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FREE THREE-VALUED CLOSURE
LUKASIEWICZ ALGEBRAS

A bstract. Inthis paper, the structure of finitely generated free
objects in the variety of three-valued closure Lukasiewicz algebras
is determined. We describe their indecomposable factors and we
give their cardinality.

1. Introduction and Preliminaries

A Lukasiewicz algebra of order n, or an n-valued Lukasiewicz algebra, is
an algebra (L,A\,V,~,01,02,...,¢n-1,0,1), n integer, n > 2, of type
(2,2,1,1,1,...,1,0,0), where (L, A,V,~,0,1) is a De Morgan algebra, and
V1,92, ... ,Pn_1 are lattice homomorphisms satisfying: p;xV ~ gz = 1,
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PipjT = QT P~ T =N Py PIT S P2 S LS Pp1 T, TS Ppo1 T,
N ~ p;x A\ i1y <y for all i < n — 1. Sometimes we will refer to these
algebras simply as Lukasiewicz algebras, if there is not risk of confusion.

The notion of Lukasiewicz algebra of order n was introduced by
Gr. C. Moisil, and was developed and investigated further by several au-
thors. Three- and four-valued Lukasiewicz algebras are an algebraic coun-
terpart of Lukasiewicz logics. However, this is not so in the general case.
This is the reason why many authors use the name “Moisil algebras” in-
stead of “Lukasiewicz algebras”, or, at least, “Lukasiewicz-Moisil algebras”.

We assume that the reader is familiar with the theory of n-valued
Lukasiewicz algebras. For the basic properties, the reader is referred to
[4], [7] and [8].

The class of Lukasiewicz algebras of order n form a variety which we
will denote L£,,. For L € L,,, we denote B(L) the Boolean algebra of all
complemented elements in L. It is known that x € B(L) if and only if
pix = x, for every i. Since for every i =1,...,n—1, p;(L) = {x € L :
pix =z}, it follows that B(L) = ¢;(L), for every i. It is also known that
a Boolean algebra is a Lukasiewicz algebra of order n if we define ~ x as
the boolean complement of x and ¢;z = x for all .

Closure Lukasiewicz algebras have been studied in [3] and [7]. A closure
Lukasiewicz algebra of order n is an algebra (L, C'), where L is a Lukasiewicz
algebra of order n and C is a unary operator defined on L fulfilling the
following properties:

C1) C0 =0,

C2) CxVax=_Cuz,

(
(
(C3) C(zVy)=CazVCy,
(C4) CCx = Cx,

(

C5) Cpjx=pCx, 1 <i<n-—1.

The equational class of closure Lukasiewicz algebras of order n will be
denoted by CL,,.
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An important subvariety of CL,, is the variety ML,, of monadic Luka-
siewicz algebras [1, 7, 12], characterized within CL,, by the equation C(z A
Cy) = Cx A Cy. Another important subvariety of CL,, is the variety C of
closure Boolean algebras [2, 6, 9]. C consists of those algebras A in CL,
that satisfy that for every element z € A, ~ z is the Boolean complement
of z.

With the operators C' and ~ we can define a new unary operator @ (an
interior operator) by Qz = ~ C ~ z, for x € L. This operator satisfies
the following dual conditions: (Ql) Q1 =1, (Q2) Qz Az = Qz, (Q3)
QzAy) =QzAQy, (Q4) QQz = Qz, (Q5) Qpiz =¢Qz, 1 <i<n-—1

Closure Lukasiewicz algebras can be defined by means of equations (Q1)
to (Q5), and in that case, by defining Cx =~ @Q ~ x we obtain the closure
operator satisfying equations (C1) to (C5).

The set of open elements of L is Q(L) = {z € L : Qv = =z}, and
the set of closed elements of L is C(L) = {x € L : Cx = z}. Q(L) and
C(L) are anti-isomorphic sublattices of L such that ¢;(Q(L)) C Q(L) and
¢i(C(L)) CC(L), i=1,...,n—1. Observe that x € Q(L) if and only if
~x € C(L).

In the closure Boolean algebra (B(L),C), the set of open elements is
Q(B(L) = Q)N B(L) = {z € L : Qpiz = x}.

It is known that the set of open elements of a closure Boolean algebra,
in this case Q(B(L)), is a Heyting algebra if we define

Ty =Q~aVy),

for every z,y € Q(B(L)). On the other hand, in any Lukasiewicz algebra
L, we can define the implication
n—1

r=y= N(~gzVey vy
j=1

With this operation L becomes a Heyting algebra [10].

Lemma 1.1 [3] For L € CL,, the (0,1)—sublattice Q(L) is a Heyting
algebra if we define the open implication

=y =Qx=y),
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forx,y € Q(L).

Let F(L) denote the set of all filters of an algebra L. A filter F' € F(L),
is a Stone filter, if for each = € F' there exists an element b € FFNB(L) such
that b < z. Cignoli proved [8] that for Lukasiewicz algebras, the notion
of Stone filter is equivalent to that of filter satisfying the property x € F
implies ¢z € F. We define an open Stone filter as a Stone filter F' such
that Qx € F, whenever = € F.

If G C B(L) is a filter in B(L) that satisfies the condition Q(G) C G,
we say that G is an open filter of B(L).

Let Fy0(L), Fo(B(L)) and F(Q(B(L))) respectively denote the lat-
tices of open Stone filters of L, open filters of B(L) and filters of Q(B(L)).
It is not difficult to see that F,,o(L) and F(Q(B(L))) are isomorphic. So,
if Con(L) denotes the lattice of congruences of an algebra L, we have:

Theorem 1.2 Let L € CL,,. Then Con(L) ~ Fy,,q(L) ~ Fo(B(L)) ~
F(Q(B(L))) =~ Con(Q(B(L)))-

In particular, the variety CL,, is congruence-distributive and has the
congruence extension property.

It is known [12] that a closure three-valued Lukasiewicz algebra (L, C)
is a monadic Lukasiewicz algebra if and only if (B(L),C) is a monadic
Boolean algebra. This result also holds in the n—valued case.

Theorem 1.3 If L € CL,, for all x,y € L the following conditions
are equivalent:

(i) C(x A Cypiy) =Cx ACypy, forall i=1,...,n— 1.
(ii) C(z A Cy) =Cx ACy.
(iii) C(L) is a Lukasiewicz subalgebra of L.

(iv) C ~Czx = ~ Cu.

Proof. (i) = (i) ¢i(C(z A Cy)) = Clei(z A Cy)) = Clpi A piCy) =
C(piz NCpy), forevery i =1,...,n—1. By (i), C(p;x ACpiy) = Cp;x A
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Cyiy. Since Cpx A Coiy = p;Cx N p;Cy = ¢;(Cz A Cy), it follows that,
0i(C(xNCy)) = ¢i(CxACy), for i =1,...,n—1,s0 C(xACy) = CzACly.

(ii) = (iii) By (ii), C is a quantifier, so (L,C) € ML, and conse-
quently, C'(L) is a Lukasiewicz subalgebra of L.

(iii) = (iv) By (iii), Cz € C(L) implies ~ Cz € C(L), so C ~ Cx =
~ Cz.

(iv) = (i) < Cz and y < Cy imply z Ay < Cz A Cy, thus, C(z A
y) < C(Cxz AN Cy) = Cx A Cy. Hence, for all i = 1,...,n—1, C(z A
Cpiy) < Cx ANCCypiy = Cx A Cpzy. For every i@ = 1,...,n— 1, © =
A (CoiyV ~ Cpiy) = (x A Cpiy) V (xA ~ Cpiy) < (x ACpiy)V ~ Copyy.
Then, Cz < C(z A Cpiy) V C ~ Cypy, and taking into account (iv),
Cr < C(z A Cpiy)V ~ Cpy. Hence Cz A Cpiy < [Clx A Cpiy)V ~
Coiyl A Coiy = C(z A Cpiy) A Coiy < C(x A Cpy). O

Suppose that (L,C) € CL,, and (B(L),C) is a monadic Boolean al-
gebra. If x € L, foreach i =1,...,.n—1, p;C ~ Czx = Cp; ~ Czx =
Cr~pniCx=Cn~Copp_jxz=~ Cpp_jx =~ p,_;Cx=p; ~Czx. Hence,
C~Czx=~Cz, so(L,C)e ML,. Consequently, we have:

Corollary 1.4 An algebra (L,C) € CL,,, belongs to ML, if and only
if (B(L),C) is a monadic Boolean algebra.

The following theorems follow immediately from Theorem 1.2.

Theorem 1.5 An algebra L € CL, is subdirectly irreducible if and
only if the Heyting algebra (Q(B(L)),—) is subdirectly irreducible, that
is, Q(B(L)) ~ A®1, for some A Heyting algebra.

Theorem 1.6 An algebra L € CL, is indecomposable if and only if
Q(B(L)) is indecomposable as a Heyting algebra.

In addition, from Corollary 1.4 we obtain

Theorem 1.7 The simple objects of the variety CL, are the simple
monadic Lukasiewicz algebras of order n.

In what follows, we prove some properties of the subvariety of CL,, of
those closure Lukasiewicz algebras in which the Heyting algebra of open
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elements (Q(L),—) is a three-valued Heyting algebra. Recall that a three-
valued Heyting algebra is a Heyting algebra (A, —) such that ((x — z) —
y) = (((y = 2) = y) = y) =1, for every z,y,2z € A [11].

The following characterization of the ordered set of prime filters of an
algebra in the variety of three-valued Heyting algebras is known.

Theorem 1.8 ([11]). Let A be a Heyting algebra. Then the following
are equivalent:
(a) A is a three-valued Heyting algebra.
(b) Ewvery prime filter of A is either mazimal or minimal, and every prime
filter is contained in at most one maximal prime filter.

In the case of closure Boolean algebras, a similar investigation was car-
ried out for the subvariety Cr of those closure Boolean algebras such that
the set of open elements form a three-valued Heyting algebra [9].

Let L € CL,, such that Q(L) is a three-valued Heyting algebra. It is
proved in [3] that if L is a simple algebra, then it is a simple algebra in M L3,
and if L is a non-simple subdirectly irreducible algebra, then L € Cp. So, if
L € CL,, is such that Q(L) is a three-valued Heyting algebra, L € CL3. We
denote this subvariety by C7 L3 and we have that for L € CL,,, L € CpLg if
and only if for every z,y, z € L the following identity holds

((Qr — Qz) — Qy) — (Qy — Qx) — Qy) — Qy) = 1.

The following theorem follows immediately from Theorem 1.6 and The-
orem 1.8

Corollary 1.9 The finite indecomposable algebras in CtLs3 are the al-
gebras (L, Q), where Q(B(L)) = 0@ B, for a finite Boolean algebra B.

Recall that L is called a centered three-valued Lukasiewicz algebra, or
a three-valued Post algebra, if it has a center, that is, an element ¢ of L
such that ~ ¢ = ¢. The center of L (if it exists) is unique. An azis of a
three-valued Lukasiewicz algebra is an element e of L such that ¢1e =0
and poxr < p1x V poe, for all x of L. If the axis of L exists, it is unique.
The axis and the center of an algebra L € CrL3 belong to C'(L) (see [3]).

Let 2 be the Boolean algebra {0,1} and let 3 be the centered Lukasie-

1

wicz algebra {0, 5,1}. Let By be the simple monadic Boolean algebra with



FREE THREE-VALUED CLOSURE LUKASIEWICZ ALGEBRAS 9

k atoms, and let T}, = (3%, C) where C(3%) = {0,¢, 1}, c the center of 3*
(see [12]).

Lemma 1.10 FEvery finite subdirectly irreducible algebra in MLs is
simple. The finite simple algebras of the variety MLs3 are the algebras
By, £ > 1 and the algebras Ty, k > 1.

Let By; be the closure Boolean algebra with k + [ atoms such that
Q(Bg,;) = {0,a,1} and there are k atoms preceding a and [ atoms preceding
~a, k>1,1>1.

Lemma 1.11 [2, 9] The finite simple algebras in the variety Cp are
the algebras By, and the finite non-simple subdirectly irreducible algebras in
Cr are the algebras By, ;.

Then we have the following theorem.

Theorem 1.12 The finite subdirectly irreducible algebras in CrLs3 are
the algebras By, Tj, and By, .

Lemma 1.13 If L = (3™,Q) is an algebra of CpLs, then L is a three-
valued monadic Post algebra.

Proof. Indeed, if L ¢ MLs, by Corollary 1.4, (B(L),Q) is not a
monadic Boolean algebra, that is {0,1} C Q(B(L)) C B(L). Let N ={b €
Q(B(L)) :~ b ¢ Q(L)} and consider a maximal element m in N. Observe
that:

1) ~(mVQ@Q~m) ¢ QL),as~m¢ QL) and ~ m =~ mA (Q ~
mVe~Q~m)=Q~mV~(mVGQ~m).

2) @ ~ m = 0. Indeed, if we suppose 0 < Q ~ m <~ m, then m <
mV@~m<land ~ (mVQEQ ~m)¢ Q(L), contradicting the
maximality of m.

Let ¢ be the center of L. We know that ¢ € Q(L). Consider the element
a=cVmeQ(L). Then ((¢ = 0) —a) — (((a —¢) —a) —a)=(0—
a) = ((Q(~mVe) —a)—a)=1<—a=a <1, and consequently Q(L)
is not a three-valued Heyting algebra. O

The following result gives the structure of any finite algebra in C7L3. It
is crucial in the determination of the n-generated free algebra of the variety.
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Theorem 1.14 If L € CrLs is finite, then L is a direct product of
a three-valued closure Boolean algebra and a three-valued monadic Post
algebra.

Proof. We know that if B(L) has j atoms, then L ~, 2" x 3™ (~,
means isomorphism as Lukasiewicz algebras), where n +m = j. If ¢ is the
center of 3™, then (0, c¢) is the axis of L, thus ~ (0,¢) = (1,¢) € Q(L). In

addition, Q(1,0) = Qpi1(1,¢) = ¢1Q(1,¢) = (1,0), that is, (1,0) is an open

of L. Let us see that (0,1) is also an open of L. If Q(0,1) = (0,0), taking
= (1,0) and b = (1,¢) we have that ((a — 0) < b) — (((b — a) —

b) — b) < 1. So Q(0,1) > (0,0). Suppose that Q(0,1) = (0,b) < (0,1).

If we take a = (0,~ b), then Qa < Q(0,1) Aa=0. If « = (1,0) Vv Q(0, 1)

and = (1,6) V a, we get (a — 0) = ) = (8 = a) = ) — §) =

(Qa — B) — ((a — B) — p) = < 1, which implies L ¢ CrLs3. So
Q(0,1) = (0,1).

Thus the filters F; = [(1,0)), F» = [(0,1)) € Fyu,0(L), 61 = 6(F1) and
0y = O(F») is a pair of factor congruences, L/, is a three-valued closure
Boolean algebra and, by the Lemma 1.13, L /6 is a three-valued monadic
Post algebra. O

A variety V has the Fraser-Horn Property if there are no skew con-
gruences on any direct product of a finite number of algebras in V; that
is, for all A1, Ay € V, every 6 € Con(A; x Ay) is a product congruence
01 X 09, 0; € Con(4;),i = 1,2. Every congruence-distributive variety has
the Fraser-Horn Property. In particular, the variety CrL3 has the Fraser-
Horn Property.

If the congruence lattice of an algebra L has a unique coatom, then L is
directly indecomposable. A variety V has the Apple Property if the converse
holds as well for all finite algebras; that is, if the finite directly indescom-
posable algebras in )V are precisely the finite algebras whose congruence
lattices have a unique coatom. If L is a finite directly indecomposable al-
gebra in CrLs, then, from Corollary 1.9, Q(B(L)) = 0 @ B, where B is
a finite Boolean algebra. So F(Q(B(L))) has a unique coatom and thus
Con(Q(B(L))), and consequently Con(L), have a unique coatom. Hence
the variety CrL3 has the Apple Property.

The Fraser-Horn and Apple Properties, extensively studied in [5], will
play an important role in the determination of the n-generated free algebra
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in the variety CrLs.

2. Finitely generated free algebras

The aim of this section is to explicitly give the structure of F(G)=F¢,£,(G)
— the free algebra over a finite set G in the variety CrLs.

Since CrLs is a locally finite variety (see [3]), then the algebra F(G)
is finite, and consequently, every meet-irreducible open Stone filter M), of
F(G) is generated by a join-irreducible open element p of B(F(G)).

If V is a variety, the variety Vy generated by the finite simple algebras
in V is the prime variety associated with V.

In [5], Berman and Blok showed that if V is a locally finite variety
with the Fraser-Horn and Apple Properties, and, in addition, it has the
property that every subalgebra of a finite simple algebra is a product of
simple algebras, then the number of directly indecomposable factors of
Fy,(G) equals that of Fy(G). They also proved that if a given finite simple
algebra L is a direct factor of the free algebra in V), there exists a directly
indecomposable factor of Fy(G) having L as homomorphic image. These
results can be applied to the variety CrLs, as this variety has the Fraser-
Horn and Apple Properties, and, additionally, every subalgebra of a finite
simple algebra is simple.

The prime variety (CrL3)g is the variety M L3 of monadic three-valued
Lukasiewicz algebras. It is known ([12]) that the free monadic three-valued
Lukasiewicz algebra F oz, (G) is given by

’2G’ (|2G|) ‘3G‘ (|3G|)7(|2G|)
Fue,( @) 2 [[B;, 7 "< [[T)* L
j=1 k=1

where (’25’) =0if k> ‘2G‘.
So, from [5], the algebra F(G) has a factorization as

‘ZG’ (‘2G’) ’3G’ (‘3G‘)7(‘2G‘)
(R ] - ] B
j=1 k=1

)
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where each A; and each P}, has as homomorphic image a factor of the free
monadic three-valued Lukasiewicz algebra F a2, (G).

We will now determine the structure of each directly indecomposable
factor of F(G).

For a given finite algebra L € CrLs, let J(Q(L)) and J(Q(B(L)))
be the set of join-irreducible elements of Q(L) and Q(B(L)), respectively.
Observe that J(Q(B(L))) € J(Q(L)). Indeed, if b € J(Q(B(L))) is such
that b = cV d, ¢,d € Q(L), then b = p1¢V ¢1d, and then p1c = ¢ =b or
prd=d=1"0,s0be J(Q(L)). Consider the following sets, where min(X)
(max(X)) denotes the set of minimal (maximal non minimal) elements of
a poset X:

m = min(J(Q(L))) N B(L), M =maxz(T(Q(B(L)))),

n=min(J(Q(L))) \m, and N=maz(T(Q(L)))\M.

As an example, let L be the product B; x By x B x Ty x Ty, where
the factor algebras are listed in the following figure. The open elements are
highlighted and the corresponding dual spaces are given.

B, Bi> B T, To

:
9
;
.
ik

In the case of the algebra F(G) we have J(Q(F(G))) = Z Cp, where

peEmUn
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Cp={1€ J(QF(G) : q = p}, and T(Q(B(F(G)))) = ) CpUMN. So

pem

Q(F(G)) =y H Dpa

pemUn

where D), is the distributive lattice such that J(D,) = C,. Observe that
if p € n, then D, = 3. Thus if p € m U n the elements p* = quCp q €
Q(B(F(G))) are complemented, the complement coincides with the com-
plement in B(F(G)) and is given by

—p" = \ q-

€T (Q(F(G)))\Ch
In particular, —p* =~ p* is open.
We establish the following simple but useful lemma. Let A¢(L) denote

the set of atoms of an algebra L.

Lemma 2.1 If z € At(F(G)), then there exists p € J(Q(F(G))) such
that x < p.

Proof. Let p € muUn. If x < ¢ for some ¢ € Cp, then the lemma
holds. Suppose that = £ ¢, for every ¢ € C)p. In particular, x £ p*. Then

r <~ p"= \/ q. Since x is an atom it follows that x < ¢ for
€T (Q(F(G)N\Cp
some ¢ € J(Q(F(G))) \ Cp. O

The above lemma shows that the set P = {At(p*)}pemun, where
At(p*) = {z € At(F(G)) : © < p*}, is a partition of the set At(F(QG)).

Let F}, and I, respectively denote the principal filter and principal ideal
generated by x. Observe that I, € CrLs for x € Q(B(F(G))). Then we
have the following theorem.

Theorem 2.2

F(G) =cicz, H F(G)/Fp Zcres H I~

pemUn pemUn

~.c, [[F@)/E x [[FG)/E,

pEM qeEM
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As in [2] we can see that if p, 7 € m are such that I, = I, = By, then
I = I« It is not difficult to see that the algebras Iy, 1< k< |2G|, and

Ipp =1y, 1 <k < ‘3G|, are the directly indecomposable factors of F(G).
Then
|2G| ( ZG‘) |3G| ( 3G‘)_(’2G‘)
Theorem 2.3 F(G) = H IP}Z X H Iq; F ko
k=1 k=1

Our next objective is to determine the number of elements of F(G).

Let p € J(Q(F(G))). If p € m, then F(G)/M, = By, and thus, there
exist k atoms preceding p. If p € M, then F(G)/M, = By;. Thus there
are k + [ atoms preceding p. In addition, k£ of these atoms precede the only
element ¢ € m such that ¢ < p. If p € N, then F(G)/M, = T} and thus,
there exist k atoms (not boolean elements) preceding p.

If we put my, = {p € m: F(G)/M, = By}, My, ={p e M: F(G)/M, =
By} and M, = {p € N : F(G)/M, = Ty}, then the number of atoms of
the free algebra is ([2] and [12])

AHF(G) = D |mglk + > Mpall+ D [k

1<k<|26]| 1<k<|26-1],1<I<|26] 1<k<(36|

If we put (I;) =0, whenever [ > k, M = |2G|, and N = ‘3G

M
|mk|=<k>, | < k<M,

; then ([2])

and

= () () () rsvemon s

Similarly ([12]),
N M
_ _ 1 <k<N.

The following theorem gives the cardinality of F(G).
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Theorem 2.4 |F(G)| = oM (22M=1— 3M=1) gN. 2N=1_pf. 2M-1

Now we determine the structure of Q(F(G)). If px € my, the closure
algebra I+ has

Py <<J\l4) < >> = M2V g (1-28)

atoms. In addition, @ (Ip > >~ 0 @ 2%, where 2 is the Boolean algebra
with Sk = > 1< ((Af) (l;)) =2M 2k atoms. If g € Mg, then
qu = Tk and Q( CIk) = 3.

Thus we conclude

M N
Corollary 2.5 Q(F ) & 0 ) 2Sk X H 3(27)_(11\3)
k=1 k=1

Example 2.6 Let F(1) be the free algebra with one generator. Then
F(1) = A% x B x T1 x T x T3 where A is the Boolean algebra with four
atoms and Q(A) = 0 @ 22, and B is the Boolean algebra with two atoms
such that Q(B) = 2
The dual space X of F(1) looks like the following diagram:

F(1) is isomorphic to the family of decreasing subsets of its dual space X.

If a is a decreasing subset of X, Qa is the greatest open decreasing subset
contained in a, ia is the greatest boolean decreasing subset contained in
a, and so on. For example, if
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g = {2,3,5,8,9,11,13,17, 18,19, 21,22, 23}, then
Qg = {2,11,17,19},
v1g = {2,3,5,8,9,17,18,21, 22},
~g = {1,4,6,7,10,11,13, 15,16, 19, 23,25, 26} and
Cg = {1,2,3,4,5,7,8,9,10,11,13,15,17, 18,19, 20, 21, 22, 23, 24, 25, 26}
The element g is a generator of F(1) as the atoms of F(1) can be obtained

from g in the following way:

o {1} =~ gACp1QgAQ ~ (9N~ Qg),

e {2} = »1Qy,

o 3t=9gNCrQgNC ~y,

o {4} =~ gNC(gNCp1QgNC ~yg),

o {5} =gNCrQ~gNQ~(Cgh~yg),

e {6} =pQ~y,

o {T}=~gANCp1Q~gnCy,

o {8} =gAC(~gNCp1Q~gNCyg),

o {9} =gNnp1Q(gV~g) ANQCgNQC ~ g,
o {10} =~ g Ap1Q(gV ~ g) NQCgAQC ~ g,
o {11} =Q(9A ~9),

e {13} =gNp1~QgANQ~y,

o {15} =CgAhpr1~gNnQ~y,

o {17} =~ Qg N 19 A Qg,

o {19} = Q9N ~ g A piCy,

o 21} =1 (gNC ~g)N~Q(gV ~yg),

o {23} =gA~ g1 (CgnC ~yg),

e {25} =1 (~gNCg)NA~Q(gV ~g).
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