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ABSTRACT
Predicting the potential distribution of harmful species to agriculture, livestock and forestry
is decisive to prevent their impacts, especially when these are expanding their range due to
global change. Recent advances in species distribution modelling (SDM) have made these
tools widely used for biosecurity studies. We reviewed the available literature of SDM for
pest, weeds, pathogen species and biological-control agents, with the aims of synthesizing
and quantifying the available information, and identifying gaps in the knowledge and future
perspectives. SDMs for 420 species were collected from 220 publications. Insect pests were
the most frequently studied organisms. CLIMEX and MaxEnt were the most commonly used
modelling tools, while pure mechanistic approaches were rarely applied. Most studies cov-
ered broad scales, and focused on predicting the distribution of invasive species and/or the
effects of climate change. The challenge remains for models to include disturbance, resource
availability, and biotic factors, as well as to better quantify uncertainty. This future directions
will be fundamental to improve the predictive power of SDMs for productive systems in the
context of a rapidly changing World.
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Introduction

Agricultural, livestock and forestry systems around
the world are threatened by growing numbers of
pests and pathogens (Crowl et al. 2008; Aukema
et al. 2011; Bebber et al. 2014). Human activities are
largely responsible for changes in the distribution
range of many species during the last centuries.
Increasing global trade and human movement, as
well as increased accessibility to new sources of spe-
cies pools, has remarkably accelerated the rate of
introductions of non-natives around the world
(Everett 2000; Levine & D’Antonio 2003; Seebens
et al. 2018). The geographic extent of invasions and
the proportion of non-native species in different
biotas are unprecedented and affect all continents
simultaneously (Ricciardi 2007), promoting a pro-
cess of biotic homogenization through which local
specialist species are displaced by global generalists
(McKinney and Lockwood 1999). Although not
every non-native species has negative impacts in the
invaded habitat, the establishment of some can
bring about notorious damage to humans, and are
so termed pests, weeds or pathogens (Bebber
et al. 2014).

Climate change and other components of global
change such as land use change can also affect

species distribution (both native and non-native)
and resource dynamics. There is ample evidence
that recent climatic changes have affected a broad
range of organisms with diverse geographical distri-
butions (Walther et al. 2002). In particular, increases
in temperature have been found to cause significant
range shifts toward higher latitudes and higher ele-
vations (Chen et al. 2011). Land use change, on the
other hand, has also promoted important shifts in
species distribution through habitat modification.
Range expansion of native and non-native generalist
herbivores are typically favored by extensive crops
which are based mainly on species and varieties
selected for increased yield (Bebber et al. 2014). In
sum, land use and climate changes interact with
human transportation networks to accelerate the
range expansion of pest, pathogens and weed species
worldwide (Dukes and Mooney 1999; Crowl et al.
2008; Rassati et al. 2018). As a result, the invasion
of non-native damaging species as well as range
shifts of native ones, represent two of the most
important issues concerning international biosecur-
ity planning and pest management (Dukes et al.
2009; Ramsfield et al. 2016).

Predicting the potential distribution of both
native and non-native species that threaten food
security is crucial to prevent or mitigate their
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economic and ecological impacts (Venette et al.
2010; Eyre et al. 2012; Sutherst 2014). While pest,
weed and pathogen management and/or eradication
is essential once species have established, there is
consensus in that prevention is the most cost-effect-
ive way to avoid conflicts with human interests and
ecosystem services (Eyre et al. 2012; Kriticos 2012;
Sutherst 2014). The prediction of the potential dis-
tribution of species is very useful in different stages
of pest/weed risk assessment: (a) can help allocate
and optimize tools and resources in border surveil-
lance, by understanding where a given non-native
species is most likely to establish; (b) can help
understand where non-natives that have already
established could spread to, or for native species, if
they can shift their distribution range under global
change scenarios and so help focus -monitoring and
cross-border surveillance efforts (Kriticos 2012;
Poland and Rassati 2018); and (c) can help identify
climatically suitable regions (and/or suitable bio-
types) in which biological control agent releases are
more likely to succeed (Robertson et al. 2008).

Recent advances in statistical and mathematical
tools, and the development of large databases, have
made species distribution modelling easier, faster,
and more widely used by biosecurity researchers
and practitioners (Sutherst 2014). Species distribu-
tion models (SDMs) aim to predict potential species
distributions by matching species’ environmental
preferences with conditions in physical space
(Guisan and Zimmermann 2000). There are two
main approaches to SDMs, which can be broadly
characterized as: (a) correlative models, which use
statistical relationships between the known species
distribution and environmental (often climatic) vari-
ables to estimate the suitability of other sites based
on their similarity to regions where the species
already exists (Elith and Leathwick 2009), and (b)
mechanistic models, that use eco-physiological
information, describing organismal responses to
environmental conditions that can either be deter-
mined experimentally or inferred from known dis-
tributions (Kearney and Porter 2009). In both cases,
geographic areas are classified as being more or less
suitable for species establishment. Although much
debate has been made about the advantages and dis-
advantages of each approach (Kriticos et al. 2013;
Schymanski et al. 2013), both have their strengths
and weaknesses, which need to be understood and
appreciated (Dormann et al. 2012; Bebber 2015). In
this sense, mechanistic or process-based distribution
models are less limited than correlative models in
their biological realism and their transferability to
novel environments, although they often demand a
large number of parameters to be estimated, many

requiring data of limited availability at often high
spatiotemporal resolution (Dormann et al. 2012).

There is a substantial body of literature assessing
the potential distribution of numerous pest, patho-
gen, and disease vector species, as well as their bio-
logical control agents; in different crops, livestock
and forestry systems; at different scales; and under
different scenarios of climate and land-use change,
with the general purpose of extrapolating risks to
the biosecurity sector. Here, we review these studies,
with the aim of synthetizing, describing and quanti-
fying, the main studied taxa, the affected systems,
the methods used to model species distribution, the
location, extent, and temporal scale of the studies,
and other general patterns. We discuss the state of
the art in the use of SDMs for agricultural, livestock
and forestry pest risk assessment, identifying gaps in
the knowledge, standing challenges and future
perspectives.

Methods

Data collection

We conducted a systematic search for papers pub-
lished since the early days until 2017 that used
SDMs to predict the distribution of species regarded
as pests (Kingdom Animalia), weeds (Kingdom
Plantae), disease vectors (species of any taxa able to
act as vector of human or livestock diseases) or
pathogens (Kingdom Fungi, Bacteria, Virus or
Chromista) of agriculture, forestry or livestock sys-
tems, as well as on the biological control agents to
manage some of these harmful species. The search
included native and non-native species, that are pre-
sent in a given region but have a limited distribu-
tion, or non-native species that are not yet present
in an area of concern. The databases used to search
for publications were Scopus (https://www.scopus.
com) and Google Scholar (https://scholar.google.
com/). We used different combinations of the key
words ‘‘species distribution model”, “niche mod-
elling”, “pest risk assessment”, “pest”, “pathogen”,
“weed”, “disease vector”, “biological control” in the
searches. We included in the review only peer-
reviewed journal articles published in English. It
must be noted here that there is a limited number
of papers published in languages other than English,
which were not considered in our analysis.

From the extensive set of documents found, we
used two specific criteria to determine whether the
reference was appropriate for this review. Criteria
for inclusion of articles were that the study: (1)
explicitly modeled the distribution of one or more
species using a niche-based distribution model
approach, defined as the process of using computer
algorithms to predict the distribution of species in
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geographic space, by relating data on species occur-
rence or eco-physiology to environmental informa-
tion, and (2) included species have been found to be
harmful to agricultural crops, forestry systems, or
livestock systems; or are used as biological control
agents of any of these species.

Data processing and analysis

For each paper we recorded information about the
publication itself (authors, year of publication, jour-
nal, volume and number of pages), the niche-based
model/s used to predict species distribution
(Climex, Maxent, GLM, BIOCLIM, DOMAIN, etc.),
the modelling approach (correlative, semi-mechanis-
tic, mechanistic), the predictive variables used in
the SDM (temperature, precipitation, relative
humidity, topology, land cover, soil and geology,
landscape configuration, human population), the
source of the climatic variables (WorldClim,
Climond, Climex, local data bases, etc.), the loca-
tion (region where species distribution was pre-
dicted) and the extent of the study area (surface
area in km2, as well as in terms of political boun-
daries: global, inter-continental, continental, sub-
continental, national, regional or local), the species
distribution range used for the construction and for
the projection of the model (native or non-native
range), the method and dataset used to evaluate the
model, and the temporal scale of the prediction
(current conditions, future or past conditions). The
list of the reviewed articles is available in
Supplemental Online Material 1, and the complete
database of article characteristics is available in
Supplemental Online Material 2.

Additionally, for each studied species we
recorded the taxonomic information (kingdom,
class, order, family, genus and species), the number
of articles that predicted its distribution, the species
type (pest, pathogen, disease vector, weed, biological
control agent), the affected crop or productive sys-
tem (cereals, vegetables, fruits, legumes, pastures,
forestry, ornamentals, vegetal fibers, oilseeds, live-
stock, apiculture). The complete data base of studied
species information is available in Supplemental
Online Material 3.

To assess how variability within the articles was
explained by the damaging species category and the
modelling approach, we employed a multivariate
approach that calculated the distance between cat-
egorical variables. We used correspondence analysis
(CA) to summarize the dataset in two-dimensional
of orthogonal axes. CA employs a double trans-
formation ensuring that all elements present are
similarly correlated with the ordination axes
(Manly 1994), unlike many other ordination

techniques (e.g., PCA). We first built a contingency
table of the counts at each combination of factor
levels for damaging species category and the model-
ling approach. Then, we performed the correspond-
ence analysis, using the “ca” function from ca
package (Nenadic and Greenacre 2007) in R (R-
Core-Team 2017).

Results

General patterns

In total, we collected information on SDMs for 420
species, from 220 publications (Supplemental Online
Material 2 and 3). The first articles were published
in the late 1980s, and after then we note an expo-
nential growth in the number of publications, where
75% of the articles were published during the last
eight years (2010–2017, Figure 1). Among the total
publications we recorded, 185 where focused on
only one species, 25 analyzed between two and five
species, and 11 articles studied more than
five species.

Studied organisms

From the 420 studied species, 327 where classified
as pests, 33 as pathogens, 25 as weeds, 18 as disease
vectors, and 17 as biological control agents (Figure
2a). The studied species comprised a wide range of
taxa, dominated by Animalia (86%), from which the
majority where Insecta (79%); Fungi (7%), Plantae
(6%), and Chromista, Bacteria and Virus (1%).
Among the 330 insect species, the most common
order was Coleoptera (40%), followed by
Hymenoptera (16%), Lepidoptera (14%), Hemiptera
(12%), and Diptera (8%). The most commonly
studied species were: Bactrocera dorsalis (Diptera:
Tephritidae, 8 articles), Ceratitis capitata (Diptera:
Tephritidae, 5 articles), Leptinotarsa decemlineata
(Coleoptera: Chrysomelidae, 5 articles), Ostrinia
nubilalis (Lepidoptera: Crambidae, 5 articles),
Phenacoccus solenopsis (Hemiptera: Pseudococcidae,
5 articles), Cydia pomonella (Lepidoptera:
Tortricidae, 4 articles), Diabrotica virgifera
(Coleoptera: Chrysomelidae, 4 articles), Helicoverpa
armigera (Lepidoptera: Noctuidae, 4 articles),
Lymantria dispar (Lepidoptera: Lymantriidae, 4
articles), Phytophthora ramorum (Peronosporales:
Peronosporaceae, 4 articles), Rhagoletis pomonella
(Diptera: Tephritidae, 4 articles). The most com-
monly affected systems by the 420 studied species
were forestry systems (46%), fruit crops (39%), vege-
table crops (38%), cereal crops (30%), and ornamen-
tals (19%; Figure 2b).
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SDMs approaches

We found that 33 different niche-based model
approaches were used among the 220 articles. The
most frequently used methodologies were, CLIMEX
(57%), MaxEnt (35%), GLM (5%), GARP (5%) and
BRT (4%; Table 1). It should be consider, that the
frequency of use among methodologies is influenced
by the date each model was released. In this sense,
MaxEnt is the most recently developed one (in
2006) among the named methodologies, and has
really taken over as the predominant correlative
method since its creation. When comparing the

modelling tools in terms of correlative or mechanis-
tic approaches we found that semi-mechanistic
approaches were the most frequently used ones
(56% of the articles), followed by correlative models
(43% of the articles), while only a few articles used
mechanistic approaches (3% of the articles;
Figure 3a).

The first dimension of the correspondence ana-
lysis for Category and Modelling approach explain
the 85.1% of the variability (inertia) and the second
the 13.8% (Figure 4). We found that mechanistic
modelling approaches are related with disease

Figure 2. Number of species studied in the reviewed articles per (a) category; (b) affected productive system.

Figure 1. Number of articles per year modelling the distribution of damaging species of agriculture, livestock and forestry
systems. The grey line shows smoothed data.
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vectors, correlative approaches with pests, and semi-
mechanistic approaches with weeds, pathogens and
biological control agents. We found a significant
relationship between the modelling approach (in the
case of studies that used correlative or semi-mech-
anistic approaches), and the species category
(X2¼ 11.534, df¼ 4, p-value¼ 0.02).

Range and time of models construction
and prediction

Most of the analyzed articles used species distribu-
tion occurrence information to build the models
(87%), while 13% were based only on species eco-
physiological information. Among the articles that

Table 1. Number of articles reviewed per niche-based modelling method. The modelling approach
of each method is described.
Niche-based modelling methods Modelling approach N� articles

Climex Semi-mechanistic 125
MaxEnt Correlative 78
Generalized linear model (GLM) Correlative/Mechanistic 10
Genetic Algorithm for Rule Set Production (GARP) Correlative 10
Boosted regression trees (BRT) Correlative 9
Generalized Additive Models (GAM) Correlative 6
Decision tree analysis Correlative 4
BIOCLIM Correlative 5
Ecological Niche Factor Analysis (ENFA) Correlative 3
Artiphicial neural network Correlative 3
Multivariate adaptive regression splines (MARS) Correlative 3
Random forests Correlative 3
Climate Space Model Correlative 2
Envelope Score Correlative 2
Environmental Distance Correlative 2
DOMAIN Correlative 2
Flexible discriminant analysis Correlative 2
Surface range envelopes Correlative 2
Fuzzy multi-criteria evaluation Correlative 2
Mahalanobis Distance and Domain Correlative 1
Niche mosaic Correlative 1
Support Vector Machines Correlative 1
Back propagation neural network Correlative 1
Logistic regression Correlative 1
Multi- Model Framework Correlative 1
Physiologically based demographic model Mechanistic 1
ECAMON Mechanistic 1
Insect Life Cycle Model Mechanistic 1
Thermal niche suitability index Mechanistic 1
Raster classification Mechanistic 1
BioSIM Mechanistic 1

Figure 3. Number of articles per (a) modelling approach, S-Mech: semi-mechanistic, Corr.: correlative, Mech.: mechanistic; (b)
predictive variables, Temp.: temperature, Pp: precipitation, RH: relative humidity, Topo: topology, LC: land cover, Lscp: land-
scape configuration, HP: human population, S&G: soil and geology; (c) moment of the prediction; (d) study extent categories.
Categories are based on a log scale (i.e., the category “1.Eþ 02” represent all the articles with extensions from 100
to 999 km2).
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were constructed based on species distribution,
relied on species occurrence data that came only
from their native distribution range (40.6%), or
from both the native and non-native range (40.6%),
while a smaller number of articles used only occur-
rence data from the species non-native range
(18.8%). When considering the range of the model
projection, most of the 220 reviewed articles (48%)
predicted the distribution of species on regions out-
side of their range, or including both the native and
non-native range (35%), while only a low number of
articles predicted the distribution of species only on
its native range (17%; Figure 5). Regarding the rela-
tion between the distribution range from where the
model was built, with where it was projected, the
most common case was that of models built and
projected on both the combination of the native and

non-native ranges (26% of the articles), followed by
models constructed and projected on the non-native
range (16% of the articles), and models constructed
on the native range and projected on the non-native
range (15% of the articles, Figure 5).

In terms of the time or scenarios for the predic-
tions, most of the articles predicted the distribution
of the species under current environmental condi-
tions (96%), while one third of the studies also pre-
dicted the distribution under future conditions
(32%), and a few predicted the distribution of spe-
cies under past conditions (1%; Figure 3c). Among
the articles that predicted species distribution under
global change scenarios, 63 where based on climate
change scenarios, while 10 (all of them CLIMEX
models) included land-use change scenarios, par-
ticularly the effect of irrigation.

Figure 4. Correspondence Analysis between damaging (triangles) species category and modelling approach (circles). Patg:
pathogen, disVec: disease vector, biocontrol: biological control agent, semiM: semi-mechanistic approach, corr: correlative
approach, mech: mechanistic approach, coor&mec: correlative and mechanistic approaches.

Figure 5. Alluvial diagram showing the frequency of articles that used occurrence data from the native vs. non-native species
distribution range for the construction of the model, and the frequency of each of these articles that where projected to the
native vs. non-native distribution range of the species. N: native range, NN: non-native range, NþNN: native plus non-
native range.
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Extent and location of the studies

The spatial extent of the studies varied widely, from
283 km2 to 148 million km2, although there were
two extents that were considerably more frequent,
those of the order of 100 million km2 and those in
the order of 1 million km2 (Figure 3d). In terms of
political boundaries these extents were distributed
between global (36% of the articles) and national
(35% of the articles). Regarding their location, all
terrestrial regions of the world, except for
Antarctica, were represented among the reviewed
articles, ranging from 82 to 107 articles per location
(Figure 6). The region most frequently modelled
was Australia, followed by several countries of
Europe, and the USA; the less frequently modelled
regions were East and Southern Asia, followed by
South America and Africa.

Distribution and predictive variables databases

Almost all of the reviewed articles used climatic var-
iables to predict the distribution of the studied spe-
cies. Temperature (99.5% articles) and precipitation
(97.3% articles) were the most frequently used varia-
bles, followed by relative humidity (58.6% articles),
while other non-climatic environmental variables
where used to a lesser extent, such as topology
(16.4% articles), land cover (12.7% articles), land-
scape configuration (3.6% articles), human popula-
tion (3.6% articles), and soil and geology
characteristics (3.2% articles; Figure 3b). Among the
climatic variables, we found that although several
studies used local or national climatic databases,
there were two main global climatic databases that
were very frequently used: WorldClim (35% articles)
and CRU (15% articles), while 17% of the articles
used the CliMond database, which is constructed
combining data of WorldClim and CRU, and finally,
15% of the remaining articles (the oldest ones) used
CLIMEX meteorological station data, which are also
based on CRU data. Regarding the source of species
distribution data used to construct or validate the

models, most (73%) were based on the combination
of published articles, museum collections, and/or
field surveys; while nearly 23% also accessed online
global databases (mainly GBIF, CABI, and EPPO).

Model accuracy and validation

Most of the articles (74%) evaluated the accuracy of
the models, but a considerable fraction (26%) did
not. The most frequently used accuracy analysis
methods where AUC (54% of the articles with
model evaluation), visual validation (41%), TSS (6%)
(Supplemental Online Material 2). The most fre-
quent species distribution data used to evaluate the
model was a sub-set from original data base (52% of
the articles with model evaluation), while 47.2% of
the cases declared to use an independent database,
frequently originated from the distribution range
where the model was projected. Among the mech-
anistic models, only one used experimental data to
evaluate the model.

Discusion

Studied organisms

Our literature review revealed that there is a consid-
erable and increasing amount of articles using
SDMs to predict the distribution of damaging spe-
cies in different productive systems around the
world (Figure 1) (Razgour et al. 2016; Bellard et al.
2018; Booth 2018). SDMs have been applied to a
great diversity of organisms from several taxa,
including pests, pathogens, disease vectors and
weeds, as well as species that are used as biological
control agents. However, among the different spe-
cies types, pests, and particularly insect pests (79%
or the studied species), have been considerably more
studied. This is probably because insects are and
abundant and diverse group of organisms and they
are easy to transport accidentally become invasive in
many cases. Insect herbivores are likely the econom-
ically most important pests of agriculture and

Figure 6. Number of articles per study area location covered by the reviewed SDMs.
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forestry (Metcalf and Luckmann 1994; Brockerhoff
and Liebhold 2017; Foottit and Adler 2017). This
pattern confirms previous findings that show that
invasive animal distribution is more frequently
studied than that of plants (Py�sek et al. 2006).
Additionally, it should be noted that the general
biology and distribution of many insect pests is
often better known than that of pathogens, for
which taxonomy and identification methods are less
well resolved (Purse and Golding 2015; Ireland and
Kriticos 2018). Furthermore, most of the efforts
have been dedicated to model the distribution of
harmful species themselves, while much less work
has been devoted to study the potential distribution
of their biological control agents (4% of the
studied species).

The most commonly studied species, with five or
more articles modelling their distribution, were all
major pests of important crops that have invaded
several regions of the world. This is the case of the
oriental fruit fly, Bactrocera dorsalis and the
Mediterranean fruit fly, Ceratitis capitata (Diptera:
Tephritidae; 8 and 5 articles respectively), which are
very destructive pests of fruit, in areas where they
occur. The oriental fruit fly is native to tropical Asia
and has invaded much of sub-Saharan Africa, and
the United States; while C. capitata is native to sub-
Saharan Africa, and has invaded Australasia and
North and South America (Malacrida et al. 2006).
Another well studied case is the Colorado potato
beetle, Leptinotarsa decemlineata (Coleoptera:
Chrysomelidae; 5 articles), which is native to South
America, but has become a major potato pest across
North America, Europe and Asia (Rafoss and
Saethre 2003). The European corn borer, Ostrinia
nubilalis (Lepidoptera: Crambidae; 5 articles), a pest
of grain, particularly corn, is native to Europe and
has been introduced to North America
(Kocm�ankov�a et al. 2011). And finally the North
American cotton mealybug, Phenacoccus solenopsis
(Hemiptera: Pseudococcidae; 5 articles), affects cot-
ton crops everywhere it has invaded (Australasia,
Afrotropical, Nearctic, Oriental and Neotropical
regions) (Parsa et al. 2012).

SDMs approaches

The most frequently used species distribution mod-
elling tools among the articles reviewed, were
CLIMEX (Sutherst and Maywald 1985) and MaxEnt
(Phillips et al. 2004). CLIMEX is a semi-mechanistic
approach, which uses a combination of empirically
measured parameters, abundance and point distribu-
tion records, to examine the relationship between
climate, species distributions and patterns of growth
(Macfadyen and Kriticos 2012). This tool is very

popular in pest risk assessment probably because it
was, in part, created for this goal. Although its use
requires a paid license, it has the advantage that it
combines distribution and physiological information
of the target species, and thus it is useful for situa-
tions when the available data abundance, distribu-
tion and biology is ‘patchy’ (Hill and Thomson
2015; Jung et al. 2016). In this sense, this approach
requires more knowledge about the species being
modeled than when using correlative models, which
may limit its applicability for species with no such
data. MaxEnt, on the other hand, is a machine-
learning method that implements the maximum
entropy algorithm for modelling species distribu-
tions with presence-only data (Phillips et al. 2004).
It is a correlative method, and it uses known occur-
rences of a species together with predictor environ-
ment variables to quantify the species’ ecological
niche in the examined environmental dimensions. It
is not surprising to have found this method is fre-
quently used, as it is freely available and has been
ranked among the best-performing SDMs methods
yet, especially for small sample sizes (Phillips and
Dud�ık 2008; Wisz et al. 2008; Bradie and Leung
2017) and can be applied to a wide range of species,
including those with limited data. Our results are
consistent with those found in a review of publica-
tions assessing the effects of climate change on inva-
sive alien species distribution (Bellard et al. 2018).

When comparing modelling approaches together,
semi-mechanistic models were the most frequently
approach used (55% of the articles), since this
approach is the one used by CLIMEX. Correlative
approaches were also very frequently used (42% of
the articles), while pure mechanistic approaches
were rarely applied (3% of the articles).
Interestingly, we found an association between the
modelling approach and species category (Figure 6).
Pests were more frequently modelled with correla-
tive approaches, while weeds, pathogens, and bio-
logical control agents were associated with semi-
mechanistic modelling approaches; and disease vec-
tors with mechanistic approaches. This pattern
could be due to the fact that, traditionally, weeds
and pathogens distributions have been modeled
with CLIMEX, and additionally it is easier to collect
eco-physiological data for this group of organisms.
Pests, in turn, have been modeled with both semi-
mechanistic and a wide variety of correlative mod-
els. In the case of mechanistic models, the number
of cases is too low to be able to draw conclusions.

There has been much debate about the pros and
cons of SDMs approaches (Dormann et al. 2012;
Peterson et al. 2015). Correlative models are con-
strained by the fact that they describe patterns and
not the mechanisms behind them. Consequently
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predictions based on correlative modelling are usu-
ally limited in their biological realism and their appli-
cation to novel environments (Franklin 2010).
Mechanistic models, on the other hand, have the
potential for the direct measurement of dimensions of
the species’ fundamental niche without the confound-
ing effects of accessible areas and interacting species.
But, the disadvantage of this approach, and probably
the cause of it being less used when compared to cor-
relative ones, is their complexity: the need to identify
the key physiological features of an organism and to
scale them, often from millimeters to kilometers.
Additionally, very few software packages for mechan-
istic modelling are, as yet, freely available to the scien-
tific community (Peterson et al. 2015). Although
semi-correlative models such as CLIMEX use infor-
mation from correlative and process-based models, it
may be fruitful to join these two approaches in a
more complex combined workflow (Buckley et al.
2011; Mokany and Ferrier 2011; De la Vega and
Corley 2018). Correlative models efficiently sift
through descriptive data, thereby generating hypothe-
ses on potentially underlying processes. These hypoth-
eses can then be taken up, along with ecological
theory and experimental evidence, by mechanistic
models. The resulting mechanistic models can then
generate predictions specifically designed for a formal
test on independent data (Dormann et al. 2012). In
this way, combined models can synergistically pro-
gress the field in a way neither correlative nor mech-
anistic approaches can do so by themselves.

Extent and location of the studies

The spatial extent of the studies varied widely, from
regional to global, although most studies focused on
broad scales (1-100 million km2), being global and
national extents (within country limits) the most
common ones. Extent together with grain (reso-
lution) are the components of spatial scale, and
both are important factors that may affect predic-
tions. Studies with predictions over large extents are
often characterized by coarser resolutions or “grain
sizes” (e.g., global scales) than data at small extents
(e.g., regional) (Guisan et al. 2007; Franklin 2010).
Resolution is a crucial ecological issue, and conse-
quently changing the grain size can influence the
perception of a phenomenon, such as patterns of
presence or abundance, or can even affect the rele-
vance of the output for management applications
(Ara�ujo and Luoto 2007). In this sense, the use of
broad scales in pest risk SDMs is probably related
with the fact that biosecurity practitioners have been
usually concerned with extrapolation of risks posed
by the potential spread of pest, disease and weed
species in very large areas. In fact, 83% of the

reviewed articles predicted the distribution of dam-
aging species on regions outside of their native
range. Additionally, the scale of the study is com-
monly constrained by technical issues such as the
grid cell size of available environmental data and the
characteristics of the species data -e.g. geographical
accuracy, sample size, or autocorrelation structure-
(Guisan et al. 2007). It must be also noted that the
spatial extent over which species distribution models
are usually fitted, often coincides with geopolitical
boundaries and it is unclear how this pre-set spatial
extent affects the performance of distribution models
(Niamir et al. 2016). The selection of the extent of
the geographical background (the area encompassing
the range of the species plus the space accessible to
the species which may not be colonized, for a num-
ber of reasons), is also likely to influence SDMs per-
formance; larger geographical backgrounds may be
more favorable for increased transferability of the
models for some invasive species, but may also over-
fit environmental conditions (Anderson and Raza
2010; Hill et al. 2017). Future work should focus in
developing and integrating more precise models by
considering: (i) finer ecological and geographical
scales (Kriticos et al. 2015); and (ii) making better
background choices around sensible climatic extents
at broad scales (Hill et al. 2017). For this, it is neces-
sary to use finer resolution climate datasets, as well
as other non-climatic factors affecting species poten-
tial distribution at small scales (Kriticos et al. 2015).

Regarding the location of the studies, all
terrestrial regions of the World, except for the
Antarctica, were represented among the reviewed
articles. However, we found a geographic bias
towards Australia, several counties of Europe, and
the USA, which were the most frequently
modelled regions. Countries from South Asia,
South America and Africa were the less studied
(Figure 5). These results, in accordance with other
reviews of invasive species (Lowry et al. 2013;
Bellard et al. 2018), reflect that the distribution of
damaging species have been more frequently
modeled in productive systems of developed
economies, probably because more research
efforts and resources are invested there.
Interestingly, Australia was by far the country
where species distribution were most frequently
modeled. This probably reflects the magnitude of
the biological invasions issue in this country
(Py�sek and Richardson 2010). Also several SDMs
methods, such as CLIMEX (Sutherst and Maywald
1985) and Bioclim (Nix 1986), have been
developed in Australia.

Data availability and selection of
predictive variables

Nearly all works analyzed used bioclimatic variables
to predict the distribution of the studied species, as it
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was found in SDMs in general (Bradie and Leung
2017). Bioclimatic variables are commonly derived
from monthly temperature and precipitation values in
order to generate biologically meaningful variables,
including annual values, seasonality, and extreme or
limiting environmental factors (Hijmans et al. 2005;
Kriticos et al. 2011; Booth et al. 2014). The set of 19
bioclimatic variables was first adopted for BIOCLIM
in about 1996 (Booth 2018) and then it was adopted
for use in the WorldClim database (Hijmans et al.
2005) and has been widely accepted in SDMs in gen-
eral. Although it is generally agreed that climatic
regimes are critical in determining species distribu-
tion, the inclusion of other relevant variables in the
models is rarely considered (less than 25% of the
papers included non-climatic predictive variables). In
this sense, which environmental variables are chosen
depends largely on our understanding of the causal
mechanisms behind the distribution of the studied
species, as well as on data availability (Franklin 2010).
Consequently, most studies use only climate, probably
because other important causal mechanisms are not
as readily quantified or available, and because in most
cases insects (whose activity, development and mor-
tality are closely dependent on climate) have been the
focus of most works (Kriticos and Leriche 2010).

Our overview reflects how the availability of pre-
dictor variables, and particularly large climatic data-
bases, has influenced the development of pest, weed
and pathogen SDMs. The first studies that mapped
species potential ranges relied directly upon meteoro-
logical station data, as typified by the dot maps of
early CLIMEX models (Sutherst and Maywald 1985;
Sutherst 2014). With the development of high-reso-
lution geospatial databases of average monthly cli-
mate date since the 2000s, such as those from the
Climatic Research Unit “CRU” (New et al. 2002),
WorldClim (Hijmans et al. 2005), and CliMond
(Kriticos et al. 2011), the number and resolution of
SDMs has grown exponentially. However, it must be
noted that species distribution models that rely only
on climatic predictors can produce only approxima-
tion of distributions at broad scales (Franklin 2010).
In the cases where more precise SDMs are needed, it
is necessary to include both broad-scale climate varia-
bles, and finer-scale predictors that capture terrain-
mediated variation in water, energy, and nutrient
availability. Further development of high-resolution
databases of environmental factors that determine
species distribution, such as those limiting factors
that control eco-physiology (e.g., eco-climatic varia-
bles), as well as disturbance factors (e.g., natural and
anthropogenic disturbances), resource factors (e.g.,
host distribution, landscape configuration) and biotic
components such as the presence and abundance of
natural enemies, are needed to improve the predictive

power of SDMs (Bradie and Leung 2017). In this
sense, considering single species studies is one of the
main limitations of SDMs (Hill and Thomson 2015),
as species interactions such as competition, predation,
parasitism and facilitation are known to influence
species distribution. Incorporating biotic interactions
in species distribution models has proved challenging,
although there is great potential for the development
of novel approaches that incorporate multispecies
interactions to the projection of species distributions
and community structure at large spatial extents
(Kissling et al. 2012). This is particularly relevant in
terms of biological control applications, since natural
enemies (predators and parasitoids) may strongly
influence pest and weed distribution; and on the
other hand, their distribution may respond to global
change in completely different ways than those of the
species they attack (Thomson et al. 2010).
Consequently, joint distribution models should be
performed, to consider the influence of biotic interac-
tions and their success under a changing scenarios.

The availability of species distribution locations is
also of great importance for developing accurate
SDMs. Compilation of referenced specimen records
from natural history collections, regional and
national surveys and monitoring, and other sources,
into big digital databases has been growing during
the last decades. Most of the articles reviewed in
this study are based on such sources of information,
which have a great potential to contribute to our
understanding and prediction of the distributions of
harmful species. These databases, however, are
known to be affected by strong geographical biases
(Beck et al. 2014) and are prone to data errors,
related to incomplete or erroneous information at
the data gathering level, during the publishing proc-
esses, and during the central harvesting and index-
ing procedures (Gueta and Carmel 2016). For
damaging species particularly, there are also biases
in reporting due to the status of a species, since
some species may not be regarded as pests through-
out their distribution range. Consequently, further
development of more precise and complete data-
bases, as well as methodologies for handling and
correcting biases are required to improve the predic-
tions of pest risk assessment models.

SDMs and the effect of global change

Our review reflects the fact that a key aim of pest
SDMs is to assess the effect of global changes on
agricultural, forestry and livestock production sys-
tems. Most articles focus on determining the estab-
lishment probability of invasive species. The
introduction of non-native species is likely the most
important global change affecting the health of
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crops and other land management activities
(Pimentel et al. 2000; Aukema et al. 2011). In conse-
quence, it is reasonable to find that considerable
efforts in pest risk assessment have focused on pre-
dicting the risk of establishment of invasive species.
Currently, more than one-tenth of all declared pests
worldwide, have reached more than half of the
countries that grow their host crops, a tendency that
is expected to increase in the near future (Bebber
et al. 2014).

An important part of the studies (about 30%)
focused on predicting the effects of climate change
on species distribution of pests, weeds, pathogens,
and disease vectors. Climate change is expected to
cause important shifts in the geographic distribution
of species, as a result of a rearrangement of climate
zones (Walther et al. 2002). Because invasive pest
species are often generalists with broad climatic tol-
erances, they are generally considered to cope better
with climate change than native species, and conse-
quently expand into new areas (Walther et al. 2009;
Bebber 2015). Furthermore, it has been found that
SDMs of most of the studied pests and pathogens
species, predict that their distribution is more likely
to increase under climate change scenarios (Bellard
et al. 2018).

Only a few articles (less than 5%) considered the
effect off other global change scenarios such as
land-use change, and these studies were mostly
focused on irrigation scenarios. Land use change is
strongly affecting the distribution of species, particu-
larly in agricultural and forestry systems. These sys-
tems, are some of the most important land use
modes, in several regions of the world, and both
have changed considerably in the last decades
(Rounsevell et al. 2006). Consequently, further work
is needed to understand the effects of different land
use scenarios on the distribution of damaging spe-
cies. A cause for the under-representation of SDMs
considering the effect of land use change may be
that these impacts usually become more apparent
than climate at smaller spatial scales (Dormann
2007), although it has been found that human
impacted environments are also relevant at broad
scales (Hill et al. 2017). It has been suggested that
the integration of dynamic climate and land use var-
iables in the same modelling frameworks may avoid
producing unrealistic projections of future species
distributions (Brook et al. 2008); yet few studies
have addressed this issue so far (Schweiger et al.
2011; Martin et al. 2013).

SDMs accuracy and uncertainty

An important issue in the development of SDMs is
the assessment of predictive accuracy and

uncertainty, which helps to determine the suitability
of the model for specific applications, and to iden-
tify those aspects of the model that need improve-
ment (Vaughan and Ormerod 2005; Barry and Elith
2006). Among the revised articles, 26% did not
report model performance analysis, while 41%
informed a visual validation of the models, but no
quantitative assessment of performance. This reflects
the fact that model accuracy evaluation has been
ignored or poorly quantified by most SDMs carried
out for pests, weeds, pathogens and vectors.

Validation refers to the assessment of the correct-
ness of model predictions using data not used for
the building or calibration of the model. Among the
studies that evaluated the SDMs, most (52%) used a
sub-set from original distribution database, but
47.2% used a completely independent database. The
use of a subset of the data for validation of correla-
tive models is intrinsically optimistic compared with
external validation, because it only validates the
model for data from the same region and time, and
consequently, the generality of the model remains
unassessed (Dormann et al. 2012). In this sense,
whether the evaluation data are derived from parti-
tioning of the original data or else an independent
source, it is important that the sample truly repre-
sents the environments that are being predicted by
the model. This can be accomplished by using a
sample that is geographically and environmentally
representative of the study area (Franklin 2010).

Among the articles that quantitatively assess
model performance (33%), the area under the
receiver operating characteristic curve (AUC) is the
most frequently used measure (81% of these
articles). The AUC of a model is equivalent to the
probability that the model will rank a randomly
chosen presence site higher than a randomly chosen
absence site. Although the AUC has been consid-
ered a highly effective measure for the performance
of ordinal score models (McPherson et al. 2004),
there are several recognized features that prevent its
use as a measure of SDMs accuracy (Lobo et al.
2008). Some of the most important problems of this
method, in the context of pest risk assessment, are
that it does not provide information about the spa-
tial distribution of model errors, and that species
distribution data used for the construction of the
model are referred to a specific geographical extent,
and also that increasing the geographical extent out-
side the presence environmental domain, entails
obtaining higher AUC scores (Lobo et al. 2008).
Other less frequently used methods are sensitivity
scores (2,8% of the articles), a basic index that
assesses the probability that the model correctly pre-
dicts an observation for a species at a given site; the
Cohen’s kappa (0.9% of the articles), which is a
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popular measure for the accuracy of presence–ab-
sence predictions; and the true skill statistic (TSS,
9.3% of the articles), which is a measure for the per-
formance of presence–absence distribution models
that corrects for this dependency while still keeping
all of the advantages of kappa (Liu et al. 2011). The
TSS is gaining acceptance over the AUC, however,
evaluations of a model accuracy solely based on this
statistic may also be misleading. The main problem
of evaluating the performance of SDMs for species
that are changing their distribution range is that the
potential distribution in the invaded range or under
climate change is unknown, and test data are not
available. In this sense, it is unknown whether the
model fitted under current environmental condi-
tions is relevant to the future range, and distribu-
tional data in the invaded range are unlikely to
provide a reliable test of model performance because
the species is likely to be invading (Elith 2017).
Consequently, models (both correlative and mech-
anistic ones) need to be assessed for their ecological
relevance, by using expert knowledge, by sourcing
additional data including experimentally derived
physiological information, by sampling within the
predicted ranges, or by comparison with completely
independent models that do not use distributional
records (Hill et al. 2013; Elith 2017). Although
evaluation of the SDMs have almost only focused
on predictive performance as the most important
measure of model validity, predictive performance is
only one aspect of model evaluation, while eco-
logical realism and credibility are also important
evaluation criteria that should be considered
(Franklin 2010).

It must be noted that other methodological limi-
tations have arisen from using correlative methods
to model the distribution of species outside of the
current known geographic extent or under climate
change scenarios. As we have shown, most of the
SDMs were developed from the species current dis-
tribution, and were extrapolated in space and/or
time to forecast potential changes in distribution of
species. However, none of the commonly used cor-
relative SDMs were originally designed to model
global change effects. Two assumptions of correla-
tive SDMs do not hold, when modelling invasive
species or the effect of changes in environmental
conditions: (i) species are not in equilibrium with
their environment, and (ii) niche quantification is
transferable in space and time (Elith and Leathwick
2009; Gallien et al. 2012). Additionally, most of the
articles we analyzed here (59%), have used species
occurrences from the invaded range to construct the
model (Figure 5). However, distribution data outside
of the native range are only reliable in regions that
have been occupied long enough for the species to

have had the opportunity to persist or else to die
out at given locations, as well as to spread and
occupy the suitable areas in the considered region
(Hill and Thomson 2015; Elith 2017). If this does
not happen, the assumptions of the species being in
equilibrium with the environment is also being vio-
lated in this cases.

Invasive species are able to expand into parts of
their fundamental niche that are not available in
their native range. The same occurs with native and
non-native species under the effect of climate or
land use change. Consequently, methods best suited
for modelling the potential distribution of these spe-
cies are those that directly estimate the fundamental
niche (mechanistic methods), although they usually
overestimate the final distribution (but for models
that consider biotic restrictions; (Elith 2017). Semi-
mechanistic methods (i.e., CLIMEX), are also con-
sidered more adequate for this goal, because they
have been specifically developed for invasive species
and have some features that make them safer to use
in this context (e.g., the way their indices can be
controlled to extrapolate beyond the realized niche)
(Elith 2017). Novel frameworks have been also pro-
posed to produce more reliable predictions of the
distribution of an invasive species outside of their
native range, based on correlative models (Gallien
et al. 2012), however very few studies have
addressed this issue directly.

In sum, there is need to further develop methods
to better describe and quantify the uncertainty, both
statistically and spatially, of correlative SDMs that
attempt to predict the probabilities of establishment
of species in new regions or in areas under changing
environmental conditions. These approaches should
therefore consider the fact this new or changing
regions will combine environmental conditions that
do not exist in their current distribution range.

Comparing SDMs characteristics according to
their goals

Spatial Distribution Models have been developed
with very different goals. Two main groups of objec-
tives may be identified: pest management and biose-
curity on the one hand, and biogeography and
biodiversity conservation on the other (Franklin
2010; Sutherst 2014). The first group, the one
reviewed in the present work, is concerned with the
extrapolation of risks posed by the potential spread
of pest, disease and weed species and their biocon-
trol agents. SDMs for biogeography and biodiversity
conservation, in contrast, are mainly used to
describe patterns of species distribution and identify
the environmental requirements of given species
(Franklin 2010; Sutherst 2014).
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One of the main differences we found among
these two group of modelling goals, is the most
commonly studied taxonomic groups. While, pest
management and biosecurity SDMs are mainly
focused on insects, biogeographic or conservation
studies are usually focused on other taxa such as
birds, reptiles, amphibians and plants (Porfirio et al.
2014; Razgour et al. 2016; Weber et al. 2017).
Conservation and biogeography studies also differ in
the most commonly used modelling methods, which
are MaxEnt, GARP and GLM (Razgour et al. 2016;
Weber et al. 2017), while CLIMEX, the most com-
monly modelling method used for pest risk assess-
ment is rarely employed for these other aims.
Additionally, conservation and biogeography studies
usually include larger species pools (Weber et al.
2017), and they usually focus on smaller extents,
particularly conservation studies (i.e., regional scale)
(Porfirio et al. 2014; Sutherst 2014; Razgour
et al. 2016).

Integrating SDMs with other bio-
surveillance tools

The use of SDMs, especially in the context of biose-
curity, is particularly efficient if integrated with
other tools and approaches currently used in bio-

surveillance. An example of this is the use of senti-
nel trees (Roques et al. 2015), an approach aimed
at identifying which species can become forest pests
if introduced into areas in which these same trees
are cultivated or are native to. In this sense, SDMs
applied on such species represent a key step to
improve pre-border surveillance activities of a
country (Poland and Rassati 2018). SDMs can also
help to improve guidelines for visual inspections
–regular checks carried out by inspectors at points
of entry or goods to a country or region-, by defin-
ing which non-native species have higher risk of
establishing at a determined location (Eschen et al.
2015). Similarly, the information obtained from
SDMs can be integrated with border and post-bor-
der surveillance tools, such as baited traps (Poland
and Rassati 2018). Traps lured with attractants are
commonly used for early detection of non-native
species, and can be used in the context of surveil-
lance at points-of-entry for imported commodities
and of surveillance in natural areas (Brockerhoff
et al. 2006; Wylie et al. 2008). In this context,
SDMs can help to optimize trappings by defining
specific surveillance needs to capture a certain tar-
get species (Poland and Rassati 2018). In summary,
SDMs can help us better understand where a given
non-native species is most likely to arrive and

Table 2. Main findings for each of the analyzed issues among the revised SDMs, and suggestions of future directions.
Issue Main findings Future directions

Studied organisms � Insect pests were by far the most frequently
studied organisms.

� Develop more precise databases of distribu-
tion and/or eco-phisiological variables for
poorly studied taxa, like pathogens and dis-
eases, to be able to better assess their poten-
tial distribution.

SDMs approaches � CLIMEX and MaxEnt (semi-mechanistic and
correlative approaches) were the most com-
monly used modelling tools, while pure mech-
anistic approaches were rarely applied

� Further development of models that join cor-
relative and mechanistic approaches in a com-
bined workflow, to generate hybrid models
that incorporate the advantages of
each approach.

Extent and location of the studies � Most studies covered broad scales (national
and global). Studies in developed countries
were more frequent than in developing ones.

� Develop more precise models by considering
finer ecological and geographical scales; as
well as making better background choices
around sensible climatic extents at broad
scales.

� Further study the potential distribution of
pests of developing countries.

Data availability and predictive variables � Most works used only bioclimatic variables to
predict the distribution of the studied species.

� Species interactions, which are particular rele-
vant for biological control applications, were
very poorly considered.

� Species distribution databases are usually
incomplete and are affected by geograph-
ical biases.

� Further development of high-resolution data-
bases and methods to incorporate more com-
plex environmental factors that determine
species distribution, such as disturbance fac-
tors, resource factors, and biotic interactions.

� Further development of more precise and
complete species distribution databases, as
well as methodologies for handling and cor-
recting biases.

Effect of global change � Most studies focused on predicting the distri-
bution of invasive species and/or the effects
of climate change.

� Further study the effects of less represented
global change factors, such as different land
use scenarios, on the distribution of damag-
ing species.

Accuracy and uncertainty � Most of the studies did not quantitatively
assess the performance of SDMs.� AUC was
the most frequently used measure, however
there are several features that prevent its use
as a measure of SDMs accuracy for species
expanding their distribution.

� Develop methods to better describe and
quantify the uncertainty, as well as the eco-
logical relevance of SDMs that attempt to
predict the probabilities of establishment of
species under the combination of environ-
mental conditions that do not exist in their
current distribution range.
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establish, allowing to concentrate surveillance efforts
in such area.

Concluding remarks

Increasingly, managers of agriculture and forestry
systems, are concerned with predicting the range
expansions of important pests, weeds, pathogens
and disease vectors. SDMs have shown to be a valu-
able approach for modelling the distribution of
harmful species across different scales, locations and
also considering global change scenarios. We found
that an exponential growth in the availability of pest
SDMs has occurred during the last decade, together
with the development of statistical and mathematical
tools, and the development of large, reliable and
accessible databases. We expect that this tendency
will continue, and further development of more pre-
cise process-based SDMs, as well as better methods
to evaluate and inform their uncertainty (see Table
2 for more detail on main findings and future direc-
tions), will play a key role in the future of studies
predicting the potential distribution of species that
are harmful to food security and land management,
and will be crucial for preventing or mitigating their
social, economic and ecological impacts, in the con-
text of a rapidly changing World.
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