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ABSTRACT

When a seismic wave travels through a fluid-saturated porous
reservoir containing aligned fractures, it induces oscillatory fluid
flow between the fractures and the embedding background
medium. Although there are numerous theoretical models for
quantifying the associated seismic attenuation and velocity
dispersion, they rely on certain assumptions, such as infinitesimal
fracture thickness and dilute fracture concentration, which rarely
hold in real reservoirs. The objective of this work is to overcome
some of these limitations and, therefore, improve the applicability
of the available theoretical models. To do so, we extend existing
models to the finite fracture thickness case for P-waves propagating
perpendicular to the fracture plane using the so-called branching
function approach. We consider three types of fractures, namely,
periodically and randomly spaced planar fractures, as well as
penny-shaped cracks. The extended unified model is then tested

by comparing with corresponding numerical simulations based on
Biot’s theory of poroelasticity. We consider two cases of 2D rock
samples with aligned elliptical fractures, one with low fracture den-
sity and the other with high fracture density. The results indicate
that the influence of the finite fracture thickness on seismic
dispersion and attenuation is small at low frequencies when the
fluid pressure has enough time to equilibrate between the fractures
and background medium. However, this effect is significant at high
frequencies when there is not sufficient time for the fluid pressure
equilibration. In addition, the theoretical predictions of the penny-
shaped crack model are found to match the numerical simulation
results very well, even under relatively high fracture density.
Analyses of stress distributions suggest that the small discrepancies
found between theoretical predictions and numerical simulations
are probably due to fracture interactions. In a companion paper,
we will extend the analysis for considering the full stiffness matrix
and anisotropic properties of such rocks.

INTRODUCTION

The importance of fractures in reservoirs has been recognized for a
long time, especially for unconventional and carbonate reservoirs
with low matrix permeability (e.g., Kazemi et al., 1976; Abdassah
and Ershaghi, 1986; Pérez et al., 1999; Gale et al., 2014; Liu and
Abousleiman, 2016; Liu et al., 2017). In many of these reservoirs,
the volume of the pores is much larger than that of the fractures,
and, hence, the former provides the primary space for hydrocarbon

storage (Nelson, 2001). However, due to the very low matrix per-
meability, fractures provide the main conduits for the flow of pore
fluids. Hence, although the total volume of fractures is usually small,
their presence can greatly improve the effective permeability of res-
ervoirs and, therefore, hydrocarbon production (Cho et al., 2013).
This enhancement of reservoir permeability critically depends on
the hydraulic connectivity between the pore space of the background
and fractures. Thus, potential seismic information on the connectivity
between fractures and pores of the background as well as on the geo-
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metric, mechanical, and hydraulic properties of the probed fractures
is of great importance to oil/gas exploration and production.
When a seismic wave propagates through a fractured reservoir

that is fully saturated with a single fluid, its behavior can be greatly
affected by the properties of the fractures and their degree of hy-
draulic connectivity with the pore space of the background. This
influence results from wave-induced fluid flow (WIFF) between
these two regions, a phenomenon highly dependent on the fre-
quency of the elastic wave (Gurevich, 2003). At low frequencies,
the pore fluid has enough time to flow from the fractures into the
background medium during the compression cycle of the seismic
wave and vice versa during the extension cycle, hence reducing
the rock stiffness. Conversely, at higher frequencies, there is not
sufficient time for fluid flow between the fractures and the back-
ground medium. Thus, fractures behave stiffer at higher frequencies
than at lower frequencies. The variation of the fracture stiffness with
frequency results in frequency-dependent effective elastic proper-
ties of the probed fractured material. In other words, fluid flow be-
tween the background medium and fractures manifests itself as
seismic dispersion, which is accompanied with energy dissipation
(seismic attenuation) due to viscous friction arising in the pore fluid.
Seismic dispersion and attenuation due to WIFF between frac-

tures and the background medium have been quantified by several
theoretical models. Hudson et al. (1996) model fractures as penny-
shaped cracks and quantify the WIFF effects induced by a single
crack while neglecting potential interactions with neighboring
cracks. Chapman et al. (2002) and Chapman (2003) study the seis-
mic dispersion and attenuation of saturated rocks containing penny-
shaped cracks by introducing spherical pores and compliant cracks
as perturbations to an elastic nonporous background. Predictions of
this model are then compared with the experimental results and ap-
plied to seismic data analysis by Maultzsch et al. (2003, 2007) and
Chapman et al. (2006). Another perturbation approach to model the
effects of pores and fractures on elastic properties is proposed by
Jakobsen et al. (2003), Jakobsen and Hudson (2003), and Jakobsen
(2004) using a T-matrix formalism. This approach is very versatile
because it allows modeling the effect of complex distributions of
fractures; however, it depends on many parameters that are often
unknown.
A different approach is proposed by Gurevich (2003), who study

the effect of fractures in the low-frequency (Gassmann) limit
by considering fractures as perturbation to a porous background
medium described by Biot’s equations of poroelasticity. This work
is extended by Brajanovski et al. (2005), who model fractures as
thin and highly porous layers embedded in a porous background,
based on which an analytical solution for P-wave dispersion and
attenuation is obtained. The corresponding characteristic frequen-
cies are also given by studying the asymptotes of the analytical sol-
ution at low, intermediate, and high frequencies (Brajanovski et al.,
2006). Galvin and Gurevich (2006, 2007) analyze seismic
dispersion and attenuation in a medium with aligned sparsely dis-
tributed penny-shaped cracks using a poroelasticity approach. A de-
tailed review of these models is given by Gurevich et al. (2009),
who also provide a unified formulation for several of these models
by using the so-called branching function approach (Johnson, 2001;
Pride and Berryman, 2003).
Although numerous theoretical models have been proposed for

quantifying seismic dispersion and attenuation as presented above,
all of them have simplifying assumptions. For instance, in all these

models, the fracture thickness (or fracture volume) is considered
infinitesimal. In addition, in some of them, the fracture density
should be low enough to ensure that interactions between neighbor-
ing fractures are negligible (Hudson et al., 1996; Galvin and Gur-
evich, 2006, 2007). These assumptions might not hold in real
reservoirs, which may limit the applicability of the available mod-
els. Some of the assumptions can be overcome by generalizing the
existing models, such as in the case of infinitesimal fracture thick-
ness. However, other assumptions, such as dilute fracture concen-
tration, are difficult to overcome. One way to deal with these
limitations is to test them using numerical simulations for a given
fracture distribution. Indeed, Rubino et al. (2016) proposed a
numerical upscaling approach based on Biot’s (1941) quasi-static
theory of poroelasticity to model seismic dispersion and attenuation
of rocks containing arbitrary distributions of fractures. This creates
an opportunity to test theoretical models and, in particular, the val-
idity of underlying assumptions.
To expand the applicability of the theoretical models to real frac-

tured reservoirs, two objectives are set in this paper. First, we extend
the existing models for infinitesimal-thickness fractures to the case
of fractures having finite thickness. Second, numerical simulations
are performed to explore the limits of applicability of the derived
models. Two 2D numerical rock samples with aligned fractures are
studied, one with sparse fracture distribution and the other with
dense fracture distribution. The influence of fracture thickness is
investigated by comparing the results given by the original models
and the extended ones. By contrasting the predictions of the ex-
tended models with numerical simulations, we check the correct-
ness of the former and, in addition, we assess the applicability
of the theoretical models in rocks with relatively dense fracture con-
centration. Due to the fact that the dispersion and attenuation of
P-waves in the direction perpendicular to the fracture plane are usu-
ally much larger than along the other directions (e.g., Galvin and
Gurevich, 2015), we focus our analysis on this particular wave
mode and propagation direction. In a companion paper (Guo et al.,
2017a), we will study the full stiffness matrix of porous rocks with
aligned fractures of finite thickness, which can be used to calculate
the seismic dispersion and attenuation at any angle of incidence.
Furthermore, the velocity and attenuation anisotropic properties
of such rocks will also be analyzed. The results will then be com-
pared with the corresponding numerical simulations to check the
applicability of the derived theoretical models.

THEORY

Models for fractured rocks with different fracture
geometries

In spite of the complex geometries of fractures, for simplicity,
they are usually approximated as planes of weakness or penny-
shaped cracks. If the radii of the considered fractures are much
larger than the predominant seismic wavelengths and fracture spac-
ing, the fractures can be treated as planes of weakness (Gurevich
et al., 2009). This means that, in this case, fractures can be repre-
sented by highly porous layers (Schoenberg, 1980), which can be
called planar fractures. Then, a porous rock with aligned planar
fractures can be modeled as layered porous media with infinite lat-
eral extent (Figure 1a). When a seismic wave passes through such a
fluid-saturated medium, the pore fluid will flow between the frac-
tures and the background due to the strong stiffness contrast
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between these two regions. Hence, seismic dispersion and attenu-
ation will occur and the rock effective elastic properties will become
complex-valued and frequency-dependent. If the fractures are dis-
tributed periodically in an isotropic background medium, the fre-
quency-dependent saturated P-wave modulus in the direction
perpendicular to the fracture plane csat satisfies (White et al.,
1975; Norris, 1993; Brajanovski et al., 2005)

1

csat
¼ 1

C1

þ 2ffiffiffiffiffiffiffiffi
iωη

p
H

�
αbMb
Cb

− αcMc
Cc

�
2

ffiffiffiffiffiffiffiffiffi
MbLb
Cbκb

q
cot

� ffiffiffiffiffiffiffiffiffiffiffiffi
iωηCb
κbMbLb

q
fbH
2

�
þ

ffiffiffiffiffiffiffiffiffi
McLc
Ccκc

q
cot

� ffiffiffiffiffiffiffiffiffiffiffiffi
iωηCc
κcMcLc

q
fcH
2

� ;

(1)

where Cb and Lb are the P-wave modulus of the saturated and dry
background, respectively; κb is the permeability of the background;
fb is the fraction of background with respect to the whole porous
medium; αb ¼ 1 − Kb∕Kgb is the Biot’s coefficient of the back-
ground, with Kb being the bulk modulus of the dry background
and Kgb that of the solid grains composing the background; Mb ¼
Kgb∕½ð1 − Kb∕KgbÞ − ϕbgð1 − Kgb∕KfÞ� is the Biot’s modulus of
the background, with Kf being the fluid bulk modulus and ϕbg

the porosity of the background. It is interesting to notice that αb
and Mb determine the bulk modulus increment of the background
medium due to the fluid saturation (ΔKb ¼ α2bMb). The subscript
c represents the corresponding values for the fractures. In particular,
the Biot’s coefficient and modulus for the fracture infill material are
αc¼1−Kc∕Kgc and Mc¼Kgc∕½ð1−Kc∕KgcÞ−ϕcgð1−Kgc∕KfÞ�,
respectively, withKc being the bulk modulus of the dry fracture infill
material, Kgc that of the solid grains composing the fracture infill
material, and ϕcg the porosity of the fracture infill material. In addi-
tion, C1 is the saturated P-wave modulus of the fractured medium in
the high-frequency limit of the WIFF, which is computed using the
poroelastic Backus average applied to the saturated fractures and
background medium [C1 ¼ 1∕ðfb∕Cb þ fc∕CcÞ]. The fractures
and the background are saturated with the same fluid with shear vis-
cosity η. In addition, ω is the angular frequency of the seismic wave
and H represents the spatial period, which is the total thickness of a
periodic unit (including the fractures and the background medium).
When the thickness of the planar fractures becomes infinitesimal,

equation 1 can be simplified to the following form (Brajanovski
et al., 2005; Gurevich et al., 2009):

1

csat
¼ 1

Cb
þ

ΔN

�
αbMb
Cb

− 1
�
2

Lb

h
1 − ΔN þ ΔN

ffiffiffiffiffiffi
iΩ

p
cot

�
Cb
Mb

ffiffiffiffiffiffi
iΩ

p �i ; (2)

where ΔN ¼ LbZN∕ð1þ LbZNÞ is the normal fracture weakness,
with ZN being the excess normal compliance induced by the
dry fractures, and Ω ¼ ωH2Mbη∕ð4κbCbLbÞ is the normalized
frequency.
If the radii of the fractures are comparable to or much smaller

than their spacing but much larger than the pore size, the fractures
can be treated as penny-shaped cracks, which have an oblate sphe-
roidal shape (Figure 1b). For saturated rocks containing aligned
penny-shaped cracks, the corresponding seismic dispersion and at-
tenuation due to the WIFF between the fractures and the back-
ground medium can be obtained by solving a mixed boundary

value problem for Biot’s equations of poroelasticity, which is stud-
ied by Galvin and Gurevich (2006, 2007) under the assumption that
fracture thickness is infinitesimal. The resulting equation for P-
waves propagating perpendicular to the fracture plane is an integral
equation that requires a numerical solution. However, the asymp-
totic behavior of the frequency-dependent P-wave modulus at
low and high frequencies can be expressed analytically as follows
(Galvin and Gurevich, 2006, 2007; Gurevich et al., 2009):

1

csat
¼ 1

C0

�
1þ iω

Db

2MbðCb − αbMbÞ2ð2 − 4αbgb þ 3α2bg
2
bÞa2ε

15μbgbð1 − gbÞ2C2
b

�
;

ω ≪ ωc; (3)

1

csat
¼ 1

Cb

�
1þ 2

ffiffiffiffiffiffi
Db

p
πεðCb − αbMbÞ2

LbMb

ffiffiffiffiffiffiffiffiffi
−iω

p
a

�
; ω ≫ ωc; (4)

where C0 is the P-wave modulus in the low-frequency limit;
μb is the dry background shear modulus and gb is the ratio of μb

Figure 1. Schematic representation of porous rocks with (a) aligned
planar fractures and (b) penny-shaped cracks.
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to Lb; a is the radius of the penny-shaped cracks; ε ¼ 3fc∕ð4πβÞ is
the crack density, with fc being the fraction of cracks in the
rock and β their aspect ratio; Db ¼ MbLbκb∕ðηCbÞ is the hydraulic
diffusivity of the saturated background medium; and ωc ¼ 4πDb∕a2
is the characteristic frequency for the P-wave dispersion and
attenuation.
Once the P-wave modulus csat is computed, combined with the

rock density, the phase velocity and attenuation of P-waves in the
direction perpendicular to the fracture plane can be obtained (e.g.,
Carcione, 2001).

Unified model described by branching functions

Gurevich et al. (2009) find that seismic dispersion and attenua-
tion due to the WIFF between the background and the fractures can
be presented in a unified form using the so-called branching func-
tions for rocks with aligned planar fractures and penny-shaped
cracks. Branching functions are first proposed in the context of
WIFF by Johnson (2001) to approximate the frequency-dependent
complex stiffness coefficients of porous rocks saturated with a mix-
ture of two fluids. These simple approximations, which have similar
behaviors as the asymptotic analytical solutions at low and high
frequencies and satisfy causality, turned out to be very accurate
and useful. Pride and Berryman (2003) also apply this approach
in a medium with a double-porosity structure.
To describe the frequency-dependent P-wave modulus csat in the

direction perpendicular to the fracture plane due to WIFF between
the fractures and the background, the following form of branching
function is used (Gurevich et al., 2009):

1

csat
¼ 1

C1

�
1þ

�
C1 − C0

C0

�
∕
�
1 − ςþ ς

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − i

ωτ

ς2

r ��
; (5)

where C0 and C1 are the P-wave moduli in the low- and high-
frequency limits, respectively, and ζ and τ are the parameters that
shape the dispersion and attenuation curves of the elastic coefficient.
At low and high frequencies, equation 5 has the following asymp-

totes:

1

csat
¼ 1

C0

ð1þ iωTÞ; ωτ ≪ ς2; (6)

1

csat
¼ 1

C1

�
1þ Gffiffiffiffiffiffiffiffiffi

−iω
p

�
; ωτ ≫ 1; (7)

where T and G are related to ζ and τ as follows:

τ ¼
�
C1 − C0

C0G

�
2

; (8)

ς ¼ ðC1 − C0Þ3
2C1C2

0TG
2
: (9)

Equations 6 and 7 show that seismic dispersion and attenuation
caused by WIFF between the fractures and the background is con-
trolled by the parameters T and G together with the elastic proper-
ties in the low- and high-frequency limits, C0 and C1. In the

following, we will first show a method to obtain the expressions
of T and G for the infinitesimal thickness case. These expressions
will then be extended to the finite fracture thickness case. In addi-
tion, expressions for computing the elastic properties in the low-
and high-frequency limits will also be given.

Parameters T and G for the infinitesimal fracture thickness case

For the infinitesimal fracture thickness case, Gurevich et al.
(2009) derive expressions for the parameters T and G associated
with the P-wave modulus in the direction perpendicular to the frac-
ture plane. They are obtained by comparing equations 6 and 7 with
the corresponding asymptotic analytical solutions under the limit of
infinitesimal fracture thickness. For periodically spaced planar frac-
tures, the low- and high-frequency asymptotes of equation 2 can
first be obtained. Then, comparing equations 6 and 7 with these
asymptotes yields the following expressions for T and G:

T ¼ 1

12
ðCb − C0Þ

ZNH2η

ðCb þ ZNLbMbÞκb
; (10)

G ¼ 2

H
ðCb − αbMbÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κb

ηCbMbLb

r
: (11)

If planar fractures are distributed randomly, numerical simula-
tions indicate that the seismic response at high frequencies is similar
to that for the same rock containing the fractures periodically dis-
tributed. However, they are different at low frequencies (Lambert
et al., 2006). This is due to the fact that the fluid-diffusion length
is very small at high frequencies and, hence, the distribution of the
fractures has no influence on the seismic properties. Conversely, at
low frequencies, the fluid-diffusion length is large and, thus, the
seismic dispersion and attenuation will be affected by the fracture
distributions. Accordingly, it was found that τ for the random planar
fracture case is the same with that for the periodic planar fracture
case. However, in contrast to the periodic planar fracture case, ζ
equals zero as the effective fracture spacing tends to infinity for ran-
dom distributions (Gurevich and Lopatnikov, 1995; Müller and
Rothert, 2006; Gurevich et al., 2009). Taking this into account,
the unified model (equation 5) can be simplified for the random
planar fracture case as follows:

1

csat
¼ 1

C1

þ
�

1

C0

−
1

C1

�
∕
�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
−iωτ

p �
; (12)

where τ is obtained from equation 8 with G shown in equation 11.
For sparsely distributed penny-shaped cracks, the expressions of

T andG can be obtained by comparing equations 6 and 7 with equa-
tions 3 and 4, which yields

T ¼ 2ðCb − αbMbÞ2ð2 − 4αbgb þ 3α2bg
2
bÞa2εη

15μbgbð1 − gbÞ2CbLbκb
; (13)

G ¼ 2πε

a
ðCb − αbMbÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κb

ηCbMbLb

r
: (14)
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Hence, when the fracture thickness is infinitesimal, we can ex-
press the P-wave modulus in the direction perpendicular to the frac-
ture plane using the unified model (equation 5) for the three types of
fractures considered (periodic planar fractures, penny-shaped
cracks, and randomly distributed planar fractures). For different
types of fractures, the corresponding expressions of T and G are
different, as shown above. Gurevich et al. (2009) show that the re-
sults given by the unified model are almost the same with those
calculated by the corresponding analytical solutions or numerical
simulations, which validates the accuracy of this approach.
It can be noted that for planar fractures and penny-shaped cracks,

G can be expressed in the same form as follows:

G ¼ 2SðCb − αbMbÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κb
ηCbMbLb

r
; (15)

where S is called the specific surface area of the fractures per unit
volume (Gurevich et al., 2009). For periodic fractures, S ¼ 1∕H and
for penny-shaped cracks, S ¼ πε∕a. Equation 15 implies that at
high frequencies, the fluid diffusion length is much smaller than
the fracture size and spacing, and therefore, the fluid diffusion
and energy dissipation occur in the immediate vicinity of the frac-
ture surfaces, which is controlled by the specific surface area S. This
is also supported by numerical simulations (Rubino et al., 2014).
It is important to mention here that the original equations in Gur-

evich et al. (2009) contain some typographical errors, which are
corrected in the equations presented above.

Extension to the finite fracture thickness case

The expressions of T and G given by Gurevich et al. (2009) are
for the infinitesimal fracture thickness case. However, all fractures
have finite thickness in reality, especially large joints and fracture
corridors, which have a particular significant effect on fluid flow
(e.g., Questiaux et al., 2010). Hence, it would be useful to extend
the unified model (equation 5) to the general case of finite fracture
thickness. To do so, we need to obtain the new expressions for T and
G considering the finite fracture thickness effects. For periodic pla-
nar fracture distributions, this can be done by comparing equations 6
and 7 with the low- and high-frequency asymptotes of the analytical
solution for the finite fracture thickness case (equation 1). The low-
frequency asymptote of equation 1 is as follows:

1

csat
¼ 1

C0

2
41þ iω

1

12

C1 − C0

C1

�
fb
κb
þ fc

κc

�
ηH2

MbLb
Cbfb

þ McLc
Ccfc

3
5: (16)

Comparing equation 16 with equation 6, we can obtain the expres-
sion for T for the finite fracture thickness case,

T ¼ 1

12

C1 − C0

C1

�
fb
κb
þ fc

κc

�
ηH2

MbLb
Cbfb

þ McLc
Ccfc

: (17)

On the other hand, the high-frequency asymptote of equation 1 has
the following form:

1

csat
¼ 1

C1

�
1þ 1ffiffiffiffiffiffiffiffiffi

−iω
p

2C1

�
αbMb
Cb

− αcMc
Cc

�
2

H
� ffiffiffiffiffiffiffiffiffiffi

MbLbη
Cbκb

q
þ

ffiffiffiffiffiffiffiffiffiffi
McLcη
Ccκc

q �
�
; (18)

thus giving the expression forG for the finite fracture thickness case
as follows:

G ¼
2SC1

�
αbMb
Cb

− αcMc
Cc

�
2

� ffiffiffiffiffiffiffiffiffiffi
MbLbη
Cbκb

q
þ

ffiffiffiffiffiffiffiffiffiffi
McLcη
Ccκc

q � ; (19)

where S ¼ 1∕H is the specific fracture surface area per unit volume
for the planar fractures.
If planar fractures are distributed randomly, we can obtain the

corresponding expressions for T and G by comparing with the
periodic planar fracture distribution case. Because the seismic
dispersion and attenuation at high frequencies are independent of
the fracture distribution, the parameterG for the random planar frac-
ture distribution case is the same as that for the periodic case (equa-
tion 19). At low frequencies, due to the large fluid-diffusion length,
seismic dispersion and attenuation will be affected by the fracture
distribution, thus making the parameter T for random distribution
different from that for the periodic case. As the effective fracture
spacing tends to infinity for random distribution of planar fractures,
the parameter T will tend to infinity, which corresponds to the zero
value for ζ (Gurevich and Lopatnikov, 1995; Müller and Rothert,
2006; Gurevich et al., 2009).
For penny-shaped cracks with finite thickness, due to the fact that

at high frequencies energy dissipation only occurs in the immediate
vicinity of the fracture surfaces regardless of the fracture types
(Rubino et al., 2014), it is reasonable to approximate the expression
of G for penny-shaped cracks using that for planar fractures (equa-
tion 19). However, the specific fracture surface area per unit volume
S is equal to πε∕a for penny-shaped cracks. Furthermore, it can be
noted that the properties of the fracture infill material are directly
involved in equation 19. Accounting for different geometries be-
tween penny-shaped cracks and planar fractures, and considering
that the energy dissipation amount is dominated by the compliance
contrast between the background and fractures, an equivalent frac-
ture infill material needs to be used in equation 19 for the penny-
shaped crack case with finite thickness. This equivalent infill
material has the same porosity and permeability with the original
infill material of penny-shaped cracks, but has different elastic prop-
erties as follows (Brajanovski et al., 2005):

Lc ¼
fc
ZN

; (20)

μc ¼
fc
ZT

; (21)

where ZN and ZT are the normal and tangential excess compliances
of the dry penny-shaped cracks, respectively, and Lc and μc are the
effective P-wave and shear moduli of the equivalent fracture infill
material. The values of Lc and μc can then be used to calculate the
Biot’s coefficient and modulus αc and Mc, and also the saturated
P-wave modulus Cc for the equivalent fracture infill material. The
values of G for the penny-shaped crack case can thus be obtained
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from equation 19 with the specific surface area of the penny-shaped
cracks.
At low frequencies, Galvin and Gurevich (2009) show that the

attenuation of saturated rocks with a sparse distribution of aligned
penny-shaped cracks is not sensitive to the crack thickness. Even
the differences between the attenuation for saturated rocks with
aligned penny-shaped cracks of infinitesimal thickness and that
for the rocks with spheres of the same radius are very small at
low frequencies. Because the attenuation at low frequencies is de-
termined by the parameter T as shown in equation 6, the crack
thickness should have little effect on this parameter. Hence, we
can use the same expression of T for the penny-shaped cracks with
finite thickness as that for infinitesimal thickness (equation 13).
Thus, we have extended the expressions of T and G to the case

with finite fracture thickness for rocks with planar fractures (peri-
odically or randomly distributed) and penny-shaped cracks. It can
be noted that, when the fracture thickness tends to infinitesimal,
these extended expressions will reduce to those for the infinitesimal
thickness case, which supports the goodness of our extension.

Elastic properties in the low- and high-frequency limits

The elastic properties in the low- and high-frequency limits, C0

and C1, are needed for computing the branching functions for the
infinitesimal and finite fracture thickness cases. These values can be
calculated using the linear slip theory (e.g., Schoenberg and Sayers,
1995) and Gassmann’s equations (e.g., Gassmann, 1951) regardless
of the fracture geometries (planar fractures or penny-shaped cracks)
(Gurevich, 2003; Gurevich et al., 2009). To do so, we need to obtain
the dry fracture compliances first. To include the finite fracture
thickness effect and specify different fracture geometries, we use
the full Eshelby solution instead of popular effective medium the-
ories based on penny-shaped crack geometries. Hence, the compli-
ances of the dry fractures considering finite fracture thickness effect
are calculated as follows (Sevostianov and Kachanov, 1999):

F ¼ fc½ðTc − TbÞ−1 þQ�−1; (22)

where F is the dry fracture excess compliance tensor; Tc and Tb are
the compliance tensors of the dry fracture filling material and the
dry background medium, respectively; and Q can be obtained from
the stiffness tensor of the dry background medium C and the Eshel-
by’s tensor S as follows:

Qijkl ¼ CijmnðJmnkl − SmnklÞ; (23)

where J is the unit fourth rank tensor; the expressions of Eshelby’s
tensor S are shown in Appendix A. Once F is computed, it can be
condensed into the Voigt matrix form Z0 (Nye, 1985).
For the infinitesimal fracture thickness case, there are only one

normal and two tangential nonzero dry fracture compliances,
whereas the other components of the dry fracture compliance matrix
are equal to zero (Galvin and Gurevich, 2015). Schoenberg and
Douma (1988) show that the finite fracture thickness effect on
the dry normal and tangential fracture compliances is small for
small aspect ratios (β < 0.1). Hence, for the infinitesimal fracture
thickness case, we use the same formula (equation 22) as that
for the finite fracture thickness case to calculate the dry normal
and tangential fracture compliances.

For computing the response in the low-frequency limit, we first
obtain the elastic properties of the dry fractured rock using the linear
slip theory (Schoenberg and Sayers, 1995):

Sd ¼ Sb þ Z0; (24)

where Sd and Sb are the compliance matrices of the dry fractured
rock and the dry background medium, respectively, and Z0 is the
dry fracture compliance matrix. The stiffness matrix Cd of the con-
sidered dry fractured rock can thus be obtained by taking the inverse
of Sd.
Then, the elastic properties of the saturated sample in the low-

frequency limit can be obtained using the anisotropic Gassmann
equation (Gassmann, 1951; Brown and Korringa, 1975; Gurevich,
2003) as the fluid pressure is uniform throughout the considered
rock:

csatij;lf ¼ cdij þ αiαjMd; i; j ¼ 1; : : : ; 6; (25)

where cdij is the corresponding component of Cd, α is the Biot’s
coefficient, which takes the following form:

αm ¼ 1 −
P

3
n¼1 c

d
mn

3Kg
; (26)

for m ¼ 1, 2, and 3, α4 ¼ α5 ¼ α6 ¼ 0, and Md is the Biot’s
modulus:

Md ¼
Kg

ð1 − K�
0∕KgÞ − ϕð1 − Kg∕KfÞ

: (27)

In equation 27, ϕ is the overall rock porosity and K�
0 represents

the generalized drained bulk modulus defined as follows:

K�
0 ¼

1

9

X3
i¼1

X3
j¼1

cdij: (28)

It should be noted that, for fractures with infinitesimal thickness,
fracture porosity (with respect to the whole rock) is negligible
and hence ϕ only contains the porosity of the background medium.
Conversely, for fractures with finite thickness, the fractures contrib-
ute to the overall porosity of the rock and hence ϕ includes the
porosities of the background medium and the fractures.
In the high-frequency limit, the fractures are hydraulically iso-

lated from the saturated background medium. Hence, the saturated
fractured medium can be treated as the saturated background per-
meated by the hydraulically isolated saturated fractures. The elastic
properties of the saturated background can be obtained using the
isotropic Gassmann’s equation as follows:

Ksat
b ¼ Kb þ α2bMb; (29)

μsatb ¼ μb; (30)

where Ksat
b and μsatb are the bulk and shear moduli of the saturated

background medium, respectively. The stiffness matrix of the satu-
rated background medium Csat

b can thus be calculated.
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For the case of infinitesimal fracture thickness, the compliance
matrix of the hydraulically isolated fractures Z1 has the same values
of the tangential fracture compliances as those of the dry fracture
matrix Z0. However, the normal fracture compliance reduces to zero
due to the infinitesimal fracture thickness (Galvin and Gurevich,
2015). Hence, Z1 can be obtained and the elastic properties of
the saturated rocks with aligned fractures of infinitesimal thickness
in the high-frequency limit can be calculated using the linear slip
theory as follows:

Ssathf ¼ Ssatb þ Z1; (31)

where Ssathf is the compliance matrix of the saturated fractured rocks
in the high-frequency limit, and Ssatb is the compliance matrix of the
saturated background medium, which can be obtained by taking the
inverse of Csat

b . The stiffness matrix Csat
hf of the saturated fractured

rocks can then be computed from Ssathf.
For the case with finite fracture thickness, the tangential fracture

compliances in the high-frequency limit are similar to those for the
dry fractures. However, the other nonzero components in the frac-
ture compliance matrix do not vanish but have small finite values
(Gurevich, 2003). Under this condition, the elastic properties of the
saturated fractured rock in the high-frequency limit can be obtained
as follows. First, we obtain the compliance matrix of the saturated
background medium permeated by the dry fractures S1hf using the
linear slip theory:

S1hf ¼ Ssatb þ Z0: (32)

Then, the stiffness coefficients of the saturated fractured rock csatij;hf
can be obtained by saturating the dry fractures with fluid using the
anisotropic Gassmann equation (Gurevich, 2003):

csatij;hf ¼ c1ij;hf þ α1i α
1
jM1; i; j ¼ 1; : : : ; 6; (33)

where c1ij;hf is obtained by taking the inverse of S1hf , α
1 is the cor-

responding Biot’s coefficient, which has nonzero values for i ¼ 1,
2, 3 and can be expressed as follows:

α1i ¼ 1 −
P

3
j¼1 c

1
ij;hf

3Ksat
b

; (34)

and M1 is the corresponding Biot’s modulus, which can be written
as follows:

M1 ¼
Ksat

b

ð1 − K�
1∕Ksat

b Þ − ϕcð1 − Ksat
b ∕KfÞ

; (35)

where ϕc ¼ fcϕcg is the fracture porosity with respect to the whole
rock; K�

1 is the generalized bulk modulus, which can be calculated
from equation 28 by replacing cdij with c1ij;hf .
With the expressions obtained for the parameters involved in the

branching function presented above, we can use equation 5 for com-
puting the frequency-dependent P-wave modulus in the direction
perpendicular to the fractures for infinitesimal and finite fracture
thickness cases.

NUMERICAL SIMULATIONS

An alternative approach for computing the effective seismic
properties of fluid-saturated porous rocks containing fractures con-
sists in the application of upscaling procedures based on numerical
oscillatory relaxation tests. The fractures are represented as highly
compliant, highly porous, and highly permeable heterogeneities
embedded in a much stiffer and much less porous and permeable
background. By solving the poroelastic equations under appropriate
boundary conditions, the volume average stress and strain compo-
nents in response to the applied tests are inferred for a representative
synthetic rock sample. These parameters then allow for evaluating
effective complex-valued, frequency-dependent stiffness coeffi-
cients. This kind of numerical approach does not suffer from the
limitations of the theoretical models, such as low fracture density
or infinitesimal fracture thicknes, which makes them very useful for
testing the applicability of the latter.
A defining characteristic of fractured media is that they tend to

exhibit pronounced seismic anisotropy, which, in general, cannot be
accounted for by classical isotropic upscaling approaches or their
high-symmetry anisotropic extensions (e.g., Rubino et al., 2009;
Wenzlau et al., 2010). To overcome this limitation, Rubino et al.
(2016) developed a novel upscaling approach, which allows for es-
timating the seismic properties of 2D heterogeneous fluid-
saturated porous media in the presence of generic effective
anisotropy. In this work, we use this methodology and, mainly
due to the high computational cost, we limit the analysis to 2D cases
and compare with theoretical results for the corresponding 3D sam-
ples under the plane-strain condition.
Following Rubino et al. (2016), we apply three oscillatory relax-

ation tests on a square sample that is representative of the fractured
formation of interest. First, we apply homogeneous time-harmonic
normal displacements on the top and bottom boundaries of the sam-
ple, while the lateral boundaries are confined. Because we are in-
terested in the undrained response, the fluid is not allowed to flow
into or out of the sample. Next, a similar test similar is applied, but
the normal displacements are applied on the lateral boundaries of
the sample. Finally, we apply a simple shear to the probed frac-
tured rock.
To obtain the response of the sample subjected to the relaxation

tests, we solve Biot’s (1941) consolidation equations under corre-
sponding boundary conditions. The reasoning behind this is that for
frequencies much lower than Biot’s characteristic frequency and
low enough so that the involved seismic wavelengths are much
larger than the size of the heterogeneities, WIFF is Poiseuille type
and inertial effects can be neglected. Locally, the total stress equi-
librium and Darcy’s law are then to be fulfilled simultaneously,
which in 2D and in the space-frequency domain yield:

∇ · σ ¼ 0; (36)

iω
η

κ
w ¼ −∇pf; (37)

where σ is the total stress tensor, pf is the fluid pressure, w is the
average relative fluid displacement, and κ is the rock permeability.
Next, for each kth oscillatory test described above (k ¼ 1, 2, 3),

we compute the volume averages of the strain and stress compo-
nents:
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hεkiji ¼
1

V

Z
Ω
εkijdV; (38)

hσkiji ¼
1

V

Z
Ω
σkijdV; (39)

where εij are the components of the stress tensor and Ω is the do-
main of volume V that represents the probed sample. Assuming that
the average behavior of the probed fractured rock can be repre-
sented by an equivalent homogeneous anisotropic viscoelastic solid,
the average strain and stress components can be related through a
complex-valued frequency-dependent equivalent Voigt stiffness
matrix C:

0
@ hσk11i

hσk22i
hσk12i

1
A ¼

0
@C11 C12 C16

C12 C22 C26

C16 C26 C66

1
A
0
@ hεk11i

hεk22i
h2εk12i

1
A: (40)

Equation 40 holds for the three oscillatory tests described above.
Therefore, we establish nine equations, and the six unknown
stiffness coefficients are computed using a classic least-squares
algorithm.
It is important to note here that because we only consider the

seismic dispersion and attenuation due to the WIFF between the
fractures and the background medium, the theoretical predictions
and the numerical simulations are only valid in the frequency range
that is much lower than the Biot’s characteristic frequency ωB.
It means the effect of the inertial forces is negligible and the WIFF
is Poiseuille flow. In addition, the frequencies are also low enough
so that the seismic wavelength is much larger than the size of the
heterogeneities, which ensures that the effective medium approach
is still valid. Hence, for the frequency range considered in this pa-
per, low frequencies refer to the frequencies at which the fluid pres-
sure in the fractures has enough time to equilibrate with that in the
background medium within a half-wave cycle. Conversely, high
frequencies mean that there is not sufficient time during a half-wave
cycle for fluid-pressure communication between the two regions.

COMPARISON BETWEEN THEORETICAL
PREDICTIONS AND NUMERICAL SIMULATIONS

Parameters of the investigated sample

We first study one synthetic 2D rock sample with low fracture
density, as shown in Figure 2a. It is a square rock of 16 cm side-
length and contains four parallel regularly distributed fractures, that
is, the fracture density considered in this case is approximately 0.06.
The coordinate system is chosen such that the fractures are parallel
to the x-axis and perpendicular to the y-axis (Figure 2). The length
of the sample along the z-axis is long enough to make sure that the
normal and shear strains along this direction are negligible com-
pared with those along the x- and y-axes. Thus, the plane-strain con-
dition is satisfied, which simplifies the 3D problem into a 2D
problem.
The properties of the background medium are as follows (Rubino

et al., 2015): grain bulk modulus Kgb ¼ 37 GPa, dry background
bulk modulus Kb ¼ 26 GPa, shear modulus μb ¼ 31 GPa, porosity
ϕbg ¼ 0.1, and permeability κb ¼ 10−4 mD (10−19 m2). The frac-
tures and the embedding background are fully saturated with water,
with bulk modulus Kf and viscosity η of 2.25 GPa and 0.001 Pa.s,
respectively. The fractures have elliptical shapes in the x-y plane,
and they are represented with a highly porous and permeable
material, with a major axis (length) dc of approximately 4 cm
and a minor axis (aperture) hc of 0.06 cm. The bulk and shear
moduli of the dry porous fracture infill material, Kc and μc, are
0.04 and 0.02 GPa, respectively, which are obtained from a drained
normal compliance ηN of 10−11 m∕Pa and a shear compliance ηT of
3 × 10−11 m∕Pa for a compliant fracture in a “typical” sandstone
(Nakagawa and Schoenberg, 2007). The permeability κc of this
highly porous infill material is taken to be 100 D (10−10 m2),
and its porosity ϕcg is 0.8. It should be noted that the permeability
given here is much lower than that given by the cubic law for the
considered fracture parameters (Witherspoon et al., 1980), which is
consistent with the fact that fractures are not entirely empty and

Figure 2. Two-dimensional synthetic rock samples investigated.
(a) Sample with four parallel fractures. (b) One realization of sam-
ples with 20 parallel fractures randomly distributed.

WA56 Guo et al.

D
ow

nl
oa

de
d 

01
/2

9/
18

 to
 1

68
.9

6.
25

5.
10

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



their walls are not smooth. We assume that the physical properties
of the solid grains composing the fracture infill material are similar
to those of the background, thus having the same bulk modulus of
37 GPa.
It should be noted here that, when performing the numerical sim-

ulations, the fractures are fully characterized by the physical proper-
ties of the infill material described above. However, due to the
differences between the geometries of the planar and elliptical frac-
tures, an effective fracture infill material has to be considered when
using the theoretical predictions for comparisons with the numerical
simulations. To do this, first we compute the normal and tangential
excess compliances of the dry fractures, ZN and ZT , using equa-
tions 22 and 23 with the Eshelby tensor for an elliptical cylinder
(infinite height along the z-axis) (shown in Appendix A). Then,
the effective elastic properties of the fracture infill material can
be calculated using equations 20 and 21. The obtained values
are then used in the theoretical predictions of the planar fracture
and penny-shaped crack models. The use of these effective proper-
ties allows the comparison between the theoretical and numerical
results.
It is also important to notice here that, because the dry fracture

compliances are related to the elastic properties of the background
medium and the material infilling the fractures (equations 22 and
23), the effective elastic properties of the fracture infill material
in the theoretical model defined by equations 20 and 21 will depend
on the properties of the background and of the fracture infill
material.
Furthermore, the specific surface area S of the 2D fractures is also

needed in the theoretical predictions and can be obtained according
to its definition as follows:

S ¼ 4fc
πhc

: (41)

Using this value of S, the effective distance between the fractures H
can also be calculated according to the expression of the specific
surface area for the planar fractures (S ¼ 1∕H). In addition, the
fracture density for the 2D sample is defined as follows (e.g.,
Kachanov and Sevostianov, 2005):

ε ¼ na2

A
; (42)

where n is the total fracture number of the 2D sample, a is the major
radius of the elliptical 2D fractures, and A is the area of the sample.
Thus, using these properties of the 2D fractures (effective elastic

properties, specific surface area, and fracture density), combined
with the other known parameters of the sample stated above, the
theoretical dispersion and attenuation of the P-wave modulus in
the direction perpendicular to the fracture plane csat (or the compo-
nent C22 in the stiffness matrix of the 2D sample) can be calculated
for the three considered fracture geometries (periodic planar frac-
tures, randomly spaced fractures, and penny-shaped cracks).

Results and comparison

Numerical simulation results

Using the numerical upscaling procedure described above and
the parameters of the sample, we compute the frequency-dependent

stiffness coefficients. Here, we define the variation of the real part as
the dispersion of the stiffness cofficients and the absolute value of
the ratio of imaginary part to the corresponding real part as the at-
tenuation of the stiffness coefficients. The numerical simulation re-
sults show that the coefficients C16 and C26 are negligibly small
compared with the other four coefficients C11, C12, C22, and
C66. Thus, we only analyze these four coefficients (C11, C12, C22,
and C66), as shown in Figure 3. Because the considered fractures are
normal to the y-axis, the dispersion and attenuation for C22 are
much larger than for the other three coefficients. The values of
the other three coefficients keep nearly constant with the frequen-
cies. Their corresponding attenuation is also negligible, especially
for C11. Furthermore, it can be clearly seen from C22 that the stiff-
ness coefficients reach the low- and high-frequency limits at ap-
proximately 10−4 and 10 Hz, respectively. The low-frequency
limit means that the fluid pressure is uniform throughout the sam-
ple, whereas the high-frequency limit indicates that no fluid flow
occurs at such frequencies and the fractures are hydraulically

Figure 3. (a) Dispersion and (b) attenuation of the stiffness coef-
ficients given by the numerical simulations for the sample with four
parallel fractures.
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isolated from the background medium. It should be noted that, be-
cause the characteristic frequency for the fluid flow between the
fractures and the background medium is proportional to the back-
ground permeability (e.g., Gurevich et al., 2009; Guo et al., 2017b),
the high frequencies here are actually small compared with the seis-
mic frequency band due to the low background permeability of the
sample (10−4 mD).
Comparing the shape and characteristic frequency of the attenu-

ation for the four stiffness coefficients, it can be found that they are
similar to each other. This is due to the fact that the induced fluid
flow between the fractures and the background is normal to the frac-
tures due to its low velocity, and, hence, all the frequency-depen-
dent stiffness coefficients are controlled by the same relaxation
function (Krzikalla and Müller, 2011; Galvin and Gurevich, 2015;
Kong et al., 2017). For this reason and the fact that the dispersion
and attenuation of C22 are much higher than those for the other three

coefficients, in this paper, we focus on explorying the characteristics
of the coefficient C22 obtained from the theoretical predictions and
numerical simulations. The full stiffness matrix and the anisotropic
properties of fractured rocks will be considered in a companion
paper.

Effects of finite fracture thickness

To analyze the effects of the finite thickness of fractures, we com-
pare the results obtained using the original unified model (consid-
ering the fracture thickness as infinitesimal) and the extended
unified model (considering the finite fracture thickness effect), as
shown in Figure 4. To validate the accuracy of the extended unified
model, we also show the results given by the analytical solution for
rocks with periodically spaced planar fractures of finite thickness
(equation 1). It can be seen that they are almost the same with
the corresponding results calculated by the extended unified model
proposed in this paper. For the other two types of fractures (ran-
domly spaced planar fractures and penny-shaped cracks), although
we do not have the corresponding analytical solutions, the accuracy
of the extended unified model can be verified through its relations
with the periodic planar fracture case and also by comparison with
the numerical simulations in the following section.
For the dispersion of C22, Figure 4a indicates that at low frequen-

cies, the response is not highly sensitive to the finite thickness of the
fractures. More in detail, we observe that the infinitesimal fracture
thickness model provides slightly higher values of C22 compared
with those for finite thickness. However, the discrepancies are rather
negligible. This is due to the fact that the fracture porosity is small
(only 0.0037) and, thus, its contribution to the rock overall porosity
is negligible. This, in turn, implies that when using the anisotropic
Gassmann’s equation to saturate the dry rocks in the low-frequency
limit, ignoring this small fracture porosity merely increases the re-
sulting modulus slightly. However, at high frequencies, the situation
is drastically different. The influence of this small fracture porosity
(or finite fracture thickness) becomes significant, and the values of
C22 for the infinitesimal fracture thickness models get higher than
those corresponding to finite thickness fracture models. The reason
is that even a small fracture porosity will result in a nonzero fracture
normal compliance in the high-frequency limit, which can signifi-
cantly decrease the value of C22. Hence, the effects of the small
fracture porosity (or the finite fracture thickness) cannot be ignored
at high frequencies. In this context, it is important to notice that in
the case of low-permeability backgrounds, for frequencies within
the seismic band, there is no time for fluid-pressure exchange be-
tween this region and the fractures. This implies that the seismic
properties are given by the corresponding high-frequency limits,
which, according to our results, can be significantly affected by
the finite thickness of the fractures. The incapability of the existing
models for dealing with these situations may therefore have impor-
tant implications in the seismic characterization of low-permeability
reservoirs containing fractures.
A comparison of the attenuation of C22 given by the theoretical

models with and without considering the finite fracture thickness
effects is shown in Figure 4b. We observe that the influence of
the finite fracture thickness on attenuation at low frequencies is
small for all the fracture types considered, which is consistent with
the observations of Galvin and Gurevich (2009). However, at high
frequencies, the attenuation for finite thickness fractures is lower
than that for infinitely thin fractures, which is consistent with

Figure 4. (a) Dispersion and (b) attenuation of C22 calculated using
the unified model for the sample with four parallel fractures. Note
that the solid lines are the results provided by the extended unified
model (for fractures with finite thickness), whereas the dashed lines
indicate the ones corresponding to the original unified model (for
fractures with infinitesimal thickness). To validate the accuracy of
the extended unified model, the results given by the analytical sol-
ution for the periodic planar fracture case with finite thickness
(equation 1) are also shown.
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the lower dispersion of C22 at high frequencies observed for frac-
tures of finite thickness (Figure 4a). It is important to note that the
attenuation for the three types of fractures merge together at high
frequencies (Figure 4b). This is due to the fact that the energy dis-
sipation at high frequencies only occurs in the immediate vicinity of
the fracture surfaces. For the three types of fractures considered in
the extended unified model, we use the same specific fracture sur-
face area obtained from the real fracture geometry of the sample
(equation 41). Hence, the attenuation for the three types of fractures
becomes the same at high frequencies. In summary, the finite frac-
ture thickness has small influence on the dispersion and attenuation
of the stiffness coefficients of fractured rocks at low frequencies.
However, this effect becomes significant at high frequencies.

Theoretical predictions versus numerical simulations

To compare the theoretical predictions of the extended model and
the results of the numerical simulations, we consider two cases that
have low and relatively high fracture densities, respectively (Fig-
ure 2). For the low fracture density case, we use the sample with
four regularly distributed parallel fractures, which has a fracture
density of 0.06. The properties of this sample are presented above.
For the high fracture density case, we consider a set of samples that
have dimensions of 20 × 20 cm and contain 20 parallel fractures
randomly distributed. Each sample corresponds to one realization
of a random fracture distribution of interest (Figure 2b). By consid-
ering 20 realizations of the random fracture distributions in the
numerical simulations, the standard deviations of the P-wave
moduli C22 as functions of the number of realizations become
nearly constant at the low and high frequencies. Hence, we can take
the mean value of the P-wave moduli C22 of these 20 samples to
represent the results of numerical simulations for the random frac-
ture distribution case with relatively high fracture density (0.20).
The other properties of these samples remain the same as for the
sample with four parallel fractures. This case allows us to study
the influence of fracture interactions on the seismic signatures as
well as the applicability of the extended model under high fracture
density conditions.
The results of the numerical simulations and the theoretical pre-

dictions are shown in Figure 5. It is found that the theoretical pre-
dictions given by the penny-shaped crack model match the
numerical simulation results best for both cases. This is expected
because the shape of the 2D cracks is closer to that of penny-shaped
cracks. At high frequencies, good agreement can be found between
the theoretical predictions of the penny-shaped crack model and the
numerical simulations, even for the case with 20 fractures. How-
ever, we observe some small discrepancies at low frequencies,
which are probably due to fracture interactions. This is supported
by the normal stress distributions computed in the low- and high-
frequency limits (approximately 10−4 and 10 Hz, respectively) in
response to the vertical numerical relaxation test, as shown in Fig-
ure 6 for the sample with four fractures. In the low-frequency limit,
we can observe some overlap between the stress shielding zones
(blue) of adjacent fractures, indicating the interactions between
the fractures. However, in the high-frequency limit, due to the di-
minished stiffness contrast between background and fractures, the
overlap between the stress shielding zones tends to vanish, and
therefore, there are nearly no interactions between the fractures.
This result conforms with the findings of Milani et al. (2016). Thus,
we can see the good agreement between the theoretical predictions

Figure 5. Numerical simulation results of dispersion and attenua-
tion of C22 and those predicted by the extended theoretical models.
Panels (a) and (b) show the dispersion and attenuation, respectively,
for the case with low fracture density (the sample with four parallel
fractures), whereas Panels (c) and (d) include the corresponding re-
sults for the case with high fracture density (mean value of 20 real-
izations of samples with 20 randomly-distributed parallel fractures).
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and the numerical simulations at high frequencies, but some small
discrepancies are observed at low frequencies.
It can be noticed that, even for the case with relatively high

fracture density (0.20), the discrepancies between the theoretical
predictions and the numerical simulations are small. Indeed,
Grechka and Kachanov (2006) carry out several numerical simula-
tions for rocks with dense fracture densities and compared the re-
sults with the noninteractive theoretical approach to study the
effects of fracture interactions. They find that, in rocks with random
distributions of fractures, the influence of fracture interactions is
rather small due to the cancellation of the competing effects of stress
shielding and amplification. This implies that the noninteractive
approach is still valid even for rocks with relatively high fracture
densities. For the case with relatively high fracture density (0.20)
investigated in this paper, due to the random distribution of the frac-
tures, the stress shielding and amplification effects can be effec-
tively canceled out, which results in the overall good agreement

observed between the theoretical predictions of the noninteractive
penny-shaped crack model and the numerical simulation results.

CONCLUSION

The objective of this work was to improve the applicability of
theoretical models in the prediction of seismic dispersion and at-
tenuation in reservoirs with aligned fractures. To do so, we extended
the existing unified theoretical model for three fracture types,
namely, periodically and randomly distributed planar fractures and
penny-shaped cracks, to the case of finite fracture thickness for
P-waves propagating perpendicular to the fracture plane. In addi-
tion, we carried out numerical simulations to explore the validity
of the extended unified theoretical model for given fracture configu-
rations. Two 2D rock samples with aligned fractures were studied,
one with low fracture density (0.06) and the other with relatively
high fracture density (0.20). The results show that the influence
of fracture thickness on seismic dispersion and attenuation is rather
small at low frequencies. However, it gets significant at high
frequencies. This is an important result that should be taken into
account when characterizing low-permeability formations contain-
ing fractures, for which the seismic properties typically correspond
to the high-frequency limit of the involved WIFF mechanism.
Comparing theoretical predictions of the extended models with

the corresponding numerical simulations, it is found that the penny-
shaped model matches the numerical simulation results best.
Furthermore, the study indicates that this theoretical model is appli-
cable even in the case of rocks with relatively high fracture density.
Analyses of stress distributions in response to numerical vertical
relaxation tests suggest that the small discrepancies observed be-
tween the theoretical predictions and the numerical simulations
are probably due to fracture interactions.
Due to the very high computational cost of 3D numerical sim-

ulations, in this paper, we compared the predictions of a 3D theo-
retical model with 2D numerical results. However, the current
computational capabilities allow us to consider the simple case of
a regular distribution of penny-shaped cracks embedded in a 3D
sample. In this case, we observe good agreement between the theo-
retical predictions and the numerical simulations, which suggests
the applicability of the theoretical model in the 3D context. An ex-
haustive 3D analysis will be carried out in the future with improved
computational capabilities. Moreover, the good agreement of our
3D theoretical model with the results of the 2D numerical simula-
tions itself has indicated the robustness of the former. This implies
the wide application scope of our theoretical model in the context of
seismic characterization of fractured reservoirs.
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APPENDIX A

ESHELBY TENSOR

The Eshelby tensor Smnkl for an ellipsoidal inclusion embedded
in an infinite elastic background can be found in Mura (1987, sec-
tion 11, page 80), which was derived by Eshelby (1957). Assuming
the radii of the ellipsoidal inclusion along the x-, y-, and z-axes are

Figure 6. Spatial distribution of the real part of the normal stress in
response to the vertical numerical relaxation test for the sample with
four fractures. The upper and lower panels correspond to the low-
and high-frequency limits (approximately 10−4 and 10 Hz), respec-
tively. The values are normalized by the average stress and, hence,
values smaller than one represent stress shielding and those larger
than one represent stress amplification.
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a1, a2, and a3, respectively, and the Poisson’s ratio of the elastic
background is ν, the Eshelby tensor for elliptic cylinder
(a3 → ∞) and penny-shaped cracks (a1 ¼ a2 ≫ a3) are as follows:
Elliptic cylinders (a3 → ∞):

S1111 ¼
1

2ð1 − νÞ
	
a22 þ 2a1a2
ða1 þ a2Þ2

þ ð1 − 2νÞ a2
a1 þ a2



;

(A-1)

S2222 ¼
1

2ð1 − νÞ
	
a21 þ 2a1a2
ða1 þ a2Þ2

þ ð1 − 2νÞ a1
a1 þ a2



;

(A-2)

S3333 ¼ 0; (A-3)

S1122 ¼
1

2ð1 − νÞ
	

a22
ða1 þ a2Þ2

− ð1 − 2νÞ a2
a1 þ a2



; (A-4)

S2233 ¼
1

2ð1 − νÞ
2νa1

a1 þ a2
; (A-5)

S3311 ¼ 0; (A-6)

S1133 ¼
1

2ð1 − νÞ
2νa2

a1 þ a2
; (A-7)

S2211 ¼
1

2ð1 − νÞ
	

a21
ða1 þ a2Þ2

− ð1 − 2νÞ a1
a1 þ a2



; (A-8)

S3322 ¼ 0; (A-9)

S1212 ¼
1

2ð1 − νÞ
	

a21 þ a22
2ða1 þ a2Þ2

þ 1 − 2ν

2



; (A-10)

S2323 ¼
a1

2ða1 þ a2Þ
; (A-11)

S3131 ¼
a2

2ða1 þ a2Þ
: (A-12)

For the other components, they can be obtained by using the fol-
lowing relations:

Smnkl ¼ Snmkl ¼ Smnlk: (A-13)

Penny-shaped cracks (a1 ¼ a2 ≫ a3)

S1111 ¼ S2222 ¼
13 − 8ν

32ð1 − νÞ π
a3
a1

; (A-14)

S3333 ¼ 1 −
1 − 2ν

1 − ν

π

4

a3
a1

; (A-15)

S1122 ¼ S2211 ¼
8ν − 1

32ð1 − νÞ π
a3
a1

; (A-16)

S1133 ¼ S2233 ¼
2ν − 1

8ð1 − νÞ π
a3
a1

; (A-17)

S3311 ¼ S3322 ¼
ν

1 − ν

�
1 −

4νþ 1

8ν
π
a3
a1

�
; (A-18)

S1212 ¼
7 − 8ν

32ð1 − νÞ π
a3
a1

; (A-19)

S1313 ¼ S2323 ¼
1

2

�
1þ ν − 2

1 − ν

π

4

a3
a1

�
: (A-20)

The other components can be obtained using equation A-13. For
the other specific shapes, the corresponding Eshelby tensor is given
in Mura (1987, section 11, page 80).
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