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In this work, a procedure for solving the optimal design and upgrade of linear sensor networks,
subject to quality constraints on a set of key variable estimates, is presented. The strategy aims
to select the optimal set of flowmeters without imposing restrictions on the mathematical nature
of the objective function and constraints. An evolutionary technique based on genetic algorithms
(GAs) is proposed that combines the benefits of using structured populations in the form of
neighborhoods and a local search strategy. Both procedures take advantage of existing process
knowledge. Application examples are provided for the instrumentation design of a steam metering
network of a methanol plant, which show that the algorithm has a good balance among its
exploration and exploitation capabilities.

1. Introduction
Basic and high-level plant activities, such as monitor-

ing, regulatory and supervisory control, real-time opti-
mization, planning and scheduling, etc., provide valu-
able results only if a reliable and complete knowledge
of current plant state is available. The quality and
availability of variable estimates strongly depend on the
structure of instruments installed in the process and
the software tools applied to enhance its precision.

The design and upgrade of sensor structures consists
of selecting the type, number, accuracy, failure rate, and
location of new sensors that provide the quantity and
quality of information required from the process. De-
pending on the number and location of the selected
measurements, different types of instrument arrange-
ments are defined. A minimum-number sensor network
contains the smallest number of instruments that allows
the estimation of all unmeasured variables. This quan-
tity is known in advance to problem resolution, as it is
the system degree of freedom. If more sensors are used
than the minimum required to fulfill the aforementioned
condition, a so-called redundant sensor network is
obtained. Frequently, it is necessary to satisfy quality
or availability constraints on only a subset of key
measured or unmeasured variable estimates. In this
case, a general sensor network is designed without
advance knowledge of the cardinality of the optimal
sensor set. As only a subset of variables are of real
practical interest, the optimal selection of measure-
ments for general sensor networks is a powerful tool in
both the design and upgrade stages of large-scale plants.

Different criteria are addressed in the optimal selec-
tion of sensor structures: instrumentation cost, global
error of variable estimates, system reliability, variable
availability, economic value of an instrumentation
project, etc. In any case, a discrete optimization problem,
frequently subject to constraints, arises. Both deter-
ministic and stochastic approaches are applied to solve
this problem.

For the design of minimum-number sensor networks,
the concepts of cost-edged graphs and minimum span-
ning trees of these graphs were used by Madron1 to
obtain minimum-cost or maximum-overall-precision
linear sensor configurations. Then, Ali and Narasim-
han2 introduced the concept of variable reliability and
proposed a procedure based on graph theory to maxi-
mize the least variable reliability among all variables.
Later, this approach was extended to tackle the design
of minimum-cost and minimum-overall-error-estimation
linear sensor structures.3 For minimum-number bilinear
systems, Ali and Narasimhan4 used graph theory to
solve a max-min problem using variable reliability as
the objective function, and Héraud and Mazzour5 pro-
posed an equation-oriented approach for the design of
minimum-cost instrument arrangements. Regarding
stochastic approaches, Sen et al.6 presented a graph-
based genetic algorithm (GA) that can be applied to any
objective function, and two evolutionary strategies for
multiobjective design appeared7,8 recently.

The design of redundant sensor structures was first
addressed by Kretsovalis and Mah.9 They used a com-
binatorial search to incorporate measurements into an
observable system. This method tries to make a weighted
average between the cost of the measurements and the
precision of the estimates. Later, Ali and Narasimhan10

developed an algorithm for the design of linear redun-
dant sensor networks, using a given number of sensors
that maximizes the reliability of variables. Furthermore,
the evolutionary technique by Viswanath and Narasim-
han7 can also be applied to design this kind of sensor
structure.

For the design of general networks, Madron and
Veverka11 proposed that the variables of linear systems
be categorized as required and nonrequired. Unmea-
sured variables are later ordered from “measured with
difficulty” to “easily measured”. The cost and a measure
of the overall accuracy of the system are used as
objective functions. Meyer et al.12 presented a branch-
and-bound algorithm to select the measurements that
lead to the total or partial observability of the process
while minimizing the instrumentation cost. Luong et
al.13 developed a strategy based on the analysis of the
process graph that provides solutions that feature the
minimal observability of variables required for control
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and a high degree of redundancy for a particular set of
variables. They used reliability as means of screening
alternatives with equal costs. Later, Bagajewicz14 in-
troduced binary variables to indicate the presence or
absence of a sensor and formulated an MINLP problem
to obtain cost-optimal network structures for linear
systems subject to constraints on the precision and
robustness of variable estimates. The algorithm used
here is an implicit tree-type enumeration with a branch-
ing stopping criteria. Chmielewski et al.15 reformulated
the problem by replacing unmeasured variables by
measurements obtained using dummy sensors of large
variance and no cost and solved a convex MILP formu-
lation using a branch-and-bound algorithm. An alterna-
tive MILP approach was addressed by Bagajewicz and
Cabrera16 that was also applied to multiobjective in-
strumentation design.17 The two aforementioned MILP
strategies are useful for small- to medium-sized prob-
lems and required all constraints to be explicit in terms
of the binary variables.18 Regarding stochastic algo-
rithms, Chao-An et al.19 presented the design of maxi-
mum-availability general sensor networks subject to
cost and precision constraints, but they solved the
problem for a small-sized network using the classic GA.
A comprehensive discussion of solution procedures for
the design and upgrade of instrumentation can be found
in Bagajewicz’s book20 and his review works.21-23

In this paper, a new evolutionary strategy for the
design and upgrade of general linear sensor networks
is presented. It was developed to solve any single-
objective optimization problem subject to constraints,
without restrictions on the mathematical nature of
either the objective function or constraints. It provides
a good solution for problems of larger scale than those
solved up to the present time in the open literature. The
developed procedure is based on the use of GAs and
concepts from linear algebra.

This work is organized as follows: In section 2, the
general sensor design and upgrade problem is briefly
introduced. The algorithm is described in section 3, and
results are presented for an industrial steam metering
network in section 4. Conclusions and future research
topics are addressed in section 5.

2. Problem Formulation
Let us assume the operation of a process under

steady-state conditions can be represented by the fol-
lowing set of linear equations

where D is the incidence matrix of dimensions m × n;
z is the n-dimensional vector of flow rates; x and u
represent the vectors of measured and unmeasured
variables, respectively; and A1 and A2 are submatrices
of D of compatible dimensions. The problem of optimal
selection of instruments during plant design or upgrade
consists of determining the optimal partition of vector
z into vectors x and u, and it is formulated in general
form as follows

where q is an n-dimensional vector of binary variables
such that qi ) 1, if variable i is measured and qi ) 0
otherwise, f(q) represents a one-dimensional objective
function, and gj(q) indicates the constraint imposed on
the quality of the jth key variable estimate. Further-
more, SJ is the set of key process variables, and I0 is
the initial set of instruments that is empty at the
network design stage. For the sake of simplicity, it is
assumed that only one constraint exists for each key
variable.

Different performance criteria for the sensor struc-
ture, f(q), arise depending on the specific application.
Frequently, the life-cycle instrumentation cost for the
design or upgrade project24 leads the selection; never-
theless, reliability measures are sometimes preferred
for safety reasons. A wide variety of objective functions
have been used: instrumentation cost, global error of
variable estimates, system reliability, variable reli-
ability and availability, economic value of an instru-
mentation project, etc.

Regarding the set of constraints, g(q), engineers not
only require that the values of key variables be known
for economic, safety, or environmental reasons, but also
impose conditions on their estimate precision, reliability,
or availability.

For large-scale processes, the dimensions of the search
space for problem 2 increase significantly; consequently,
the design turns out to be a huge combinatorial opti-
mization problem that might have many local optima.
In these cases, it is valuable that the solution procedure
provide at least a good solution, if not the global
optimum, and that it also can be run in parallel
computers to reduce execution time. Evolutionary strat-
egies based on GAs fulfill these features; thus, they are
considered as an attractive approach to solve this
complex problem.

3. Novel Evolutionary Strategy for
Instrumentation Design and Upgrade

Evolutionary algorithms (EAs) are probabilistic search
algorithms that maintain a population of tentative
solutions of an optimization problem. These are ma-
nipulated competitively by applying variation operators
to find a satisfactory, if not globally optimum, solution.
Among the different types of EAs, GAs remain the most
recognized form. The standard GA applies stochastic
operators (selection, crossover, and mutation) to an
initially random population to compute new solutions.
The new population is evaluated, and the cycle is
repeated until some stopping criteria are reached.25

Traditionally, the population structure was panmictic,
meaning that the whole population is considered as a
single pool of individuals, each one of which can
potentially mate with any other and can even leave the
pool and be replaced by another one. In contrast, a
structured population arises if some partition of the
single pool is undertaken in the form of islands or
neighborhoods. The structured-population model en-
hances the sampling of the search space and improves
the numerical and run-time behavior of the basic
strategy. Alba and Tomassini26 provide a good review
of EAs with distributed population in the context of
parallel computing.

The incorporation of problem-specific knowledge into
the algorithm has proven to be a powerful strategy to
increase its convergence. To include this knowledge, ad
hoc initialization techniques, chromosome representa-

Dz ) A1x + A2u ) 0 (1)

min f(q)

s.t. gj(q) e gj
/(q) ∀ j ∈ SJ

qi ) 1 ∀ i ∈ I0

q ∈ {0, 1}n-|I0| (2)
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tions, decoding approaches, and heuristics for genetic
operators are applied. Furthermore, hybrid methods
result as a combination of metaheuristic techniques
with local search procedures.27

Taking into account the aforementioned strategies to
improve algorithm performance, a procedure is devel-
oped that has the following distinctive features: (i)
feasible initial population with respect to the estima-
bility of the required variables; (ii) selection based on
ranking, followed by matching of the best individuals
in the neighborhood to form the mating pool; (iii) incorp-
oration of the new individuals into their corresponding
neighborhood if they are better than their parents; and
(iv) local optimization of the best current solutions.

In the rest of this section, a detailed description of
the proposed solution procedure is provided.

3.1. Initial Population. Although the random gen-
eration of the initial population is usually the first step
in a standard GA, it is well-known that the incorpora-
tion of problem knowledge enhances the performance
of EAs. Therefore, an ad-hoc procedure is developed to
generate an initial population composed of feasible
individuals regarding the estimability condition of key
process variables. A variable is estimable if it is mea-
sured or unmeasured but observable. Consequently,
each member of the initial population represents a set
of sensors that allows the estimation of all required
variables using measurements and mass balance cal-
culations.

Initially, an individual of the population is repre-
sented by a matrix T of dimensions rv × (m + 1), where
rv is the number of required variables and m represents
the number of rows of the incidence matrix D. The ith
row of T is associated with a required variable and
contains (a) one way of calculating it, expressed in terms
of the ordinal position of the equation or the combination
of equations from the set Dz ) 0 used to estimate it (if
the number of equations in the combination is lower
than m, then zeros are added to complete the first m
columns) and (b) a discrete random variable, called the
measurement index, MI, whose value is 1 if the required
variable is a nonredundant measurement, -1 if the
required variable is a redundant measurement, or 0 if
the required variable is an unmeasured variable. A
chromosome is represented in Figure 1.

A special convention has been adopted to write the
rows of D involved in the calculation of a required
variable. For each row of T, the first place is occupied
by the ordinal position of a row of D with nonzero
coefficients for this variable. The other places are filled
with the ordinal positions of equations with zero coef-
ficients, and the remaining positions with zeros.

Example 1. To illustrate chromosome representation,
let us assume that two variables z2 and z4 are required
for the process represented by the set of linear equations
Dz ) 0, where D is the following incidence matrix

Rows 1 and 2 of D contain nonzero coefficients for
variable z2. Thus, this variable can be calculated in four
ways: (a) using eq 1, (b) using eq 2, (c) using a combi-

nation of eqs 1 and 3, and (d) using a combination of eq
2 and 3. These equations are explicitly written as follows

Now suppose that the chromosome represented by
Figure 2 is generated. This means that the required
variable z2 is calculated using the linear combination
of eqs 1 and 3, the required variable z4 is calculated
using the linear combination of eqs 1 and 2, and z2 and
z4 are considered a redundant measurement and an
unmeasured variable, respectively. 9

In contrast to previous chromosome representations,28

the discrete random variable MI has an outcome equal
to -1 that allows the introduction of redundant mea-
sured variables in the initial population. Furthermore,
higher probabilities for MI ) -1 are considered to
increase redundancy and, consequently, to improve
process knowledge, for example, by increasing precision
estimates and variable availability.

The maximum population size is the total number of
combinations among the 2m-1 × rv subsets of equations
that can be used to calculate the required variables and
the three outcomes of variable MI. A fraction of the
maximum population size is used to solve the problem.
Its value is adjusted for each particular problem.

To form a member of the initial population, T [rv ×
(m + 1)], the following procedure is applied for each
required variable p (p ) 1, ..., rv) associated with a row
of T:

(a) Define I ) {1, ..., m}.
(b) Define O as the set of the elements of I correspond-

ing to rows of D with nonzero entries for variable
p. At most, two elements of I satisfy this condition.

(c) Select the first bit of the chromosome row (Tp1). If
O has two elements, a random selection of equal
probability between them is performed, and a
parameter a is set equal to 2. Otherwise, the only
element of O constitutes the first bit, and a ) 1.

(d) Set l ) 1.
(e) Define I′ ) I - O as the set of equations with zero

entries for variable p (the cardinality of I′ is
represented by |I′|)

(f) Initialize Tpw ) 0 (w ) 2, ..., m).
(g) Generate Tpw (w ) 2, ..., m).

(i) Randomly generate an integer b ∈ {0, 1, ..., |I′|}.
(ii) Obtain a random subset C of b elements that

belong to I′.
(iii) For each element ci ∈ C, if at least one nonzero

coefficient of equation ci is opposite in sign with
respect to the coefficient of a variable contained
in the current combination (algebraic sum of

D ) [1 -1 0 -1 0 0
0 1 -1 0 0 1
0 0 0 1 -1 0 ]

Figure 1. Chromosome representation.

z1 - z2 - z4 ) 0

z2 - z3 + z6 ) 0

z4 - z5 ) 0
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equations Tpw with w ) 1, ..., l), then set l ) l
+ 1 and Tpl ) ci, and update the current
combination.

(h) Select MI randomly. Different probabilities are
assigned to the outcomes of MI. A greater prob-
ability for MI ) -1 increases sensor network
redundancy.

The procedure described previously provides a ran-
dom generation of a member of the initial population,
T, that satisfies the estimability condition of all required
variables. For each key variable p associated with a row
of T, the equations from the set Dz ) 0 used to calculate
it are selected sequentially. The element Tp1 represents
the ordinal position of a row of D with nonzero coef-
ficient for this variable, and it is selected randomly
between the two possible alternatives (steps a-c). The
ordinal positions of equations with zero coefficients for
p are included in set I′ (step e), and after the elements
Tpw (w ) 2, ..., m) are set to zero (step f), a random
integer b is generated. If b g 0, one combination of
equations represented by their ordinal positions in D
is randomly selected from the set (I′/b). Each equation
of this combination is sequentially analyzed to deter-
mine whether it has at least one nonzero coefficient that
is opposite in sign with respect to the equations just
involved in the calculation of variable p. If this is the
case, the equation is incorporated into the set of equa-
tions used to calculate the required variable. In this
way, an equation is included in the set if it eliminates
at least one existing variable from the calculus (step g).

The described procedure represents an individual as
a matrix T. This representation is now transformed into
a vector q of binary variables as follows:

(a) Initialize vector q and the memory vector mem
as null vectors. Both vectors are of dimension n, with q
having components equal to 1 for measured variables.
The second vector has components equal to 1 for
measured or observable unmeasured variables, that is,
for estimable variables

(b) For each variable p (p ) 1, ..., rv) that belongs to
the key variable vector req, do the following:

(i) If MI(p) ) 1, the variable is a nonredundant
measurement, and the element of the q vector that
corresponds to req(p) is equal to 1, that is, q(req(p)) )
1; also men(req(p)) ) 1.

(ii) If MI(p) ) 0, the variable is unmeasured, so it will
be calculated using the linear combination proposed in
the chromosome. The variables that participate in this
combination, except p, should be measured and are
included in q. Also, the new measured variables and
the observable unmeasured variable, p, are incorporated
into mem.

(iii) If MI(p) ) -1, the variable is a redundant
measurement. Consequently, it is measured and also
can be calculated using the linear combination given in
the chromosome. The above procedures are applied
simultaneously.

(iv) If vector mem contains 1’s in the positions
corresponding to all required variables, stop.

If condition iv is satisfied, key variables can be
estimated with the set of sensors represented by nonzero

elements of vector q. A feasible individual regarding the
estimability condition of key variables is obtained.

3.2. Fitness Calculation. In this work, the following
evaluation function or fitness,29 F, is used to measure
the quality of a given vector q as a solution of the
optimization problem defined by eq 2

where f(q) stands for the objective function of optimiza-
tion problem 2, fmax represents an upper bound of f(q)
for feasible individuals, and Q(q) takes into account
constraint violations as follows

and R represents the number of unsatisfied constraints.
The fitness value of any infeasible solution is calcu-

lated as the sum of constraint violations plus the highest
objective function value of all feasible solutions. Con-
sequently, any infeasible solution has a fitness value
worse than that of any of the feasible ones. In this
constraint-handling technique, two solutions are com-
pared on the basis of their objective function values if
they are feasible or their constraint violations if they
are infeasible.

3.3. Selection. The population is separated into
neighborhoods in cellular EAs. Each individual has its
own mating pool defined by its neighbors and also
belongs to many pools. Structures with overlapping
neighborhoods provide a smooth diffusion of good solu-
tions across one- or two-dimensional grids.

In this work, a local selection strategy is applied that
allows the interchange of genetic material among indi-
viduals corresponding to a linear neighborhood. The
neighborhood of the kth population member is consti-
tuted by its k - ν predecessors and k + ν successors,
where ν is the size of the neighborhood.

Before individuals are selected for reproduction, linear
ranking is applied to produce a selection pressure that
is more independent of the actual fitness values. In
ranking selection methods, individuals are sorted in
descending order of their fitness, and their selection
probability is evaluated in terms of their ranks without
considering their original fitness. For linear ranking,
the selection probability of an individual ranked in
position k is proportional to its rank (a rank of 1
indicates the best individual; a rank equal to the
population size, N, represents the worst) and is calcu-
lated as follows

where ηmax is the expected number of offspring of the
best individual and it has been demonstrated that 1 e
ηmax e 2. This parameter controls the selection pres-
sure.25

Then, the set of fathers is obtained by universal
stochastic sampling. As all individuals have the same
probability of being selected, fathers are uniformly
distributed throughout the population. The best indi-
viduals in the linear neighborhood of each father
constitute the set of mothers. Let us consider a small
example to illustrate the local selection procedure.

Figure 2. Chromosome representation for example 1.

F ) {f(q) if q is feasible
fmax[1 + Q(q)] if q is infeasible

(3)

Q(q) )
1

R
∑
r)1

R gr(q) - gr
/

gr(q)
(4)

ps(k) ) 1
N[ηmax - 2(ηmax - 1)k - 1

N - 1] (5)
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Example 2. Suppose a population consists of 11
individuals with the chromosome representations, fit-
ness values, and selection probabilities after the ap-
plication of linear ranking with a selection pressure
ηmax)1.3 presented in Table 1. The set of fathers is Fa
) {1, 3, 5, 7, 10}. For a neighborhood size of ν ) 3, the
neighbors of each father are shown in Table 2. For the
first father, the best neighbor is individual number 2,
which is selected as the corresponding mother. The
mating pool for this example is presented in Table 3. 9

3.4. Crossover and Mutation Operators. Each
couple in the mating pool interchanges genetic material
by applying a uniform crossover strategy. For each bit
of the first offspring, the parent who supplies the value
in that position is selected (with a certain probability).
The second offspring receives the bit from the other
parent. Regarding the mutation operator, the classical
technique is used.

3.5. Offspring Location. Let us assume that the
individual ii has been selected as the father and its best
neighbor, ij, is the corresponding mother. After the
crossover and mutation operations have been applied,
the offspring ii′ and ij′ are created. These offspring are
incorporated into the population if the following condi-
tions are independently satisfied, where F(ii) represents
the fitness of the ith individual ii: (a) If F(ii′) is better
than F(ii), ii is replaced by ii′. (b) If F(ij′) is better than
F(ij), ij is replaced by ij′.

The advantages of this offspring-location technique
are that (a) new individuals are introduced into their
corresponding neighborhoods and (b) elitism is incor-
porated into the algorithm, allowing good solutions to
remain in the population after successive generations.

3.6. Local Search. If problem specific knowledge is
available, this can be used to develop a local search
technique that works in combination with the GA. The
hybrid procedure allows both the global search feature
of EAs and the convergence rate of the local search to

be exploited.27 Different implementation forms of hybrid
strategies exist; for example, a percentage of the last-
generation population (usually 5-10%) undergoes local
optimization, or a portion of the best individuals of the
current population go through local search and then are
relocated in the population to continue the EA proce-
dure. In this work, the latter alternative is used to
implement the local search.

The developed procedure is applied on 5% of the best-
adapted individuals, which are feasible solutions re-
garding the estimability condition of key variables. The
search space around an individual is constituted by the
set of solutions located at a Hamming distance of e2.30

The technique performs a local search to find a solution
of better fitness taking into account two alternatives:
(a) interchange of a measured variable by an unmea-
sured one (Hamming distance ) 2) or (b) elimination of
a measured variable without replacement (Hamming
distance ) 1). The implemented local search used
results provided by the variable classification procedure
based on the Q-R orthogonal decomposition of matrix
A2.31 Following this approach, the portion ur of the
unmeasured variable vector u can be formulated as
follows

where R1, R2, and Q1 come from the Q-R decomposition
of matrix A2, which has a rank equal to r. Furthermore,
a variable in ur is observable if the corresponding row
of matrix RIU is a zero vector and a variable in un-r is
unobservable.

If q0 is a solution selected to undergo a local search,
the instrumentation set that represents this solution
guarantees that key variables are estimable (measured
or unmeasured but observable). The inspection of ma-
trices H and RIU allows the identification of all of the
couples (unmeasured variable/measurement) belonging
to q0 that can be interchanged satisfying the estima-
bility condition of key variables. A pair of variables (ui,
xj) can be interchanged if the coefficient Hij * 0 and the
ith row of RIU is the zero vector. Regarding the set of
solutions located at a Hamming distance ) 1, a nonre-
quired measured variable j can be eliminated if Hij ) 0,
∀ i associated with the calculation of an unmeasured
key variable.

Example 3. To illustrate this procedure, let us
consider the following matrix D

and vectors req ) [1 3 6] and q0 ) [1 1 0 0 0 0 0 1].
Variable z1 is measured and consequently estimable,
and variables z3 and z6 are unmeasured but observable
because they can be estimated using the following
expression

Table 1. Population Data

individual chromosome fitness ps

1 11111110 11500 0.0909
2 10000101 5000 0.1182
3 11010110 7500 0.1073
4 10100101 7500 0.1073
5 01010111 8000 0.1018
6 11010110 7500 0.1073
7 01011110 8000 0.1018
8 11100100 7500 0.1073
9 11010010 18000 0.0636
10 00011110 6500 0.1073
11 01010110 6500 0.1073

Table 2. Neighborhood of Each Individual in the
Population

predecessors individual successors

9, 10, 11 1 2, 3, 4
11, 1, 2 3 4, 5, 6
2, 3, 4 5 6, 7, 8
4, 5, 6 7 8, 9, 10
7, 8, 9 10 11, 1, 2

Table 3. Mating Pool

father mother

1 2
3 2
5 2
7 10
10 2

ur ) -R1
-1Q1

TA1x - R1
-1R2un-r ) Hx - RIUun-r

(6)

D ) [-1 0 0 0 0 1 0 1
1 -1 0 0 0 0 0 0
0 1 -1 0 0 0 0 0
0 0 1 -1 -1 0 0 0
0 0 0 1 0 0 -1 -1

]

[u1
u2
u3
u4

] ) [0 1 0
0 0 1
1 0 -1
0 1 -1

][x1
x2
x3

] - [0-1
0
1

][u5]
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where variables u1-u5 and x1-x3 correspond to flows
z3, z4, z6, z5, z7, z1, z2, and z8 respectively. The couples of
feasible interchange among unmeasured/measured vari-
ables are the following: (x1, u3), (x2, u1), (x2, u3), and
(x3, u3). These couples preserve the estimability condi-
tion of key variables. For the select key variables, it is

not feasible to eliminate measured variables, so no
solution for a Hamming distance of 1 is possible.
Considering a new vector of key variables req ) [1 3],
then variable x3 can be eliminated from the set of
measurements.

4. Application Examples

The procedure described above is applied to the
instrumentation design of a steam metering network
of a methanol production plant32 represented in Figure
3. The process consists of 11 units interconnected by 28
streams. It is assumed that there is no restriction for
the location of sensors on any stream, so the search
space is made up of 228 solutions.

Precision requirements are imposed on a subset of key
variables; the remaining ones need to satisfy only the
estimability condition, so they should be measured or
observable unmeasured variables. The acquisition cost
of the sensor network, CT, is selected as the objective
function of the combinatorial optimization problem and
is calculated as follows

where ci is the cost of the flowmeter used to measure
the ith streamflow. Furthermore, the features of the
available flowmeters that can be located on the process
are included in Table 4, where z is the true flow rate; c
is the cost; and σs represents the measurement standard
deviation, which is assumed as 2.5% of the true flow
rate.

The results of four case studies are presented in Table
5. The following information is provided for each case:
key variables; standard deviation bounds of reconciled
variable estimates for a subset of key variables, along
with the standard deviation of these estimates; the set
of sensors; and the objective function value for the best
solution. The parameters used for the EA runs are in
accordance with the ranges recommended in the litera-
ture, and they are included in Table 6. If they are
changed within their recommended ranges, the algo-
rithm maintains its efficiency.

Regarding case 1, Figure 4 shows the best solutions
for 100 runs with 100 generations each. The best
solution (CT) is obtained in 67% of the runs. The
average and dispersion of the objective function value
are $555.7468 and $49.17, respectively, which indicates
that good solutions are obtained in the execution of the

Figure 3. Steam metering network.

Table 4. Data for Steam Metering Network

variable z c σs

1 0.86 3.7 0.0215
2 1 4.5 0.025
3 111.82 132.2 2.8
4 109.95 129.2 2.749
5 53.27 65.3 1.332
6 112.27 132.4 2.807
7 2.32 5.0 0.058
8 164.05 193.9 4.101
9 0.86 2.06 0.0215
10 52.41 62.8 1.31
11 14.86 20.2 0.3715
12 67.27 80.0 1.682
13 111.27 130.4 2.782
14 91.86 109.8 2.296
15 60. 71.6 1.5
16 23.64 29.7 0.591
17 32.73 39.5 0.8182
18 16.23 20.4 0.4057
19 7.95 11.1 0.1987
20 10.5 13.6 0.2625
21 87.27 102.9 2.182
22 5.45 8.1 0.1362
23 2.59 6.3 0.0648
24 46.64 55.5 1.166
25 85.45 101.0 2.136
26 81.32 93.7 2.033
27 70.77 84.7 1.769
28 72.23 85.4 1.806

Table 5. Application Results of the Algorithm

case key flow rates σ* σ measurements CT

1 1, 2, 6 σ2
/ ) 0.025 σ2 ) 0.025 1, 2, 6, 7, 9, 10, 13, 20, 26, 28 533.56

σ6
/ ) 1.7851 σ6 ) 1.6552

2 2, 10, 28 σ10
/ ) 1.0482 σ10 ) 0.8861 1, 2, 5-10, 13, 19, 20, 23, 26-28 894.86

σ28
/ ) 1.4446 σ28 ) 1.435

3 4, 8, 17, 21, 23, 25 σ4
/ ) 2.1990 σ4 ) 2.1857 1, 4, 6, 7, , 9, 10, 11, 14, 16-24 752.26

σ8
/ ) 3.281 σ8 ) 2.5644

σ21
/ ) 1.754 σ21 ) 1.5018

σ25
/ ) 1.7090 σ25 ) 1.4864

4 4, 5, 7, 8, 12, 16, 18, 20, 27, 28 σ4
/ ) 2.1990 σ4 ) 2.0368 1, 2, 4, 5-7, 9-11, 13, 15-24, 26-28 1178.06

σ5
/ ) 1.0654 σ5 ) 0.8878

σ8
/ ) 3.2810 σ8 ) 1.4967

σ12
/ ) 1.3454 σ12 ) 0.9588

σ27
/ ) 1.4154 σ27 ) 1.2002

σ28
/ ) 1.4446 σ28 ) 1.4437

CT ) ∑
i)1

n

ciqi (7)
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remaining 33 runs. The initial and final populations
after 100 generations for one run are represented in
Figure 5. Even though the initial population is made
up of a great number of infeasible individuals with
respect to precision constraints, the algorithm evolves
toward a feasible population composed by optimal-
fitness individuals. Furthermore, it can be seen that
individuals are agglomerated into suboptimal solutions,
as evidence of the use of structured populations.

To compare the different behavior of the EA due to
the application of a structured population, case 1 is run

with the same parameters but using a panmictic
population. The best solution, CT ) $533.56, is obtained
in 44% of the runs, and CT ) $671 in 54%. The average
and dispersion of the objective function value are
$607.95 and $68.67, respectively. In this case, the
performance of the algorithm is poor, and premature
convergence problems are detected, as is shown in
Figures 6 and 7.

The set of key variables for case 2 consists of the flow
rates of distant streams. One hundred runs are per-
formed with 200 generations each. Good repeatability
of the best solution is observed in Figure 8. The solution
distribution has a mean value of $943.158 and a
standard deviation of $89.71. The best solution, CT )
$894.86, is obtained in 56 runs. Figure 9 shows that,
from an infeasible population with respect to precision,
the algorithm evolves to regions of good fitness.

In case 3, a better ratio of feasible to infeasible
individuals exists in the initial population, which en-
hances convergence to the best solution (CT ) $752.26).
This solution is obtained in 84% of runs; the average
objective function value is $752.66, and the standard
deviation of the solution distribution is very low, $
0.9211. Figures 10 and 11 represent the algorithm

Figure 4. Objective function value for case 1.

Figure 5. Population evolution for case 1.

Table 6. Parameters of the Evolutionary Algorithm

parameter value

population size 100
probability MI ) -1 0.4
probability MI ) 1 0.3
selection method Ranking
selection pressure 1.3
neighborhood size 7
mutation probability 0.025
crossover probability 0.7

Figure 6. Objective function value for case 1 using a panmitic
population.

Figure 7. Population evolution for case 1 using a panmitic
population.
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behavior for this case study. Results for case 4 (Figures
12 and 13) show similar behavior of the technique for a
great number of key flow rates. The best solution is
obtained for all the runs.

The following conclusions arise from the analysis of
results:

(a) The proposed EA evolves toward the best solution,
even though it starts from an initial population consti-
tuted by a great number of infeasible individuals, in a

Figure 11. Population evolution for case 3.

Figure 12. Objective function value for case 4.

Figure 13. Population evolution for case 4.

Figure 8. Objective function value for case 2.

Figure 9. Population evolution for case 2.

Figure 10. Objective function value for case 3.
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reasonable time (approximately 140 s using a 1 GHz
Pentium III PC).

(b) The ratio feasible/infeasible individuals has an
influence on the number of generations needed to obtain
the best solution.

(c) A great percentage of repeatability of the best
solution is achieved.

(d) The neighborhood selection model provides a good
balance between the exploration of the search space and
the exploitation of good solutions that outperforms the
panmictic model, which is entrapped in local suboptima.

Furthermore, a sensitivity analysis of standard devia-
tions of the measurements was performed. For each
flowmeter, the standard deviation, σs, was replaced by
a new value, σs

n, and case 3 was solved again using the
proposed algorithm. For some sensors, the solution of
the optimization problem changed as a consequence of
the modification of the standard deviations. These
sensors are the flowmeters available to measure the
flows of streams 4, 6, 10, 14, and 21. Table 7 presents
the results of the new runs that have a different solution
from the original case 3.

The optimum sensor network design under study is
constrained by the precision of key variable estimates.
It is well-known that, to satisfy the required precision
after data reconciliation procedures are applied, the
number of sensors in the network and the cost increase
with increasing standard deviation of the sensors.
Consequently, those sensors of higher standard devia-
tion whose measurements participate in the alternative
ways of calculating a key flow rate have more influence
on the design.

5. Conclusions

In this paper, a hybrid solution technique is presented
for the optimal design or upgrade of linear sensor
networks, subject to quality constraints on key variable
estimates. No restrictions are imposed on the math-
ematical nature of the objective function or constraints.

The proposed EA is robust and efficient. It converges
to the best solution with high repeatability, and a great
part of the final population is feasible and has evolved
toward the best solution. This indicates that the neigh-
borhood selection model of the GA enhanced by local

search succeeds in providing a good balance between
the algorithm’s exploration and exploitation capabilities.

Nomenclature

A1 ) submatrix of D associated with measured variables
A2 ) submatrix of D associated with unmeasured variables
b ) random integer
c ) sensor cost
CT ) total instrumentation cost
D ) incidence matrix
f ) objective function
F ) fitness
g ) constraint
I0 ) initial instrumentation set
m ) number of units
MI ) measurement index
n ) number of streams
N ) population size
q ) binary vector
Q ) constraint violation function
rv ) number of required variables
r ) rank of A2
R ) number of unsatisfied constraints
SJ ) set of key process variables
T ) chromosome representation to generate the initial

population
u ) vector of unmeasured flow rates
x ) vector of measured flow rates
z ) vector of flow rates

Greek Letters

ηmax ) expected number of offspring of the best individual
σs ) sensor standard deviation
σ ) standard deviation of variable estimates
ν ) size neighborhood

Symbols

|‚| ) set cardinality
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