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In 2011, Düntsch and Or�lowska obtained a discrete duality for regular double Stone
algebras. On the other hand, it is well known that regular double Stone algebras are
polinominally equivalent to 3-valued �Lukasiewicz–Moisil algebras (or LM3-algebras). In
[R. Cignoli, Injective De Morgan and Kleene algebra, Proc. Amer. Math. Soc. 47 (1975)
269–278], LM3-algebras are considered as a Kleene algebras 〈L,∨,∧,∼, 0, 1〉 endowed
with a unary operation � : L → L, satisfying the properties: a∨ ∼ �a = 1, ∼ a ∧
a = a∧ ∼ �a and �a ∨ �b ≤ �(a ∨ b). Motivated by this result, in this paper, we
determine another discrete duality for LM3-algebras, extending the discrete duality to
De Morgan algebras described in [W. Dzik, E. Or�lowska and C. van Alten, Relational
representation theorems for general lattices with negations, in Relations and Kleene
Algebra in Computer Science, Lecture Notes in Computer Science, Vol. 4136 (Springer,
Berlin, 2006), pp. 162–176].
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1. Introduction and Preliminaries

A discrete duality is a relationship between classes of algebras and classes of rela-
tional systems (frames): If Alg is a class of algebras and Frm is a class of frames,
to establish a discrete duality between these two classes, the following steps are
required:

• For every algebra L from Alg, we associate a canonical frame X (C(L)) of the
algebra and show that it belongs to Frm.

• For every frame X from Frm, we associate a complex algebra C(X (L)), and show
that it belongs to Alg.
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• Prove two representation theorems:

* For each L ∈ Alg there is an embedding h : L ↪→ C(X (L)).
* For each X ∈ Frm there is an embedding k : X ↪→ X (C(X)).

Canonical frames correspond to dual spaces of algebras in the Priestley style
duality [12]; however, they are not endowed with a topology and hence may be
thought of as having a discrete topology. Complex algebras of canonical frames
correspond to canonical extensions in the sense of Jónsson and Tarski [7].

A discrete duality leads to what is called duality via truth in [10] (see also
[9]). Duality via truth amounts to say that the concept of truth associated with
an algebraic semantics of a formal language determined by class Alg of algebras
and the concept of truth associated with its relational (Kripke-style) semantics
determined by class Frm of relational systems are equivalent, that is the same
formulas are true in both of these classes of semantic structures. General principles
and applications of discrete duality are briefly presented in [11].

The main purpose of this paper is to give a discrete duality for 3-valued
�Lukasiewicz–Moisil algebra (LM3-algebras). To do this we will extend the discrete
duality given in [5], for De Morgan algebras.

Let us recall that an algebra 〈L,∨,∧,∼, 0, 1〉 is a De Morgan algebra if the
reduct 〈L,∨,∧, 0, 1〉 is a bounded distributive lattice and ∼ is a unary operation on
L satisfying the following identities: ∼ (x∨ y) = ∼ x∧ ∼ y, ∼∼ x = x and ∼ 0 = 1.

On the other hand, a Kleene algebra is a De Morgan algebra 〈L,∨,∧, 0, 1〉 that
satisfies the additional condition:

x∧ ∼ x ≤ y∨ ∼ y.

Given a relational structure 〈X,≤〉 where X 	= ∅ and ≤ is a reflexive, antisym-
metric and transitive binary relation on X (i.e. a poset), we will denote by [≤]U
the set {x ∈ X : ∀y, x ≤ y ⇒ y ∈ U}, for any U ⊆ X . Besides, we will denote by
[Y ) ((Y ]) the set {x ∈ X : ∃y ∈ Y y ≤ x} ({x ∈ X : ∃y ∈ Y x ≤ y}), for any Y ⊆ X .
In particular, if Y is the single set {x} we will write [x) instead of [{x}).

A De Morgan frame is a structure 〈X,≤, g〉, where 〈X,≤〉 is a poset and g :
X → X is a function which satisfies:

• g(g(x)) = x,
• if x ≤ y, then g(y) ≤ g(x).

Let 〈L,∨,∧,∼, 0, 1〉 be a De Morgan algebra and let X (L) be the set of all prime
filters of L. It is known that 〈X (L),≤c, gc〉 is a De Morgan frame, where ≤c is ⊆
and gc : X (L) → X (L) is the involution defined by

gc(S) = {x ∈ L :∼ x /∈ S}, for all S ∈ X (L). (1.1)

Moreover, if 〈X,≤, g〉 is a De Morgan frame, then

〈C(X),∪,∩,∼c, ∅, X〉
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is a De Morgan algebra, where C(X) = {U ⊆ X : [≤]U = U} and ∼c: C(X) → C(X)
is defined by

∼c U = X\g(U), for every U ∈ C(X). (1.2)

These results allow us to obtain a discrete duality for De Morgan algebras by
defining the embeddings as follows:

• h : L → C(X (L)), defined by h(a) = {S ∈ X (L) : a ∈ S},
• k : X → X(C(X)), defined by k(x) = {U ∈ C(X) : x ∈ U}.

2. Discrete Duality for LM3-Algebras

In this section, we describe a discrete duality for LM3-algebras taking into account
the one indicated in Sec. 1 for De Morgan algebras.

A LM3-algebra (see [1, 4, 8]) is an algebra 〈L,∨,∧,∼, �, 0, 1〉 such that
〈L,∨,∧,∼, 0, 1〉 is a Kleene algebra and � is an unary operation on L which satisfy
the following conditions:

(L1) a∨ ∼ �a = 1,
(L2) ∼ a ∧ a = a∧ ∼ �a,
(L3) �a ∨ �b ≤ �(a ∨ b).

Definition 2.1. A structure 〈X,≤, g, R〉 is a LM3-frame if 〈X,≤, g〉 is a De Morgan
frame and R is a binary relation on X such that:

(K0) x ≤ g(x) or g(x) ≤ x,

(K1) R is reflexive,
(K2) (≤ ◦R◦ ≤) ⊆ R,
(K3) if (x, y) ∈ R, then x ≤ y or g(x) ≤ y.
(K4) g(x) ∈ R(x), for all x ∈ X .

Definition 2.2. The complex algebra of a LM3-frame 〈X,≤, g, R〉 is a structure

〈C(X),∪,∩,∼c, �c, ∅, X〉,
where 〈C(X),∪,∩,∼c, ∅, X〉 is a complex algebra of the De Morgan frame 〈X,≤, g〉
and for any U ∈ C(X), �c(U) = {x ∈ X : R(x) ⊆ U}.

Definition 2.3. The canonical frame of a LM3-algebra 〈L,∨,∧,∼, �, 0, 1〉 is a
structure

〈X (L),≤c, gc, Rc〉
where 〈X (L),≤c, gc〉 is the canonical frame associated with 〈L,∨,∧,∼, 0, 1〉 and Rc

is a binary relation on X (L) defined by

(S, T ) ∈ Rc ⇔ �−1(S) ⊆ T.

Lemma 2.1. The canonical frame of a LM3-algebra is a LM3-frame.
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Proof. Taking into account Definition 2.3, we only have to prove from (K0)
to (K4).

(K0): Let S be a prime filter such that S 	⊆ gc(S) and gc(S) 	⊆ S. Then, there exists
x ∈ S such that x /∈ gc(S) and there exists y ∈ gc(S) such that y /∈ S. As S is a
filter, we have to x∧ ∼ x ∈ S obtaining as a result y∨ ∼ y ∈ S. Then, as y /∈ S, we
have y /∈ gc(S) which is a contradiction.

(K1): Let S be a prime filter such that x ∈ �−1(S). So, �x ∈ S. Since �x ≤ x, we
have that x ∈ S. Thus, �−1(S) ⊆ S, i.e. (S, S) ∈ Rc.

(K2): Suppose that (P, F ) ∈ (≤c ◦Rc ≤c). Then, there exists T, S ∈ X (L) such
that P ⊆ T , (T, S) ∈ Rc and S ⊆ F . From this last assertion we deduce that
�−1(T ) ⊆ F . Since P ⊆ T we infer that (P, F ) ∈ Rc.

(K3): Let S, T ∈ X (L) such that (S, T ) ∈ Rc. Suppose that S 	⊆ T and gc(S) 	⊆ T .
Then S ∩ gc(S) 	⊆ T , because T is a prime filter. So there exists a ∈ S ∩ gc(S)
and a /∈ T . Then ∼ a /∈ S. As ∼ a ∧ a = a∧ ∼ �a, and a ∈ S, ∼ �a /∈ S. So,
�a ∈ gc(S). Since �a∧ ∼ �a = 0, ∼ �a /∈ gc(S), i.e. �a ∈ S. So, a ∈ T , because
(S, T ) ∈ Rc, which is a contradiction.

(K4): Let P ∈ X (L) such that (P, gc(P )) /∈ Rc. Then, there exists a ∈ L such that
�a ∈ P and a /∈ gc(P ). So, �a∧ ∼ a = 0 ∈ P , which is a contradiction.

Lemma 2.2. The complex algebra of a LM3-frame is a LM3-algebra.

Proof. We need to show closure under the operation �c, that is, �cU = [≤]�cU .
The inclusion ⊇ follows from reflexivity of ≤. Assume that x ∈ �cU . Let y ∈ X

such that x ≤ y. Take any z ∈ X such that (y, z) ∈ R. Then, from (K2) we
infer that (x, z) ∈ R. So, z ∈ U . Then, x ∈ [≤]�cU . Therefore, �cU ⊆ [≤]�cU .
Is clear that C(X) is a De Morgan algebra. Now, we prove U ∩ U c ⊆ V ∪ ∼c V .
Suppose that x ∈ U and g(x) /∈ U. Taking into account (K0), we can deduce that
g(x) < x. On the other hand, we take x 	∈ V such that x /∈∼c V . Then, g(x) ∈ V,

from which turns out that x ∈ V , as V ∈ C(X). Therefore, x ∈ V ∪ ∼c V . Now we
will prove (L1), (L2) and (L3).

(L1): Suppose that ∼c U∩�cU 	= ∅. Then, there exists y ∈∼c U such that R(y) ⊆ U .
As g(y) ∈ R(y), we have g(y) ∈ U , which is a contradiction. Then, ∼c U ∩�cU = ∅.
Therefore, U∪ ∼c �cU = X .

(L2): Let x ∈∼c U ∩ U and suppose that R(g(x)) ⊆ U . So, by (K4), we have that
g(x) ∈ U which is a contradiction. Conversely, suppose that x ∈ U∩ ∼c �cU . Since
R(g(x)) 	⊆ U, there exists y ∈ R(g(x)) such that y /∈ U . So, by (K3), we have that
g(x) ≤ y. Therefore, g(x) /∈ U . So, since x ∈ U, we deduce that x ∈ U∪ ∼c U .

(L3): It is a direct consequence of the definition of �c.
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Now we show that the embedding h : L → C(X (L)), defined in Sec. 1, preserves
the unary operator �, that is, the following.

Lemma 2.3. For any a ∈ L, h(�a) = �c(h(a)).

Proof. Let F ∈ h(�a); then �a ∈ F . Suppose that P ∈ X (L) verifies that (F, P ) ∈
Rc. Then, �−1(F ) ⊆ P and so, a ∈ P . Therefore, F ∈ �c(h(a)) from which we
infer that h(�a) ⊆ �c(h(a)). Conversely, assume that F ∈ �c(h(a)). Then for
every P ∈ X (L), (F, P ) ∈ Rc implies P ∈ h(a). Suppose that �a /∈ F . Then
�−1(F ) is a filter and a /∈ �−1(F ). Hence, there is T ∈ X (L) such that a /∈ T

and �−1(F ) ⊆ T . This last assertion allows us to conclude that (F, T ) ∈ Rc. From
this statement we have that T ∈ h(a) and so, a ∈ T , which is a contradiction.
Therefore, h(�a) = �c(h(a)). Thus, by virtue of the results established in [5] the
proof is completed.

Lemma 2.4 will show that the order-embedding k : X → X (C(X)) defined in
Sec. 1, preserves the relation R.

Lemma 2.4. Let 〈X,≤, g, R〉 be a LM3-frame and let x, y ∈ X. Then

• (x, y) ∈ R if and only if (k(x), k(y)) ∈ Rc.

Proof. Assume that (x, y) ∈ R and suppose that U ∈ C(X) verifies �cU ∈ k(x).
Then it is easy to see that y ∈ U and so, (k(x), k(y)) ∈ Rc. Conversely, let x, y ∈ X

be such that (k(x), k(y)) ∈ Rc. Then �c−1(k(x)) ⊆ k(y). On the other hand, note
that [≤](X\(y]) ∈ C(X) and y /∈ [≤](X\(y]). Thus, [≤](X\(y]) /∈ k(y) and so,
[≤](X\(y]) /∈ �c−1(k(x)). Therefore, �c([≤](X\(y])) /∈ k(x) from which we infer
that x /∈ �c([≤](X\(y])). Then there is z such that (x, z) ∈ R and z /∈ [≤](X\(y]).
From this last assertion there is w such that z ≤ w and w ≤ y, which allow us to
infer that z ≤ y. Hence, by virtue of the reflexivity of ≤ and (K2), (x, y) ∈ R as
required.

Hence, we have a discrete duality between LM3-algebras and LM3-frames.

Theorem 2.1. (a) Every LM3-algebra is embeddable into the complex algebra of
its canonical frame.

(b) Every LM3-frame is embeddable into the canonical frame of its complex algebra.

3. Conclusions and Further Studies

The discrete dualities developed in this paper provide, on the one hand, a represen-
tation theorem for the classes of LM3-algebras and, on the other hand, they provide
the classes of relational systems which enable us an alternative formalization and
interpretation of the relevant domains in the logical framework. The representation
theorems constituting the discrete dualities show that the formalization in terms of
these relational systems is equivalent to the algebraic formalization.
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The present paper provides a basis for further work on discrete duality for De
Morgan algebras with modal operators (see [2, 3]).
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