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Abstract: Zn/MCM-41 mesoporous materials have been prepared via classic wet impregnation,
employing zinc nitrate as precursor and tested for activity and stability in the Friedel-Crafts alkylation
of toluene with benzyl chloride under microwave irradiation and continuous flow. The modified
materials were characterized by means of a number of analytical techniques, and surface and textural
properties were thoroughly checked. Materials containing the highest Zn loading (15 wt %) provided
full conversion after 5 min reaction under microwave irradiation (300 W, 120 ◦C). Materials were
proved to be stable and reusable for several cycles with an optimum performance under continuous
flow conditions.
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1. Introduction

The design of cost-competitive, highly active, and stable catalytic systems constitutes a significant
challenge in the field of materials engineering for the 21st century [1]. Much effort has been made
in recent years to investigate the use of solid acid systems, including porous aluminosilicates as
alternative catalysts to homogeneous systems for acid catalyzed processes [2–4]. The use of benzyl
chloride as an alkylating agent for Friedel-Crafts alkylation can provide access to substituted diphenyl
derivatives—relevant intermediates in the synthesis of high added value products. Lewis acids,
including AlCl3, FeCl3, HF, BF3, and ZnCl2, have been typically used in Friedel-Crafts alkylation [5,6].
However, recovery, separation, and disposal of homogeneous Lewis acids and their originated
waste has several environmental, health, and safety issues. The utilization of solid acids, such as
nanostructured materials, can provide alternative recycling and separation possibilities, minimizing
pollution and waste. Alkylation reactions have been extensively catalyzed by a large variety of solid
acids, such as: β-zeolites [7]; ZSM-5 modified with Ga, Zn, In, and Fe [8–11]; Fe, Ga, and Al-SBA-15
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and MCM-41 supports [2,12–14]; Ga-Mg oxides and hydrotalcites [15]; and different ferrites with
Cu, Ni, Co, Zn, Mg [16], among others. Although there has been some progress for more efficient
Friedel-Crafts alkylation reactions, developing scalable-continuous flow and environmentally friendly
procedures using stable and highly active catalysts remains a challenge.

The production of diphenylmethane from toluene alkylation requires high acidity, in addition
to unhindered active sites (acid sites), to promote bulk reactions. Zeolites are acid catalysts featuring
shape-selectivity able to provide specific selectivity to certain intermediates and products. However,
zeolites generally possess tiny pore sizes (<1 nm), which restricts their utilization in chemistries
involving bulk substrates [7]. Comparatively, ordered mesoporous silicas can exhibit promising
features as alternative catalytic systems, including an appropriate use in macromolecular reactions
due to their controllable mesopores (typically 2–10 nm), high specific pore volumes (up to 1.3 mL/g),
and well-defined mesoporous array [17]. Due to their large internal surface generally being highly
accessible, such porous materials can stabilize several active sites, such as transition metals, Brønsted
and Lewis acids, metal oxide clusters, and small particles. MCM-41 can accommodate highly dispersed
metal nanoparticles, in order to enhance the catalytic performance via larger number of active sites per
unit area. The incorporation of aluminum, gallium, nickel, zinc, and other metals into their structure
increases the acidity and thereby the catalytic function [18]. Gracia et al. [12] have reported the use of
gallium and aluminum-galosilicate materials in toluene alkylation at 110 ◦C using benzyl chloride as
an alkylating agent. Full conversion and selectivity at approximately >99% could be achieved for the
monoalkylated product, with a 1/1 o-/p- ratio. Pineda et al. [2] studied the alkylation of toluene with
benzyl chloride in a microwave reactor, employing mechanochemically synthesized Fe/Al-SBA-15
systems as optimum Lewis acid solid catalyst with excelling activities. Balu et al. [19] also reported
the same reaction under continuous flow, employing similarly low-loaded Fe-based catalysts, able to
provide good to excellent yields of alkylated products.

Herein, we report the synthesis and characterization of zinc-containing ordered mesoporous
MCM-41 materials and their application in toluene alkylation using benzyl chloride under microwave
irradiation. Results have also been compared to continuous flow conditions in order to benchmark the
stability and the activity of the materials at industrially-closer conditions.

2. Results

2.1. Physicochemical Characterization

Textural and surface properties of synthesized materials have been presented in Table 1. In addition,
zinc quantities in the catalysts, calculated by chemical analysis and expressed as Zn wt %, are
also shown.

The results obtained from low-angle X-ray powder diffraction (XRD) measurements for the
synthesized catalysts and the support are shown in Figure 1. MCM-41 materials exhibited all characteristics
resolved diffraction lines of the hexagonal ordering in MCM-41, indexed as (1 0 0), (1 1 0), and (2 0 0)
reflections [17,20]. Accordingly, Zn/MCM-41 catalysts showed a similar low-angle XRD pattern as
compared to the parent material.

However, an intensity decrease accompanied by diffraction line widening could be observed at
increased Zn content, pointing out a deterioration in long-range ordering. This last fact could reflect
the partial structure collapse, as well as mesopore blocking upon Zn incorporation. FWHM (full width
at half maximum) corresponding to the main (100) peak of the XRD patterns indeed provided hints of
the widening of the peaks, which increased with the Zn loading in the support. The (100) reflection
also changed slightly to higher angle, with the lattice parameter (a0) concurrently decreasing upon
long-range structural order diminishment [21].
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Figure 1. X-ray diffraction patterns of (a) MCM-41, (b) Zn/MCM-41(1), (c) Zn/MCM-41(2.5),
(d) Zn/MCM-41(10), and (e) Zn/MCM-41(15) catalysts.

On the other hand, no ZnO diffraction lines could be observed in high-angle XRD patterns
(Figure S2, Supplementary Materials), which suggested that Zn species were amorphous or their
crystal domain size was below the detection limit for XRD (<4–6 nm). These are likely to be either
finely dispersed in the framework or located at the external surface of the support [22–24].

The observed long range hexagonal ordering of Zn/MCM-41 materials and support was also
corroborated by Transmission Electron Microscopy (TEM) images (Figure 2a,b), which revealed ordered
hexagonal arrays of mesopores with uniform pore sizes, characteristic of MCM-41 materials [25].

The morphology of synthesized materials was examined by Scanning Electron Microscopy (SEM).
Figure 2c,d show that these materials do not show any specific arrangement. Furthermore, it is
possible observe aggregates with irregular shapes and an average size of 2–4 µm, supporting previous
results [26].

Figure 2. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) images
of (a–c) MCM-41, and (b–d) Zn/MCM-41(2.5) (taken as representative).

Figure 3 shows nitrogen adsorption–desorption isotherms at −193 ◦C of studied materials, and
their textural properties are summarized in Table 1. All catalysts display Type IV isotherms of IUPAC
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classification [27]. It is possible a decrease in the volume of gas adsorbed and in the pore volume
regarding to the MCM-41 sample was observed, which could be due the formation of zinc species into
the channels and onto mesoporous surface. In addition, the inflection region between p/p0 range =
0.1–0.25 was assigned to the condensation phenomenon. The inflection is less pronounced with the
increase in Zn loading, which indicates a broader pore size distribution.

Figure 3. (a) Nitrogen adsorption-desorption isotherms of (1) MCM-41, (2) Zn/MCM-41(1),
(3) Zn/MCM-41(2.5), (4) Zn/MCM-41(10) and (5) Zn/MCM-41(15) catalysts, and (b) pore size
distributions (PSD) of samples.

In the pore size distributions (PSD) plot (Figure 3 inset), the average pore diameter of support and
Zn/MCM-41(1) sample was approximately 3.5 nm, with narrow distribution. However, by increasing
the Zn amount in the samples, the PSD broadens, displaying a bimodal PSD, although the desorption
branch does not display two distinct steps. These samples present a dual mesoporous distribution,
with a well-defined peak at 2.6 nm and additional wide peak around of 4–6 nm. This may be due
to the partial blockage of the primary mesopores at increased zinc oxide amount, the subsequent
deterioration of the structure, and the appearance of larger size pores with irregular distribution [28,29].

In addition, as is shown in Table 1, Zn/MCM-41 samples present a diminution in the textural
parameters (SBET and VTP values). The decrease in these values with increasing Zn content implies a
blockage of pore channels besides structural deterioration, due to depositing Zn species on the support.

Table 1. Textural properties of studied materials.

Sample Zn [wt %] (a) SBET [m2/g] (b) VPM [cm3/g] (c) VTP [cm3/g] (d) Lewis Acidity [µmol Py × g−1] (e)

MCM-41 - 940 0.62 0.70 -
Zn/MCM-4(1) 0.09 764 0.36 0.42 13

Zn/MCM-41(2.5) 2.65 592 0.30 0.36 14
Zn/MCM-41(10) 9.87 532 0.27 0.32 18
Zn/MCM-41(15) 14.6 370 0.22 0.27 23

(a) Estimated by Atomic Emission Spectroscopy (ICP). (b) Estimated by Brunauer-Emmett-Teller (BET) method.
(c) Primary mesopore volume. (d) Pore volume. (e) Estimated by Fourier transform infrared (FTIR)-pyridine studies.

UV-Vis spectra of Zn/MCM-41 samples and bulk ZnO are presented in Figure 4. A strong band at
280–380 nm for Zn/MCM-41 catalysts is associated with the presence of ZnO particles. It is well-known
that ZnO powders present an intense absorption peak between 370 and 330 nm [30,31]. However,
in semiconductors, the blue shift of absorption band edge towards lower wavelength indicates a
quantum size effect. Accordingly, this absorption band increases in intensity and displacement
towards higher wavenumber with metallic content growth, accounting for larger ZnO species.



Catalysts 2019, 9, 136 5 of 13

Figure 4. Diffuse Reflectance Ultraviolet-Visible Spectroscopy (DRUV–Vis) spectra of (a) Zn/MCM-41(1),
(b) Zn/MCM-41(2.5), (c) Zn/MCM-41(10), and (d) Zn/MCM-41(15) catalysts.

Additionally, X-ray photoelectron spectroscopy (XPS) is a useful technique to confirm presence
of ZnO. XPS of Zn 2p (Figure 5) revealed the binding energies (BE) at approximately 1022.8 eV and
1045.7 eV, corresponding to Zn 2p3/2 and Zn 2p1/2, respectively, giving a spin-orbit splitting (SOS) of
∼22.9 eV. This corroborates that Zn is in the Zn+2 chemical state [32]. In addition, spin-orbit splitting is
well known to be 22.2 eV in pure ZnO.

These findings pointed out that ZnO would not be predominantly “bulk” ZnO, but probably as
ZnO species highly dispersed and interacting with the support surface, according to Carlson [33].

The Si 2p signal in was approximately 104.4 eV, in good agreement with SiO2-type material.
Likewise, oxygen contribution in Zn/MCM-41 samples showed a symmetric peak centered at 533.3 eV,
mainly due to the O2− in SiO2 [34]. Other oxygen peaks attributable to ZnO oxide and to weakly
adsorbed OH− were not detected, probably for the oxygen signal intensity of the siliceous material [35].

Figure 5. X-ray photoelectron spectroscopy (XPS) spectra of Zn 2p3/2 and Zn 2p1/2 for the catalysts:
(a) Zn/MCM-41(1), (b) Zn/MCM-41(2.5), (c) Zn/MCM-41(10), and (d) Zn/MCM-41(15).
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The binding energies, Zn/Si (surface), and Zn/Si (bulk) values, as well as Zn surface atomic
and bulk concentrations for all samples, are summarized in Table 2. The metal/Si (surface) ratio
corresponds to the dispersion of metal on the mesoporous support. In addition, the Zn/Si (surface)
ratios are comparably reduced regarding Zn/Si (bulk) ratios, due to the fact Zn species would be
incorporated mostly within the mesopores as clusters or very small nanoparticles. However, the zinc
species would not be homogeneously dispersed on the siliceous mesoporous framework.

Table 2. Binding energies values (eV) for Zn 2p spectra and surface Zn/Si compositions of
Zn/MCM-41(x) samples and reference ZnO.

Sample Zn 2p3/2

[eV]
Zn 2p1/2

[eV]
Zn/Si

(Surface) (a) Zn/Si (Bulk) (b) Zn [at. %] (a) Bulk Zn [wt %] (b)

Zn/MCM-41(1) 1022.9 1045.7 0.003 <0.001 0.10 0.09
Zn/MCM-41(2.5) 1022.1 1045.5 0.004 0.025 0.20 2.65
Zn/MCM-41(5) 1022.4 1045.7 0.007 0.041 0.20 4.29
Zn/MCM-41(10) 1022.7 1045.6 0.013 0.100 0.40 9.87
Zn/MCM-41(15) 1023.1 1045.8 0.015 0.157 0.50 14.6

ZnO 1020.0 1045.0 - - - -
(a) Calculated by X-ray photoelectron spectroscopy (XPS), (b) calculated by Atomic Emission Spectroscopy (ICP).

The spectroscopic study of the chemisorption of pyridine (Py) is usually a useful method that
allows an evaluation of the amount and strength of the acid centers on a catalyst surface [36].
To investigate the acidic strengths of Lewis (L) and Brønsted (B) sites, the pyridine thermodesorption
was carried out. IR spectra at different temperatures are displayed in Figure 6.

Figure 6. Fourier transform infrared (FT-IR) spectra of (1) MCM-41, (2) Zn/MCM-41(1), (3) Zn/
MCM-41(2.5), (4) Zn/MCM-41(10), and (5) Zn/MCM-41(15), containing adsorbed pyridine and
subsequent desorption at 50 ◦C (a), 100 ◦C (b) and 200 ◦C (c).
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SiOH groups interact with pyridine through hydrogen bonding. All samples presented bands
at 1446 and 1596 cm−1 due to hydrogen-bonded pyridine (H-Py) [37,38]. These band are not present
after the evacuation at 200 ◦C due to the weakness of the site [33,34]. In addition, the Zn/MCM-41
samples also show the bands of H-Py (1446 and 1596 cm−1), Lewis-bonded pyridine (L-Py: 1451,
1576 and 1610 cm−1), and a band at 1491 cm−1 due to interaction of pyridine over (L + B) acid
sites [39]. As observed in Figure 6, the intensity of bands at 1610 and 1451 cm−1, corresponding to Py
interaction with Lewis acid sites, increases with the Zn loading on the support. The band at 1576 cm−1

corresponds to the vibration of adsorbed pyridine to weak surface Lewis acid sites. Moreover, bands
corresponding to Brønsted acid sites at 1540 and 1636 cm−1 were not detected [40]. Therefore, the band
at 1491 cm−1 is only associated with Lewis acid sites, which increase with the amount of zinc in the
material. Accordingly, it is possible to observe that these bands assigned to Lewis sites are maintained
until 200 ◦C, indicating their acidic strength. Thus, these sites can mainly be associated with a strong
electron-donor-acceptor adduct of the probe molecule with Lewis-type sites, attributed to isolated
zinc species coordinated to framework oxygen atoms (Zn unoccupied molecular orbital) interacting
with pyridine.

Figure 7 displays the Fourier transform infrared (FT-IR) region of hydroxyl of the catalyst after
Py adsorption followed by desorption at 200 ◦C. MCM-41 spectrum exhibit a band at approximately
3740 cm−1 assigned to isolated terminal O-H group [41,42]. In addition, a decrease of intensity and
broadening of this band is evidenced for Zn/MCM-41 samples. The widening of this band is assigned
to Zn-OH surface species, whereby an interaction would occur between the vicinal OH groups, such
as Si-OH and Zn-OH groups. However, a decrease of this band could be due to a partial blocking
of Si-OH groups from the coordination of the Si-OH groups with Zn ions, leading to the bonds of
Si-O-Zn. This last has been already reported by us [21,37].

The molar extinction coefficient of the Lewis acid site-adsorbed pyridine band was employed to
estimate concentration of the acid sites of the samples [43]. The acidity concentrations (µmol pyridine
× g−1) are given in Table 1. Thus, the acid sites increase with the Zn amount in the MCM-41 support.

Figure 7. FT-IR region of OH after pyridine adsorption and desorption of (a) MCM-41, (b) Zn/
MCM-41(1), (c) Zn/MCM-41(2.5), (d) Zn/MCM-41(10), and (e) Zn/MCM-41(15) at 200 ◦C.

2.2. Catalytic Activity

2.2.1. Alkylation Reaction Under Microwave Irradiation

Initially, the alkylation reaction of toluene (Tol) with benzyl chloride (BC) was conducted under
microwave irradiation (120 ◦C, 300 W), with the goal of finding optimal conditions and the best catalyst
(Scheme 1).
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Scheme 1. Alkylation of toluene (Tol) employed benzyl chloride (BC) under microwave irradiation.

Data are summarized in Table 3. This alkylation was first carried out using MCM-41 (25 mg),
Tol (2.0 mL), and BC (0.1 mL). After 5 and 10 min, the products formation was not detected (Table 3,
Entry 1). Similarly, if the reaction is carried out without catalyst, the formation of products is not
observed (Table 3, Entry 2).

The initial use of Zn/MCM-41(1) indicates that when 12.5 mg catalyst, 1.0 mL toluene, and 0.1 mL
benzyl chloride are used, a better conversion is observed after 10 min of reaction (Table 3, Entry 5).
Interestingly, a higher conversion at approximately 80% could be obtained when the zinc loading
on MCM-41 was increased for catalysts Zn/MCM-41(2.5) and Zn/MCM-41(10) (Table 3, Entries 6
and 7). Observed products were primarily the ortho and para isomers, and a small amount of the
meta isomer, as expected for an electrophilic aromatic substitution of toluene. All catalysts exhibited
selectivity higher than 90% to the desired mono alkylated products, with a near 1/1 (ortho/para) ratio.
In addition, the molecular sizes were calculated by HyperChem v5.0 (Hypercube, Inc., Gainesville, FL,
USA) (see Supplementary Materials) in order to confirm there were no diffusion-limiting problems.

Table 3. Activities and selectivity of Zn/MCM-41 in the alkylation of toluene with benzyl chloride
under microwave irradiation (a).

# Toluene
[mL]

BzCl
[mL] Catalysts [mg] Time

[min]
XT
[%]

Sortho
[%]

Smeta
[%]

Spara
[%]

1 2.0 0.1 MCM-41 (25 mg) 5 - - - -
10 - - - -

2 2.0 0.1 - 5 - - - -
10 - - - -

3 2.0 0.1 Zn/MCM-41(1) (12.5 mg) 5 25 40 6 54
10 47 39 6 55

4 2.0 0.1 Zn/MCM-41(1) (25 mg)
5 14 39 7 54
10 31 35 8 57
15 52 39 6 55

5 1.0 0.1 Zn/MCM-41(1) (12.5 mg) 5 56 40 6 54
10 63 35 8 57

6 1.0 0.1 Zn/MCM-41(2.5) (12.5 mg)
5 53 39 6 55
10 77 38 6 56
15 81 39 5 56

7 1.0 0.1 Zn/MCM-41(10) (12.5 mg)
5 45 41 7 52
10 69 40 7 53
15 80 40 6 54

8 1.0 0.1 Zn/MCM-41(15) (12.5 mg)
5 >99 41 6 53
10 >99 40 6 54
15 >99 41 6 53

9 1.0 0.1 Zn/MCM-41(15) (6.25 mg)
5 46 40 6 54
10 56 39 6 55
15 58 39 6 55

(a) Reaction conditions: toluene, benzyl chloride, catalyst, MW (120 ◦C, 300W). (XT, %) Total conversion; (Sortho, %)
2-methyl diphenylmethane; (Smeta, %) 3-methyl diphenylmethane; (Spara, %) 4 methyl diphenylmethane.

On the other hand, the maximum conversion in the process was obtained for Zn/MCM-41(15),
leading to quantitative product yields in only 5 min of reaction (Table 3, Entry 8). In search of the ideal
amount of catalyst, the reaction was tested using 6.25 mg of Zn/MCM-41(15), but unfortunately there
was a decrease in product conversion (Table 3, Entry 9).

For a long time, Lewis acids have been reported to promote this type of reaction, being the
determining factor [5]. As has already been observed, the increase of zinc loading is responsible for
the acidity increase in the catalyst. Zn/MCM-41(15) catalyst, exhibiting the highest conversion, has the
highest zinc loading and highest acidity. However, the acidity of the materials is not the only important
factor in the catalytic activity of the systems, since all materials exhibited relatively similar surface
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acid properties, particularly at moderate to high temperatures (Py titration data, Figure 6). The highest
activity measured for Zn/MCM-41(15) could be associated not only with a slightly increased acidity
but also with its textural properties. This material exhibited a marked dual mesoporous distribution,
which was related to the structural deterioration and appearance of larger size pores with irregular
distribution in the defective structure. This fact would probably contribute to enhancing the interaction
between the reactant and catalyst, besides the accessibility to active sites, favoring the higher catalytic
activity observed for this sample. The mesoporous surface area effect, on the alkylation reaction,
has been reported by Milina et al. [44].

2.2.2. Catalyst Reuse Studies Under Microwave Irradiation

The reusability of Zn/MCM-41(15) was subsequently investigated under microwave irradiation
conditions with results included in Figure 8. The odd reuse numbers (1st, 3rd, and 5th) correspond to
the reaction with regenerated material (calcinated at 400 ◦C in air, 2 h) and the pair reuses (2nd and
4th) are those without reactivations treatment. This test was carried out under the best conditions
found (1 mL toluene, 0.1 mL benzyl chloride and 12.5 mg catalyst at 120 ◦C, 5 min reaction), for which
reactions were stopped after a few minutes halfway through the reaction, and then the mixture was
filtered off in order to separate the catalysts, and this was washed with toluene and kept in an oven
at 100 ◦C for 1 h prior to its use in the next alkylation reaction (1st reuse), for which quantitative
conversion was found. The second reuse of the catalyst, under identical reaction conditions and
without reactivation, provided a much reduced conversion (56%) with similar selectivity (2nd reuse).
The decrease of the total conversion could be attributed to the presence of organic species adsorbed
on the catalytic material surface. For the 3rd reuse, the catalyst was calcined in air at 400 ◦C for 2 h,
again providing quantitative conversion after 5 min of reaction. The 4th reuse, without reactivation,
provided a reduced conversion with similar selectivity as the 2nd reuse. Thus, the regenerated
materials could again provide quantitative conversion after 5 min of reaction (3rd and 5th reuses).
Therefore, the catalyst was found to be stable, and its deactivation was not due to Zn leaching in the
first few reuses or regenerations. Nevertheless, these results clearly demonstrated a high stability of
the catalytic material under the investigated reaction conditions, preserving almost unchanged initial
activity after several cycles.

Figure 8. Reusability experiments of Zn/MCM-41(15) in the alkylation of toluene with benzyl chloride.
Reaction conditions: 1 mL toluene, 0.1 mL benzyl chloride, 12.5 mg Zn/MCM-41(15), 5 min, MWs,
120 ◦C, 300 W.

2.2.3. Continuous Flow Alkylation Reaction: Activity and Stability

Additionally, the reaction was performed under continuous flow conditions in order to test
the activity, but most importantly the stability of the synthesized materials, focusing on optimum
Zn/MCM-41(15). Reaction conditions (120 ◦C, 0.4 mL/min, 110 mg of catalysts) were translated from
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microwave to continuous flow, taking advantage of the moderate temperatures and pressures in the
microwave reactor that could be mimicked in a continuous flow system. [45]. Results are summarized
in Table 4.

Initially, Zn/MCM-41(15) catalyst exhibited a >99% conversion to alkylation products in the first
15 min of reaction (equivalent to a residence time of 0.6 min, see Table 4). After 165 min of reaction in
continuous flow at 100 ◦C, we can observe a conversion decrease from >99 to 80%, while the selectivity
remained practically constant throughout the process (Table 4). Most importantly, a long reaction run
(20 h, Table 4 last entry) also indicated that the catalyst was rather stable with time on stream under
continuous flow (72% conversion) after the observed initial activity drop due to (1) a minor leaching
(<20 ppm) observed, probably of weakly coordinated Zn species in the materials and the leaching
effect of generated HCl, and (2) the presence of strongly adsorbed aromatics that can be eliminated
upon regeneration (i.e., calcination). Particularly, the stability of the materials under flow conditions
was remarkable and further supported the reusability results under microwave irradiation, probably
improved due to the low residence time of byproduct HCl in the catalyst under flow conditions that
decreased Zn leaching.

Table 4. Activities and selectivity of Zn/MCM-41 in the alkylation of toluene with benzyl chloride in
flow chemistry (a).

Catalyst Time [min] (b) XT [%] S2 [%] S3 [%] S4 [%]

Zn/MCM-41(15) 15 (0.6) >99 40 6 54
45 (2.0) 88 41 6 53
75 (3.3) 89 42 6 52

105 (4.6) 85 41 7 52
135 (6.0) 77 43 6 51
165 (7.3) 80 44 6 50

1200 (53.3) 72 42 6 52
(a) Experimental conditions: 94 mmol Tol, 10 mmol BC, 110 mg catalyst, 120 ◦C (0.4 mL/min). (b) Residence time
(minutes) from the feed in the catalyst in brackets. (XT, %) Total conversion; (Sortho, %) 2-methyl diphenylmethane;
(Smeta, %) 3-methyl diphenylmethane; (Spara, %) 4 methyl diphenylmethane.

3. Materials and Methods

3.1. Catalyst Preparation

The pure siliceous mesoporous material (MCM-41) was prepared following the pathway reported
by Elías et al. [17]. Zn/MCM-41 catalysts were prepared by the wet impregnation method using zinc
nitrate salt as precursor. For additional experimental details, see Supplementary Materials.

3.2. Characterization

Zn content was quantified using inductively coupled plasma-atomic emission spectroscopy
(ICP-AES) using a spectrophotometer VISTA-MPX CCD Simultaneous ICP-OES-VARIAN (Varian, Inc.,
Palo Alto, CA, USA). The samples were previously digested with HF and HNO3.

Sample characterization was conducted using X-ray powder diffraction (XRD), Cu Kα radiation
(λ = 1.5418 Å) and measured with a PANalytical X’Pert PRO diffractometer (Philips, Almelo,
The Netherlands) in the range of 2θ from 1.5 to 7◦ and from 10 to 80◦.

N2 adsorption-desorption isotherms were recorded at −196 ◦C (N2 with 99.999% purity) in a
Micromeritics ASAP 2000 instrument (Norcross, GA, USA), in order to provide information on textural
properties. Scanning Electron Microscopy (SEM) was also employed to visualize the catalyst
morphology, for which a JEOL JSM-6380 LV (Tokyo, Japan) (20kV acceleration voltage) and gold
sputtering was utilized to coat the samples in order to maximize their beam stability.

Fourier transform infrared (FT-IR) data was performed on a Nicolet iS10 FTIR spectrometer
(Thermo Scientific, Waltham, MA, USA). For full experimental details, see Supplementary Materials.
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3.3. Catalytic Experiments

Toluene alkylation with benzyl chloride and the reusability experiments were carried out
using a CEM-DISCOVER microwave synthesizer (Matthews, NC, USA), in an open vessel under
continuous stirring.

Continuous flow experiments were conducted in a high-temperature high-pressure Phoenix Flow
Reactor (ThalesNanoTM, Budapest, Hungary) connected to a HPLC pump. For experimental details,
see Supplementary Materials.

4. Conclusions

Zn-containing MCM-41 catalysts was prepared with varying zinc contents and evaluated in
the alkylation reaction of toluene using microwaves and flow chemistry, as well as benzyl chloride
as alkylating agent. Zn/MCM-41 featured typical high surface areas and hexagonal arrangements.
However, higher Zn loading originated a partial collapse in structure. The acidity of the catalysts
increased with the highest Zn loading, which was reflected in the increase of the catalytic activity.
The large mesopores of the catalysts did not pose any constraints on the reaction intermediates and
products, as opposed to microporous materials.

Zn/MCM-41(15) exhibited the best activity and selectivity to the desired products (o- and
p-methyl diphenylmethane) in the selected reaction. In addition, the mesoporous catalysts were highly
stable and reusable after several reuses or regeneration cycles, both employing microwave-assisted
irradiation as well as, most importantly, in a flow reactor. Based on these findings, Zn-modified
MCM-41 type molecular sieves are highly suitable solid acid candidates for Friedel-Crafts alkylation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/2/136/s1,
Table S1: Size of the reagent and product molecules calculated by HyperChem 5.0, Figure S1. FT-IR spectra of
catalysts and Experimental details.
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