in the standard Kruskal extension. This gluing is a natural

assumption to avoid boundary conditions at r = 1 when solving for the bulk field. The

final outcome of the construction is the geometry depicted in figure 1b.

Regarding the parametrization on each region, we define t on L and R as the real part

of their respective position in the complex t plane of figure 1a, i.e. t ∈ [TI , TF ] both in

L and R running from left to right. We will take −TI = TF = T/2 to simplify notation

in the explicit computation. The Euclidean regions are parametrized τ ∈ [0, π] in F and

τ ∈ [−π, 0] in I.

We now discuss the boundary conditions on the fields defined on this geometry. These

follow directly from the saddle point approximation on the r.h.s. of 2 and can be understood

as a C1 gluing of the fields, i.e. continuous field and conjugated momentum, through the

(bulk) hyper-surfaces joining the pieces of the SK path. The explicit signs in the gluing

– 9 –
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conditions, specifically on the conjugated momentum, depend on the time parametrization

on each region. Our choice is shown in figure 4a and leads to

ΦL = ΦI , −i∂tΦL = ∂τΦI , on t = TI , τ = 0

ΦL = ΦF , −i∂tΦL = ∂τΦF , on t = TF , τ = 0

ΦR = ΦI , −i∂tΦR = ∂τΦI , on t = TI , τ = −π
ΦR = ΦF , −i∂tΦR = ∂τΦF , on t = TF , τ = π . (3.6)

We refer the reader to [11, 27] for explicit computations in several examples. Notice that

the time coordinate in R runs opposite to the path ordering. This is in agreement with the

TFD interpretation of the dofs in R as being the CPT dual of those in region L.

4 Bulk massive scalar field

In the present section we will find the classical bulk solutions for a real massive scalar field

in the two geometries dual to the SK path shown in figure 1a (cf. (2.14)). The field will be

subject to arbitrary boundary conditions on the Lorentzian asymptotic regions. This will

provide us with the necessary data to reproduce the high and low temperature behavior of

the propagator matrix (2.15).

4.1 Two-sided black hole geometry

We now proceed to build the solution for the scalar field Φ on the complete geometry with

non-zero source φL on the L wedge. The solution with non-zero φR can be found following

an analogous procedure, and the full solution is easily obtained due to the linearity of the

problem. The action and EOM are given by

S[Φ] = −1

2

∫
dtdrdϕ

√
|g|
(
∂µΦ∂µΦ +m2Φ2

)
,

(
�−m2

)
Φ = 0 , (4.1)

in the Lorentzian metric (3.3). The field is subject to Φ ∼ r∆−2φL(t, ϕ) on region L, where

∆ = 1 +
√

1 +m2, and trivial sources everywhere else. Writing Φ = e−iωt+ilϕf(ω, l, r),

where rSl ∈ Z, one obtains from (4.1)

f(ω, l, r) ≡ Nωl∆ r−∆

(
1− 1

r2

)iω
2

2F1

(
∆

2
+

1

2
i(ω − l), ∆

2
+

1

2
i(ω + l); iω + 1; 1− 1

r2

)
,

Nωl∆ ≡
Γ
(

∆
2 + 1

2 i(ω − l)
)

Γ
(

∆
2 + 1

2 i(ω + l)
)

Γ(∆− 1)Γ(iω + 1)
. (4.2)

The normalization factor Nωl∆ fixes the asymptotic behavior of the solution to be,3

f(ω, l, r) ≈ r∆−2 + · · ·+ α(ω, l,∆)r−∆
[
ln(r2) + β(ω, l,∆) + . . .

]
, r →∞ (4.3)

αωl∆ ≡ (−1)∆−1

(
2−∆

2 + i
2(ω − l)

)
∆−1

(
2−∆

2 + i
2(ω + l)

)
∆−1

(∆− 2)!(∆− 1)!
, (4.4)

βωl∆ ≡ −ψ
(

∆

2
+
i

2
(ω − l)

)
− ψ

(
∆

2
+
i

2
(ω + l)

)
, (4.5)

3We remind the reader that the ln(r2) term appears only for ∆ ∈ N and becomes relevant in KK

compactifications. This will not be important in our discussion. We refer the interested reader to [34, 35]

and appendices in [39].
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where (x)y stands for Pochhammer symbols and ψ(x) for the Digamma function. It is

important to note that the normalization factor introduces simple poles at ω = ±l+ i(2n+

∆), with n ∈ N. They are depicted by crosses in figure 5a. Notice that f(±ω, l, r) results

analytic in the lower/upper half plane respectively.

Contrary to the case of pure AdS, the BH geometry shows two linearly independent

regular NN solutions: e−iωt+ilϕf(±ω, l, r). They can be chosen to behave as outgoing and

ingoing waves at the horizon, respectively. A general solution on the L wedge is then

built from,

ΦL(r, t, ϕ) =
1

4π2rS

∑
l

∫
dω

∫
dt′dϕ′ e−iω(t−t′)+il(ϕ−ϕ′)φL(t′, ϕ′)

[
L+
ωlf(ω, l, r) + L−ωlf(−ω, l, r)

]
,

(4.6)

with ω ∈ R. To meet the asymptotic boundary condition we demand

L+
ωl + L−ωl = 1 . (4.7)

Although not mandatory, introducing L±ωl becomes handy for gluing the complete solution.

Their difference parametrize the normalizable modes on the geometry. To gain physical

intuition, the quotient L+
ωl/L

−
ωl can be interpreted as the relative weight of outgoing and

infalling modes through the horizon in the NN solution.

Normalizable (N) modes are built from the combination e−iωt+ilϕ[f(ω, l, r)−f(−ω, l, r)]
as is evident from (4.3). These are the appropriate modes to expand the solution on regions

R, I and F

ΦR(r, t, ϕ) =
1

4π2rS

∑
l

∫
dω e−iωt+ilϕRωl [f(ω, l, r)− f(−ω, l, r)] , (4.8)

ΦF (r, τ, ϕ) =
1

4π2rS

∑
l

∫
dω e−ωτ+ilϕ Fωl [f(ω, l, r)− f(−ω, k, r)] , (4.9)

ΦI(r, τ, ϕ) =
1

4π2rS

∑
l

∫
dω e−ωτ+ilϕ Iωl [f(ω, l, r)− f(−ω, k, r)] . (4.10)

Since ω ∈ R, (4.9) and (4.10) seem to be ill defined at high frequencies, nevertheless, the

gluing provides Iωl and Fωl which guarantee a regular solution.

We relegate the details of the gluing procedure to [31], where a general solution includ-

ing non-zero Euclidean sources will be presented. Imposing (3.6) on (4.6), (4.8)–(4.10), one

finds

−L−ωl φ̃L e
−iωT/2 = Fωl , Fωl e

−πω = Rωl e
−iωT/2 , Rωle

iωT/2 = Iωl e
πω , Iωl = L+

ωle
iωT/2 φ̃L

(4.11)

yielding via (4.7)

L+
ωl =

−1

e2πω − 1
, L−ωl =

e2πω

e2πω − 1
. (4.12)

The remaining coefficients can be obtained from (4.12) and (4.11).
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ω

(a)

ω

(b)

Figure 5. (a) The blue line denotes the ω-integration contour in the Lorentzian solution (4.6).

Crosses show the location of the poles of f(ω, l, r) while circles those of f(−ω, l, r). (b) The

Feynman-like blue line represents the integration path in (4.17). The red crosses and circles repre-

sent the poles of s(ω, l, r), which lie on the real axis.

Comments.

1. Uniqueness : “no source free solutions to the scalar field EOM exist”.

Consider N modes in every region:

ΦL(r, t, ϕ) =
1

4π2rS

∑
l

∫
dωe−iωt+ilϕLωl [f(ω, l, r)− f(−ω, k, r)] , (4.13)

in L region, (4.8)–(4.10) in regions R, I, F and impose (3.6). As a consequence one

obtains

Iωl = e2πωIωl .

This condition on Iωl can be understood as manifesting the −iβ thermal periodicity

of the geometry.4 For arbitrary ω it implies Iωl = 0, but for ω = im, m ∈ Z the

possibility of arbitrary I(im)l arises. This set of solutions is nevertheless ruled out

since the cancellation at infinity no longer works: f(im, l, r) = 0 for m > 0. We

conclude that Iωl = 0 is the only possible solution.

2. Analyticity though the wormhole : “the Lorentzian solution results analytic in the two

sided BH ”.

The solution above involved uncorrelated ‘Rindler’ modes ΦL and ΦR. The gluing

conditions (4.11), lead to

Rωl = φ̃L L
+
ωl e

ωπ = − φ̃L L−ωl e
−ωπ , (4.14)

4Recall that the temperature was absorbed in the angular periodicity, turning β = 2π (cf. (3.3)). Thermal

periodicities of 2π must be understood in units of β.
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relating the L and R coefficients. We would like to emphasize that the e±ωπ factors

were not imposed a priori and arose as a consequence of regions I and II having a β/2

temporal extension.4 It is well known that these relations are associated with global

analytic modes [36]. This is one of the important outcomes of our construction: the

β/2 extension of the Euclidean geometry imply that the fields in the bulk end up

being analytic. One could have carried out the computations above for other arbitrary

Euclidean sections lengths, but the fields living in the Lorentzian regions would not

have been analytic, thus invalidating the solution. Equal length Euclidean sections

as naturally associated to BH geometries was noticed previously in [3]. This property

is particular to BHs, for the Thermal AdS setup we will see that no constraint arises,

modes are analytic all over the geometry for any Euclidean temporal extension.

3. Regularity : “Euclidean pieces (4.9) and (4.10) become finite after the gluing”.

The final expressions for the bulk field in the Euclidean sections are

ΦF (r, τ, ϕ) =
1

4π2rS

∑
l

∫
dω e−ωτ+ilϕ

(
−φ̃L e−iωT/2

e2πω

e2πω−1

)
[f(ω, l, r)−f(−ω, k, r)] , τ ∈ (−π, 0)

ΦI(r, τ, ϕ) =
1

4π2rS

∑
l

∫
dω e−ωτ+ilϕ

(
−φ̃L e+iωT/2 1

e2πω−1

)
[f(ω, l, r)−f(−ω, k, r)] , τ ∈ (0, π) .

The resulting coefficients regulate adequately the ω integrals, thus validating our

procedure.

4.2 Thermal AdS geometry

We summarize here the computations and results for the second bulk dual to the path in

figure 1a, i.e. Thermal AdS. The geometry is built by gluing together pure AdS cylinders

resulting in a torus like solution as shown in figure 6b. We carry over the notation above

calling L and R the Lorentzian sections t ∈ [−T/2, T/2]. We will consider the Euclidean

pieces to posses different temporal extensions: σ for I and β−σ for F as shown in figure 6a.

We will thus choose τ ∈ [σ − β, 0] in F and τ ∈ [0, σ] in I, which for σ = β/2 reduces to

the symmetric path of the previous section. It is important to stress that for the present

geometry no physical connection appears between L and R regions.

The Lorentzian regions are defined for the AdS3 metric

ds2 = −(r̃2 + 1)dt̃2 +
dr̃2

r̃2 + 1
+ r̃2dϕ̃2 , (4.15)

the “tilde” notation carried over from (3.1), for ϕ ∼ ϕ+ 2π in both metrics. Inserting the

ansatz Φ ∝ e−iωt̃+ilϕ̃s(ω, l, r̃) into the equation of motion (4.1) gives

s(ω, l, r̃) =
Γ
(

1
2(|l|+∆−ω)

)
Γ
(

1
2(|l|+∆+ω)

)
Γ(∆−1)Γ(|l|+1)

(
1+r̃2

)ω/2
r|l| 2F1

(
ω+|l|+∆

2
,
ω+|l|−∆+2

2
; 1+|l|;−r̃2

)
,

(4.16)
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t

T TI F

F

LI

R
(a)

I

L

F

R

β – σ

σ
(b)

Figure 6. (a) SK contour for Thermal AdS. The Euclidean pieces have different extensions: σ for

I and β−σ for F . (b) Dual real time Thermal AdS geometry. Notice that the L and R regions are

only connected through the Euclidean sections. The pieces are ordered as dictated by the contour

order in figure (a).

as the only solution regular in the interior. The overall normalization is fixed, so that for

generic {ω, l}, s(ω, l, r̃) ≈ r̃∆−2 + . . . asymptotically. The general solution on L is

ΦL(r̃, t̃, ϕ̃)=
1

4π2

∑
l∈Z

∫
F
dωe−iωt̃+ilϕ̃φ̃L(ω, l)s(ω, l, r̃)+

∑
n∈N
l∈Z

(
l+nl e

−iωnl t̃+l−nl e
+iωnl t̃

)
eilϕ̃snl(r̃) ,

(4.17)

with the l±nl coefficients parametrizing the normalizable modes

snl(r̃) ≡
∮
ω=−ωnl

dω s(ω, l, r̃) , ωnl = 2n+ ∆ + |l| . (4.18)

These will become fixed once we glue the different pieces. Equation (4.17) requires a choice

of contour in the complex ω-plane to avoid the singularities in the real axis depicted in

figure 5b. We refer the reader to [6] for details. An analogous expression for the R region

can be written.

For the Euclidean regions normalizable modes suffice, then

ΦI(r̃, τ̃ , ϕ̃) =
∑
n∈N
l∈Z

(
i+nl e

−ωnlτ̃ + i−nl e
ωnlτ̃

)
eilϕ̃snl(r̃) , (4.19)

and similarly for region F. Following analogous steps as in [11, 27], the gluing condi-

tions (3.6) uniquely fix the coefficients l±nl, i
±
nl as well as their R and F counterparts.

The result of the gluing for a non-zero source on the L region, leads to

l±nl =
1

4π

φ̃L(∓ωnl, l)
eωnlβ − 1

. (4.20)
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By inserting (4.20) back into (4.17), one can rewrite the bulk field as

ΦL(r̃, t̃, ϕ̃) =
1

4π2

∑
l∈Z

∫
R
dωdt̃′dϕ̃′e−iω(t̃−t̃′)+il(ϕ̃−ϕ̃′) eωβ

eωβ − 1
φL(t̃′, ϕ̃′)s(ω, l, r̃)

− 1

4π2

∑
l∈Z

∫
A
dωdt̃′dϕ̃′e−iω(t̃−t̃′)+il(ϕ̃−ϕ̃′) 1

eωβ − 1
φL(t̃′, ϕ̃′)s(ω, l, r̃) (4.21)

where R and A stand for the retarded and advanced integrations paths respectively. Notice

that (4.21) mimics the structure of (4.6) when using (4.12).

5 Bulk correlators

We will now obtain the 2-pt large N CFT correlators from the field solutions obtained

in the previous section following prescription (2.1) and compare our results with CFT

predictions. We build the complete bulk action as a sum over four pieces

iSC = −SI + iSL − SF + iSR .

The saddle point approximation evaluates each action on-shell, leaving only boundary

terms for each piece. Since Euclidean sources have been turned off contributions from I

and II vanish, then

iS0
C [φL, φR] = − i

2

∫
C

√
γ Φ nµ∂µΦ = − i

2
r∆

[∫ T

0
dtdϕ φL (r∂rΦL)−

∫ T

0
dtdϕ φR (r∂rΦR)

]
r→∞

.

(5.1)

Evaluating (5.1) on metrics (3.3) and (4.15) provide the real time propagator matrices

in the high and low temperatures regimes of the dual CFT. The sign difference between

the terms arises from the choice of time parametrization, see figure 3b. The correlation

functions will be contour-time-ordered as shown in figure 1a.

We will first concentrate on the diagonal elements of the matrix (2.15). For the BH

geometry depicted in figure 1b one obtains

〈〈Ψ0|T{OL(t, ϕ)OL(t′, ϕ′)}|Ψ0〉〉
∣∣∣
BH
≡ −i

δ2S0
C

δφLδφL

=
(∆−1)

2π2irS

∑
l

∫
dωe−iω∆t+il∆ϕ

×
(
−1

e2πω−1
αωl∆βωl∆+

e2πω

e2πω−1
α(−ω)l∆β(−ω)l∆

)
=
∑
j∈Z

(∆−1)2

2∆−1π
[cosh(∆ϕ+2πrSj)−cosh(∆t(1−iε))]−∆ .

(5.2)

We have relegated the momentum integration to appendix A. Some comments on (5.2)

regarding causality are in order: the pole structure of β±ωl∆ guarantees that the second
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line in (5.2) appropriately reproduces the expected advanced/retarded propagators shown

in (2.16). The result is in agreement with [3, 11] and, in line with the holographic real time

viewpoint, the sign of the iε regulator leading to time ordering is fixed by convergence,

see appendix A. The propagator (5.2) can be seen to meet the KMS condition, i.e. it is

invariant under ∆t → ∆t + iβ. As stressed in [19], it vanishes exponentially as ∆t →
∞, manifesting that, at high temperature, correlations are quickly lost. As in the pure

AdS spacetime [6], mapping the initial/final data to (Euclidean) asymptotic boundary

conditions unambiguously lead to propagators with the correct iε-insertions.

The result for Thermal AdS follows analogously from (4.17) and (5.1), the result is

〈〈Ψ0|T{OL(t, ϕ)OL(t′, ϕ′)}|Ψ0〉〉
∣∣∣
Th

=
∑
j∈Z

(∆− 1)2

2∆−1π
[cos(∆t(1− iε) + iβj)− cos(∆ϕ)]−∆ .

(5.3)

Again, from its momentum expansion, which can be read off from (4.17), one finds the

expected structure shown in (2.16). The result can be understood as a sum over t-images,

with period β, of the zero temperature 2-pt function, thus ensuring the KMS condition.

Propagation of information in this solution, in contrast with (5.2), is oscillatory as expected

at low temperature. Finally, expressions (5.2) and (5.3) which respectively dominate in the

β ≶ βc,5 describe the CFT dynamics for any temperature.

Computations for correlators in the R region easily follow using the solutions analogous

to the ones found in the previous section. The result is,

〈〈Ψ0|T̄{OR(t, ϕ)OR(t′, ϕ′)}|Ψ0〉〉
∣∣∣
BH
≡−i

δ2S0
C

δφRδφR

=
∑
j∈Z

(∆−1)2

2∆−1π
[cosh(∆ϕ+2πrSj)−cosh(∆t(1+iε))]−∆ ,

(5.4)

where T̄ stands for the reverse time-ordering, which agrees with the path ordering shown

in figure 1a. It is reassuring to see that the answer is consistent with the following TFD

property: the second diagonal element in (2.15) is the reverse time-order propagator, which

can be obtained as the complex conjugate of the first diagonal element. Similar arguments

hold for the low temperature propagator, which can be obtained as the complex conjugate

of (5.3). Notice that the diagonal elements of the matrix in the high and low temperature

regime, e.g. (5.2) and (5.3), are related via the standard double Wick rotation φ → it,

t→ iφ.

An interesting analysis comes from the off-diagonal elements of the propagator matrix.

These element require field solution with sources on L and R turned on. In the CFT setup,

the case σ 6= β/2 leads to non-symmetric propagator matrices. However, as observed

in [3], the holographic computation in the semi-classical limit always leads to a symmetric

5Recall that βc = 2πRAdS = 2π in our units.
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propagator matrix,

〈〈Ψ0|OL(t, ϕ)OR(t′, ϕ′)|Ψ0〉〉 ≡ −i
δ2S0
C

δφLδφR
= −i

δ2S0
C

δφRδφL
≡ 〈〈Ψ0|OR(t′, ϕ′)OL(t, ϕ)|Ψ0〉〉 .

(5.5)

This imposes σ = β/2 to have a well defined holographic dual to a SK contour on the

boundary. Nevertheless, one can compute for the Thermal bulk scenario the off-diagonal

propagator for general σ, yielding

−i
δ2S0
C

δφLδφR

∣∣∣
Th

=
1

2

∑
j∈Z

(∆− 1)2

2∆−1π
[cos(∆t+ iβj − iσ)− cos(∆ϕ)]−∆

+
1

2

∑
j∈Z

(∆− 1)2

2∆−1π
[cos(∆t+ iβj − i(β − σ))− cos(∆ϕ)]−∆ . (5.6)

This expression arises from two contributions, which can be understood as the two possible

paths connecting the points in L and R segments through the σ and β − σ Euclidean

sections. The images sum accounts for the windings of these paths. Each of the inequivalent

contributions are in fact what is expected for the off-diagonal elements of the σ 6= β/2

propagator matrix. One can see that the semi-classical limit is taking the mean of the two

quantum behaviors, although the shorter path dominates exponentially over the longest

one. The contributions add up in the σ = β/2 case, recovering the symmetric matrix (2.15).

One should note that no iε regulator is needed for convergence in this case.6

The black hole geometry, dual to the σ = β/2 path gives

〈〈Ψ0|OR(t, ϕ)OL(t′, ϕ′)|Ψ0〉〉
∣∣∣
BH
≡ −i

δ2S0
C

δφLδφR

=
2(∆−1)

4π2irS

∑
l

∫
dω e−iω∆t+il∆ϕ eπω

e2πω−1

(
−αωl∆βωl∆+α(−ω)l∆β(−ω)l∆

)
=
∑
j∈Z

(∆−1)2

2∆−1π
[cosh(∆ϕ+2πrSj)+cosh(∆t)]−∆ ,

(5.7)

where the sign difference in the second line agrees with (2.17) and the third line matches [19].

We now make some comments regarding (5.6) and (5.7). First, notice that in contrast

to the case of diagonal matrix elements, one cannot relate the results via the double Wick

rotation φ → it, t → iφ. This stems from the σ terms in (5.6) which do not rotate. The

result is related to the topology of the solutions: unlike the Thermal solution, the black hole

admits paths connecting L and R through the wormhole, cf. figures 1b and 6b. The fact

of (5.6) and (5.7) not being connected by a double Wick rotation manifest the importance

of understanding the correspondence in the a real-time setup.

One can also interpret these correlators as providing information on the entanglement

between the L and R dof’s [37]. Results (5.6) and (5.7), understood as lower bounds on

mutual information, behave as expected in disentangling experiments.

6Except for the σ = 0 or σ = β cases which were considered in [11].
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6 Conclusions

In this work we constructed a novel geometry dual to the symmetric SK path presented

in figure 1. The solution was obtained by gluing Euclidean and Lorentzian sections of

the AdS black hole and represents the gravity dual to the real-time extension of a finite

temperature CFT in the high temperature limit. The particular SK path chosen shows

several appealing properties that we explored.

We would like to mention the following remarkable properties of the solution:

1. It removes the black hole interiors and therefore the singularities, as it happens for

the Euclidean AdS BH, but its Lorentzian region remains two-sided, i.e. with R- and

L-wedges. In this sense, it is a natural real time evolution of the TFD state built

from the Euclidean pieces.

2. The SK path with two equal β/2 lengths allows to formulate the problem in ac-

cordance with the TFD approach [17]. Our solution gives the dual description of

the TFD evolution. In other words, the gravitational dual of the operator U, de-

fined in (2.12), is represented by the two sided BH under the boost time evolution

as shown in figure 3. Indeed, the Hartle-Hawking-Maldacena wave function given

by the Euclidean semi-disk geometry, remains invariant throughout its Lorentzian

evolution.

3. The Euclidean regions on their own have also a physical interpretation, providing

initial and final states in the TFD viewpoint. This matches the observation that the

HHM-state is the TFD thermal vacuum [19], whose gravity dual is precisely identified

with the regions I/F of the actual geometry.

4. The complete manifold is made from three spacetimes and covers the four pieces of

the path in figure 1a: L ∪ R belongs to a single black hole. This is in line with

the intuition that high temperature regime increasingly entangling the system, made

holographic by connecting the regions through the wormhole [37, 38].

5. For the chosen SK path, the analyticity of the fields in the bulk interior is forced

by the gluing conditions (3.6). This is relevant for the Lorentzian regions since the

field configurations end up being analytic through the wormhole. In this sense, our

solution geometrically captures the Unruh trick. The traditional analytic extension

required to obtain global positive energy modes on a L ∪ R spacelike surface, is

automatically incorporated by the Euclidean regions I/F .

6. The solution, together with the real time Thermal AdS (depicted in figure 6) extend

the two saddle points Hawking-Page scenario to real-time. We have explored the

transition studying 2-pt functions in the two different regimes. We have recovered

the propagator matrix and checked the path ordering in the CFT.

7. Based on analyticity arguments, it does not seem to exist an analogous BH solution

for SK paths other than the symmetric one. While the Thermal scenario admits
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arbitrary Euclidean path lengths, the σ = β/2 path is privileged in the sense that

the CFT matrix propagator becomes symmetric which is always the case from the

bulk viewpoint, at least in the semi-classical limit.

8. We found that the off-diagonal elements of the propagator matrix in the high and

low temperature regimes are not connected through the double Wick rotation which

connects the metrics (3.3) and (4.15). The result is related to the topology of the

solutions, in the BH the Lorentzian regions are connected through the wormhole.

This represents a non-trivial example stressing the importance of a better real-time

understanding of the correspondence.

9. The off-diagonal elements in the matrix propagator provide information on the en-

tanglement of the dof’s and the classical connectivity between the two sides of the

spacetime.

As mentioned in the main text, the immediate outlook from this work is to study

holographic excited states in our solution by turning on Euclidean sources [27, 39]. Since

we have been able to reinterpret the finite temperature problem as a scattering process in a

thermal bath, we expect the excitations to be associated to (thermal) coherent states [30].

It will be interesting however, to study how this prescription defines the nature of the new

coherent states in terms of the normal modes in the duplicated TFD Hilbert space. We

would also like to study whether this excited states scenario favors, in a similar fashion

as the comments in 7., the symmetric σ = β/2 SK path. We will pursue this objectives

in [31].

It would be also interesting to study backreaction in some perturbative set up, upon

imposing boundary sources that excite the TFD ground state, and study how the present

geometry would eventually be deformed [40]. One might also consider gluing multiple copies

of the Lorentzian wedges for OTOC computations [41]. Generalizations of our geometry

that include charge and angular momentum would also be of interest. Another line of future

research would be deforming the TFD (decoupled) field theory Hamiltonian HR−HL, with

a local coupling term ∼ g OROL leading to a traversable wormhole [38, 42–45].
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A Propagator in configuration space

In this appendix we show that

〈〈Ψ0|T{OL(t,ϕ)OL(t′,ϕ′)}|Ψ0〉〉
∣∣∣
BH
≡−i δ2S0

C
δφLδφL

=
2(∆−1)

4π2irS

∑
l

∫
dωe−iω(t−t′)+il(ϕ−ϕ′)

×
(
−1

e2πω−1
αωl∆βωl∆+

e2πω

e2πω−1
α(−ω)l∆β(−ω)l∆

)
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=
(∆−1)

2π2irS

∑
l

∫
dωe−iω∆t+il∆ϕ (−nωαωl∆βωl∆+(1+nω)α(−ω)l∆β(−ω)l∆

)
(A.1)

=
∑
j∈Z

(∆−1)2

2∆−1π
[cosh(∆ϕ+2πrSj)−cosh(∆t(1−iε))]−∆ (A.2)

where nω ≡ (e2πω − 1)−1, αωl∆ and βωl∆ coefficients where defined in (4.4) and (4.5) and

the Feynman regulator ε > 0 is mandatory for convergence. The black hole mass has been

transferred to the periodicity of the polar angle ϕ ∼ ϕ+ 2πrS , therefore, the l-summation

is over l = k/rS with k ∈ Z, see (3.2).

One comment regarding the normalization of 2-pt functions is at hand. The factor

2(∆− d) = 2(∆− 1) in the numerator of the second line onwards does not follow directly

from the field solutions found in (4.6), which yields 2∆. The correction arises from the

different ways of regularizing the divergences arising in the asymptotic boundary. This

is however not related to our concrete problem and has already been extensively covered

in the literature, see e.g. [39, 46, 47]. We emphasize that the correct coefficient from an

AdS/CFT perspective is the one kept in (A.2).

In order to do this, we will pick a space-like distance, find the correct ε > 0 needed

for convergence near the contact points. Take ∆φ > ∆t > 0 such that ∆φ + ∆t > 0 and

∆φ −∆t > 0. Analyticity forces the result everywhere else in the {t, φ} plane away from

the light-cones. We are left with the task to infer the iε prescription implicit in (A.1). This

will be done taking ∆φ = 0 and 0 < ∆t � 1 and −1 � ∆t < 0 in turn to see that the

Feynman prescription, i.e. (A.2) is correct.

The ω-integral in (A.1) will be performed by making use of the residue theorem, so we

need to know the pole structure of the integrand:

• αωl∆ is a polynomial in ω and therefore analytic in the whole complex-plane.

• nω has poles at ω = is, s ∈ Z. However, the product (nωαωl∆βωl∆) is regular

at ω = 0.

• βωl∆ has poles at ω = ±l + i(2n+ ∆), n ∈ N, i.e. the upper half plane.

The proof of (A.2) will be split in 3 parts: first, show that the only poles that contribute

to the 2-pt function are the ones arising from βωl∆ and β(−ω)l∆. Second, we get from (A.1)

to the expression (A.2) in a space-like frame. Thirdly we show that ∆t(1 − iε) is the

mandatory regulator starting from (A.1). Every other momentum integral in our BH

solution follows, albeit details, from this one.

1. Residues from nω do not contribute.

Consider

I(∆t,∆ϕ) ≡ (∆−1)

2π2irS

∑
l

∫
dωe−iω∆t+il∆ϕ

(
−nωαωl∆βωl∆+(1+nω)α(−ω)l∆β(−ω)l∆

)
=

(∆−1)

2π2irS

∑
l∈Z

∫
dωe

−iω∆t+i l
rS

∆ϕ
(
−nωαω l

rS
∆βω l

rS
∆+(1+nω)α(−ω) l

rS
∆β(−ω) l

rS
∆

)
,

(A.3)
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where we made explicit the rS factor in the angular momentum sum, see (3.2). To

explicitly compute the integral we choose ∆t > 0. This demands to close the ω-

integral in the lower half complex ω-plane. In the following we will only consider the

contributions arising from the residues of nω. Closing the contour through the lower

half-plane one find

I(∆t,∆ϕ) =
(∆−1)

2π2rS

∑
l∈Z

∑
n=1

e
−n∆t+i l

rS
∆φ
(
α(−in) l

rS
∆β(−in) l

rS
∆−α(in) l

rS
∆β(in) l

rS
∆

)
+(β residues) .

Making use of the Poisson re-summation trick we can translate the sum over l into

an integral and a sum over images7∑
l∈Z

f

(
l

a

)
= a

∑
m∈Z

f̃(ma) =⇒
∑
l∈Z

f

(
l

rS

)
= rS

∑
m∈Z

∫
dl f(l) ei(2πrSm)l .

(A.4)

Inserting it into the above expression yields

I(∆t,∆ϕ) =
(∆−1)

2π2

∑
n=1

∑
m∈Z

∫
dl e−n∆t+il(∆φ+2πrSm)

(
α(−in)l∆β(−in)l∆−α(in)l∆β(in)l∆

)
+(β residues) ,

(A.5)

now, one can see that the integrand between parenthesis, for integer ∆ ≥ 2 and

n ≥ 1, becomes l polynomials which have no poles: each terms has poles that cancel

each other among themselves. The l integral now can be closed either in the upper or

lower half plane due to the exponential, so the lack of poles means that these terms

do not contribute. The ∆t < 0 case follows the same way.

2. Residues from βωl∆.

We now consider the contributions from the poles in βωl∆. From (A.3),

I(∆t,∆ϕ) =
(∆−1)

2π2irS

∑
l

∫
dωe−iω∆t+il∆ϕ

(
−nωαωl∆βωl∆+(1+nω)α(−ω)l∆β(−ω)l∆

)
we consider ∆t > 0, close downwards and pay attention to the poles ω = ±l− i(2s+

∆), s ≥ 0 coming from β(−ω)l∆ leading to

I(∆t,∆ϕ) =
2(−1)∆−1

πirSΓ(∆−1)2

∑
s≥0

(−s−∆+1)∆−1e
−(2s+∆)∆t

∑
l

∑
±

eil(∆ϕ∓∆t) (1+n±l) (∓il−s−∆+1)∆−1 ,

where we have used that n±l−i(2s+∆) = n±l for (2s+∆) ∈ Z and the explicit definition

of α(−ω)l∆ (4.4). We remark that the l = 0 term is regular for the n0 singularity

cancels. We focus now on the sum on l, again by Poisson re-summation (A.4),

M≡
∑
l

∑
±

eil(∆ϕ∓∆t) (1+n±l) (∓il−s−∆+1)∆−1

=
∑
l

eil(∆ϕ−∆t) (1+nl) (−il−s−∆+1)∆−1+eil(∆ϕ+∆t) (1+n−l) (+il−s−∆+1)∆−1

= rS
∑
m∈Z

∫
dl ei(2πrSm)l

(
eil(∆ϕ−∆t) (1+nl) (−il−s−∆+1)∆−1+eil(∆ϕ+∆t) (1+n−l) (+il−s−∆+1)∆−1

)
.

(A.6)

7The convention for Fourier transformation are: f̃(k) =
∫
dx f(x)e−i2πkx and f(x) =

∫
dk f̃(x)ei2πkx.

– 21 –



J
H
E
P
1
1
(
2
0
1
8
)
1
2
9

We now pick the left spacelike (lightcone) quadrant where ∆φ ± ∆t > 0, such that

both l integrals close downwards, giving

M≡ irS
∑
m∈Z

∞∑
j=1

ei(2πrSm)l
(
e−j(∆ϕ−∆t)(+j−s−∆+1)∆−1−e−j(∆ϕ+∆t)(−j−s−∆+1)∆−1

)
= irS

∑
m∈Z

∞∑
j=1

∑
±

(±1)ei(2πrSm)le−j(∆ϕ∓∆t)(±j−s−∆+1)∆−1

so that (A.1) becomes

2(−1)∆−1

πΓ(∆−1)2

∑
s≥0

(−s−∆+1)∆−1e
−(2s+∆)∆t

∑
m∈Z

∞∑
j=1

∑
±

(±1)ei(2πrSm)le−j(∆ϕ∓∆t)(±j−s−∆+1)∆−1

which can be summed for 2 < ∆ ∈ Z and extended for general values giving∑
m∈Z

(∆− 1)2

2∆−1π
[− cosh(∆t) + cosh(∆φ+ 2πrSm)]−∆ .

This result extends by analytic extension to other points outside of the lightcone. We

now show that (A.1) is so that it forces the Feynman regulator.

3. Feynman Regulator.

To uncover the regulator we go back to (A.6)

M =
∑
l

∑
±

eil(∆ϕ∓∆t) (1 + n±l) (∓il − s−∆ + 1)∆−1

and take the limiting case ∆ϕ = 0 and ∆t(1 − iε) ∼ −iε recalling that we needed

∆t > 0 to get there. We now have

M =
∑
l

e−lε (1 + nl) (−il − s−∆ + 1)∆−1 + e+lε (1 + n−l) (+il − s−∆ + 1)∆−1 ,

where each term on its own is well behaved in the l → ±∞ limits. The Pochham-

mer symbols are polynomials while e∓lε(1 + n±l) are exponentially convergent. The

analogous result for ∆t < 0, yields

M′ =
∑
l

∑
±

eil(∆ϕ∓∆t)n±l(±il − s−∆ + 1)∆−1

but now ∆t(1− iε) ∼ +iε leading to

M′ =
∑
l

elεnl(+il − s−∆ + 1)∆−1 + e−lεn−l(−il − s−∆ + 1)∆−1

which again contains the correct regulator for each separate term. This completes

the demonstration of (A.2). Our result agrees with [11].
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