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A B S T R A C T

The theme of the present work is the procedure for evaluating the minimum size for the stability of a crystalline
particle with respect to the same group of atoms but in the amorphous state. A key goal of the study is the critical
analysis of an extensively quoted paper by F.G. Shi [J. Mater. Res. 9 (1994) 1307–1313], who presented a cri-
terion for evaluating a “crystallinity distance” (h) through its relation with the “critical diameter” (dC) of a
particle, i.e., the diameter below which no particles with the crystalline structure are expected to exist at finite
temperatures. Key assumptions of Shi's model are a direct proportionality relation between h and dC , and a
prescription for estimating h from crystallographic information. In the present work the accuracy of the Shi model
is assessed with particular reference to nanoparticles of the elements. To this end, an alternative way to obtain h,
that better realizes Shi's idea of this quantity as “the height of a monolayer of atoms on the bulk crystal surface”, is
explored. Moreover, a thermodynamic calculation of dC , which involves a description of the bulk- and the surface
contributions to the crystalline/amorphous relative phase stability for nanoparticles, is performed. It is shown that
the Shi equation does not account for the key features of the h vs. dC relation established in the current work.
Consequently, it is concluded that the parameter h obtained only from information about the structure of the
crystalline phase, does not provide an accurate route to estimate the quantity dC. In fact, a key result of the current
study is that dC crucially depends on the relation between bulk- and surface contributions to the crystalline/
amorphous relative thermodynamic stability.
1. Introduction

There is ample evidence that the sintering and alloying ability, me-
chanical strength, critical temperatures for phase transitions, catalytic
properties and other physicochemical properties of nanoparticles are
strongly size-dependent [see, for example [1–6]]. More specifically, it is
often hypothesized that the differences between the properties of the
nanoparticles and the macroscopic material can be understood in terms
of the surface-to-volume ratio, which is a measure of the amount of atoms
located at the surface compared to that in the bulk [7,8]. A further,
conceptually related issue, is that of the minimum size for a stable
crystalline nanoparticle. Since crystallinity is a long-range characteristic
of the material, when the fraction of the total number of atoms located at
its surface is sufficiently large, a non-crystalline (in the following “an
amorphous”) phase might become more stable [9]. In a pioneering and
extensively quoted paper, Shi [10] suggested that such critical condition
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would be realized in a spherical nanoparticle of diameter dC, for which all
the atoms are accommodated as if they were located at the surface. This
idea was quantitatively expressed by introducing the distance h, which
was defined by Shi as “the height of a monolayer of atoms on the bulk
crystal surface” [10]. By equating the volume of the spherical nano-
particle of diameter dC with that of a thin spherical shell of the same
diameter and width h, the following relation was established [10].
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¼ 4 π
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h (1)

The so-determined critical diameter, which is directly related to the
distance h through the relation

dC ¼ 6 h (2)

was adopted by Shi to represent a “crystallinity limit”, i.e., the size below
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which no particles with the crystalline structure are expected to exist at
finite temperatures [10].

In order to apply eq. (2), Shi [10] assumed that h was related to the
lattice parameter a of the crystalline material. Specifically, it was
postulated without further arguments that h ¼ a=2 and h ¼ a=4 for the
face centered cubic and diamond structures, respectively.

A survey of the standard citation databases indicates that the Shi
paper has been extensively quoted (223 times according to Scopus). In
particular, the concept of a critical distance has been included in theo-
retical analyses of the size-dependence of the melting temperature of
nanoparticles [11–13], and Shi's values for h have been used to interpret
experiments on the solid/liquid transition [14]. Contrasting with the
ample use of this approach, it is noteworthy that a critical evaluation of
its accuracy has not yet been reported. Such an assessment has been
performed in the present work, which has been motivated by the
following critical issues.

The first issue concerns the Shi prescription to estimate h. At first
glance, one would have expected that the distance between close-packed
planes in the face centered cubic structures (

ffiffiffi
3

p
a=3) could be a better

estimate for “the height of a monolayer of atoms on the bulk crystal
surface”. Such alternative crystallographic criterion would yield a new
set of h values.

The second issue concerns the need for an independent method to
determine dC. Since this critical radius expresses the crystalline/amor-
phous relative stability, it is natural to expect that a thermodynamic
approach would provide additional insight on the dC values.

Both issues will be addressed in the following work by using infor-
mation on the elements. Once the new, theoretically based h and dC
values had been determined, a critical discussion of the Shi [10] relation
for the crystallinity limit, which is expressed by eq. (2) will be performed.

2. Thermodynamic relations

A “top-down” thermodynamic approach has recently been developed
by the current authors to determine the relative stability between the
crystalline and the amorphous phases of a nanoparticle as a function of
the particle radius [15]. The most general formulation of the approach
and its experimental test has been presented elsewhere [15]. In the
following, only the relations of relevance for the present work
are reviewed.

The Gibbs energy of formation (ΔGϕ) of a nanoparticle of an element
in phase ϕ is expressed as the sum of two contributions:

ΔGϕ ¼ Δ0Gϕ=st þ ΔGγ;ϕ (3)

where Δ0Gϕ=st is the “lattice-stability” of ϕ relative to the stable structure
of the element [16] andΔGγ;ϕ is the surface contribution to Gibbs energy.
In the present work the focus is on the crystalline (“cr”) and the amor-
phous (“am”) phases, and the reference stable structure will be the
crystalline one, i.e., Δ0Gcr=st ¼ 0. This implies that only the term
Δ0Gam=st ¼ Δ0Gam=cr has to be determined at the temperature of interest
(T0), viz., at T0 ¼ 300 K.

The second term in eq. (3) can be expressed as [15]:

ΔGγ;ϕ ¼
�
Σ
Ω

�
γϕ Vϕ ¼

�
6
d

�
γϕ Vϕ (4)

where γϕ and Vϕ (ϕ ¼ cr, am) are the surface energy per unit area and
molar volume of the material, Σ ¼ π d2 the surface, Ω ¼ π d3

6 the volume
and d the diameter of the spherical particle. Eq. (4) was applied assuming
that both phases have the same shape, viz., spherical. The molar volumes
Vcr for the elements were taken from Ref. [17]. Lacking a consistent set of
values for Vam, and taking into account a plausible expansion associated
to the transition from the crystalline to the amorphous phase, the
approximation Vam ¼ 1:01 Vcr was adopted at 300 K.
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In this equation the γϕ parameter for the amorphous and the crys-
talline phase is a temperature dependent quantity. Furthermore, the γϕ

parameters are assumed to depend upon the curvature of the particle.
This problem is the subject of an extensive literature, and various alter-
native equations have been presented to account for the effect of the
diameter d of the particle upon γϕ [18–20]. In particular, the equation by
Tolman [18–20] was adopted

γϕðTÞ ¼
�

d
d þ 4 δϕ

�
γϕ∞ðTÞ (5)

In eq. (5), the surface energy parameter γϕ∞ðTÞ is a solely temperature-
dependent quantity which is assessed in the next section, and δϕ, which is
the so-called Tolman parameter, characterizes the width of the interface
[18–20]. In the present work, lacking more specific information, the
Tolman parameter of both phases was related to the spacing h between
the close-packed planes in the crystalline phase, by introducing the
proportionality parameter α, viz.,

δam ¼ δcr ¼ δ ¼ α hð0 � α � 1Þ (6)

By combining eqs. (3)–(6), the following expression was obtained for
the diameter of the smallest crystalline particle which is stable with
respect to the amorphous phase:

dC þ 4 δ ¼ 6
�
Vcr γcr∞ � Vam γam∞

�
Δ0Gam=crðT0Þ

(7)

The assessment of the thermodynamic information involved in the
application of eq. (7) to the elements of the Periodic Table is presented in
the following sections.

3. Assessment of thermodynamic properties

The lattice-stability and surface Gibbs energy of the amorphous
phases of the elements are poorly known from experiments. On the basis
of the satisfactory results obtained in Ref. [15], these properties were
modeled by identifying the amorphous with a liquid phase undercooled
to very low temperatures, as follows.
3.1. Lattice-stability modeling and estimation methods

The lattice-stability term was modeled by assuming that: i) there will
be a glass transition in the undercooled liquid (“ucl”) at a temperature TG

usually located between one third and one half of the melting tempera-
ture (TM); ii) below that point the heat capacity of the liquid would be
similar to that of the crystalline phase; and, iii) at the glass transition the
entropy of the liquid will be more or less approaching the entropy of the
crystalline phase. Assuming these widely accepted ideas, and following
[21], a qualitative curve for the temperature dependence of the entropy
difference between the undercooled liquid and the crystalline phase
(Δ0Sucl=cr) might be sketched as in Fig. 1a. The curve flattens below TG

and the entropy plateau has a negligible value due to assumption (iii).
The corresponding lattice-stability (Δ0Gucl=cr) function is presented in

Fig. 1b using a thick black solid line. The current premises imply that the
high temperature behavior of the liquid phase (“liq”), denoted as
Δ0Gliq=cr (blue line in Fig. 1b), has to be extrapolated for temperatures
below TG as an approximately horizontal line to obtain the Δ0Gucl=cr vs. T
relation. This expectation is accounted for by the thick black solid line in
Fig. 1b, which was drawn by assuming thatΔ0Sucl=cr diminishes gradually
on cooling from the melting point down to TG and then goes to zero.

On the basis of the thermodynamic behavior represented in Fig. 1,
two alternative evaluations of Δ0Gam=crðT0Þ were performed. The first
evaluation is based on directly identifying the amorphous phase with the
undercooled liquid below TG, and determining the lattice-stability value
to be inserted in eq. (7) as:



Fig. 1. Qualitative temperature dependence of: a) the entropy difference between the undercooled liquid with a glass transition and the crystalline phase (Δ0Sucl=cr ) and b) the corre-
sponding lattice-stability (Δ0Gucl=cr ) function. The determination of the Δ0Gam=crðT0Þ value adopted in the present calculations is schematically described by the red thin dashed line. See
text for details. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Δ0Gam=crðT0Þ ¼ Δ0Gliq=crðTGÞ (8)
Fig. 2. Entropy difference between the liquid and the crystalline phase evaluated at the
melting temperature (TM ) as a function of TM for 62 elements. The solid lines are only
guides to the eye. The horizontal dashed lines indicate the limits of the range of
Δ0Sliq=crðTMÞ within which eqs. (9) and (11) yield the same results. The upper dashed line
corresponds to k ¼ 1 =2.
In order to apply eq. (8), it would be necessary to account for the
effect of the glass transition upon the Δ0Gliq=cr function, i.e., a thermo-
dynamic description of the thick black solid line in Fig. 1b at and below
TG. Unfortunately, such information is not included in the standard da-
tabases with lattice-stability values for the elements. In view of this
limitation, the Δ0Gam=crðT0Þ values were estimated by computing Δ0Gliq=cr

at TG and then assuming that the Δ0Gam=cr vs. T function continues hor-
izontally down to zero Kelvin, as indicated by the thin red dashed line in
Fig. 1b. To this aim, the Δ0Gliq=cr vs. T functions recommended by Dins-
dale [22] were adopted and the options TG ¼ TM=3 and TG ¼ TM=2
were tested.

An alternative evaluation method for Δ0Gam=crðT0Þ was based on
using the following relation for the enthalpy difference Δ0Ham=crðT0Þ
between the amorphous and the crystal, suggested on purely empirical
grounds by Loeff, Weeber and Miedema [23]:

Δ0Gam=crðT0Þ ¼ Δ0Ham=crðT0Þ � 3:5
�

J
K mol

�
TM (9)

3.2. Assessment of lattice-stability values

In the previous paragraph three estimation methods for the lattice-
stability of the amorphous phase were presented, viz., the first two
using Dinsdale recommended functions at two different glass tempera-
tures and the third one using the approach by Loeff et al. In order to
discuss their results, it is useful to compare the relation in eq. (9) with
that based on the thin red dashed line in Fig. 1b. The linear behavior of
Δ0Gliq=cr usually observed in the neighborhood of the equilibrium
melting point can be written as

Δ0Gliq=crðTÞ ¼ ðTM � TÞ Δ0Sliq=crðTMÞ (10)

Then, the first two estimation methods have an upper bound given by

Δ0Gam=crðT0Þ � ðTM � TGÞ Δ0Sliq=crðTMÞ ¼
	
k Δ0Sliq=crðTMÞ



TM (11)

where k ¼ 2=3 or 1=2, depending on the choice for TG. The linear
extrapolation presented in eq. (10) coincides with the Δ0Gliq=cr curve in
the whole temperature interval shown in Fig. 1b, which is not the general
case. This latter fact is against the relation between Δ0Gam=crðT0Þ and the
entropy of melting Δ0Sliq=crðTMÞ given in eq. (11), which would hold
exactly only if the Δ0Gliq=cr vs. T function were a straight line in the
temperature range TG � T � TM . In spite of this fact, the square bracket
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in eq. (11) might be adopted as a reasonably first approximation to
compare with the coefficient in eq. (9). Since the latter represents an
entropy difference, it is natural to compare it with the entropy change
involved in eq. (11) viz., k Δ0Sliq=crðTMÞ. Specifically, the suggestion by
Loeff et al. [23] is equivalent to inserting in eq. (9) the value
Δ0Sliq=crðTMÞ ¼ 3:5=k, which yields limiting values 5:25 J=K mol and
7 J=K mol according to the previously stated k values.

These entropy limits are compared in Fig. 2 with the experimental
Δ0Sliq=crðTMÞ vs. TM values compiled by Dinsdale [22]. The data points
were classified according to the stable crystal structure of the element at
room temperature, defining eight classes: body centered cubic (bcc), face
centered cubic (fcc), hexagonal (hex), rhombohedral (rho), ortho-
rhombic (ort), diamond (dia), tetragonal (tet) and cubic (cub). The ele-
ments treated in the present work might be gathered in two main groups,
scattering around the solid lines. These lines are adopted only as guides
to the eye. In fact, it has long been suggested [24] that the scatter of the
data-points in Fig. 2 might be reduced by treating separately elements
with the same structure.

According to Fig. 2 the majority of the data points determine a band



Fig. 4. Ratio of the surface energy term of the crystal to the surface tension of the liquid
for 62 elements evaluated at TM as a function of TM .
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withΔ0Sliq=crðTMÞ values lower than about 18 J K�1 mol�1 and increasing
with TM . The second group comprises the elements Ga, Bi, Sb, Ge and Si,
with larger Δ0Sliq=crðTMÞ values increasing also with TM .

The entropy values compatible with the approach by Loeff et al. [23],
indicated by the dashed lines in Fig. 2, fall on the lowest limit of the
Δ0Sliq=crðTMÞ vs. TM scatter band. As a consequence, the Δ0Gam=crðT0Þ
given by eq. (9) would be systematically smaller than those yielded by eq.
(8). This expectation is corroborated in Fig. 3, where the lattice-stability
values for the 62 elements treated in the present work are plotted as a
function of the temperature of melting. The solid lines represent
least-squares parabolic fits to the assessed Δ0Gliq=crðTM=3Þ (Fig. 3a) and
Δ0Gliq=crðTM=2Þ (Fig. 3b) results, and the dashed lines represent the
Δ0Gam=crðT0Þ function given in eq. (9).

This trend in lattice-stability values can be understood in terms of
ideas behind the model by Loeff et al. [23]. They emphasized that the
lower Δ0Gam=crðT0Þ values would account for the possible relaxation of
the amorphous towards the crystalline state. In view of these results, the
predictions of the method by Loeff et al. [23] were adopted in the present
assessment as the lower limits of the probable Δ0Gam=crðT0Þ for the ele-
ments, and used in Section 4.3 to establish the range of probable dC by
selecting a proper average value to test eq. (2).

3.3. Surface energy contribution

The γϕ∞ðTÞ values for the crystalline and the amorphous phase at T ¼
300 K to be inserted in eq. (7) were assessed from the results in the
literature using the approximation γam∞ ð300 KÞ � γliq∞ ð300 KÞ, where
γliq∞ ð300 KÞ is the extrapolated surface tension of the liquid. The assess-
ment procedure was as follows.

First, recommended values of γcr∞ð0 KÞ for the solid elements and for
γliq∞ ðTMÞ were taken from Refs. [17] and [25]. The consistency of the
information was checked by calculating the γcr∞ðTMÞ from the γcr∞ð0 KÞ
values and the corresponding slopes (∂γcr∞=∂T) recommended in Ref. [26].
Then the ratios γcr∞ðTMÞ�γliq∞ ðTMÞ of 62 elements were evaluated and are

presented in Fig. 4 as a function of TM . The resulting ratios could be
represented by the mean value 1.2 ± 0.1 (indicated by the horizontal
lines), which compares very well with probable ratios between 1.15 and
1.20 according to Chatain [27]. Next, the γcr∞ð300 KÞ were calculated by
linearly extrapolating the γcr∞ð0 KÞ values to room temperature, and the
γliq∞ ð300 KÞ were obtained by assuming that the ratios γcr∞ðTMÞ�γliq∞ ðTMÞ
also hold at room temperature, i.e. γcr∞ðTMÞ�γliq∞ ðTMÞ ¼
γcr∞ð300 KÞ�γliq∞ ð300 KÞ. The resulting values are listed in Table 1.
Fig. 3. The lattice-stability of the amorphous relative to the crystalline stable phase, evaluated i
temperature for 62 elements, compared with the value obtained on the basis of eq. (9) (dashed
and Δ0Gliq=crðTM=2Þ results.
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4. Results and discussion

4.1. Predicted dC þ 4δ values

Values of the quantity dC þ 4 δ were obtained by inserting in eq. (7)
the surface energy values and the lattice-stability results obtained in the
previous section using eq. (8) with TG ¼ TM=3 and TG ¼ TM=2 as well as
using eq. (9). It is found that the difference between the values based on
both choices for TG is relatively small, whereas larger deviations appear
when comparing with those obtained from eq. (9). In particular, the
largest differences between the values based on TG ¼ TM=3 and the es-
timate based on eq. (9) are found for the following elements: Sb
(6.35 nm), Bi (6.25 nm), Ge (4.43 nm), Sn (3.77 nm), Er (3.18 nm), Ga
(3.15 nm), Ho (2.70 nm), Cd (2.37 nm), Ba (2.18 nm), Dy (2.02 nm), Si
(1.98 nm), Pt (1.68 nm), Nb (1.58 nm) and In (1.55 nm). For the
remaining elements the differences are less than 1.5 nm. As a first
approximation, each element was assigned a dC þ 4 δ value corre-
sponding to the average of those based on eq. (8) with TG ¼ TM=3 and
eq. (9).
n the current work as: a) Δ0Gliq=crðTM=3Þ and b) Δ0Gliq=crðTM=2Þ as functions of the melting
lines). The solid lines represent least-squares parabolic fits to the assessed Δ0Gliq=cr ðTM=3Þ



Table 1
The assessed values of the surface energy of the solid and surface tension of the liquid at
T0 ¼ 300 K; the quantity dC þ 4δ given by eq. (7) and the distance h between closest-
packed planes in the stable structure of the pure elements.

Element γcr∞ð300 KÞ [J m�2] γliq∞ ð300 KÞ [J m�2] dC þ 4 δ [nm] h [nm]

Ag 1.205 1.022 1.96 0.2358
Al 1.146 1.015 1.60 0.2338
Au 1.508 1.261 2.38 0.2354
Ba 0.352 0.254 5.14 0.3555
Be 1.837 1.624 0.81 0.1792
Bi 0.523 0.395 5.25 0.3268
Ca 0.466 0.420 1.31 0.3226
Cd 0.738 0.604 3.63 0.2809
Ce 1.000 0.826 4.77 0.2979
Co 2.490 2.123 1.80 0.2034
Cr 2.349 1.968 1.63 0.2058
Cs 0.080 0.069 3.62 0.4342
Cu 1.793 1.447 2.30 0.2087
Dy 1.100 0.780 5.02 0.2828
Er 1.130 0.776 4.49 0.2794
Eu 0.410 0.357 1.85 0.3239
Fe 2.493 2.116 2.14 0.2027
Ga 0.794 0.718 2.86 0.2260
Gd 1.070 1.966 1.63 0.2891
Ge 0.991 0.705 3.13 0.2000
Hf 2.110 1.896 1.32 0.2525
Ho 1.110 0.788 4.43 0.2808
In 0.654 0.570 4.17 0.2718
Ir 3.052 2.577 1.85 0.2216
K 0.132 0.113 3.67 0.3767
La 0.876 0.784 2.31 0.3036
Li 0.488 0.413 3.25 0.2482
Lu 1.185 1.154 0.26 0.2776
Mg 0.754 0.621 2.62 0.2606
Mn 1.540 1.295 1.41 0.2101
Mo 2.908 2.571 1.12 0.2225
Na 0.230 0.201 2.57 0.3034
Nb 2.658 2.182 2.28 0.2333
Nd 1.040 0.790 6.74 0.2950
Ni 2.390 2.019 1.78 0.2035
Os 3.455 2.875 1.71 0.2158
Pb 0.577 0.496 3.30 0.2858
Pd 2.052 1.703 2.43 0.2246
Pr 1.040 0.827 5.55 0.2959
Pt 2.502 2.026 2.64 0.2266
Rb 0.102 0.084 4.68 0.3949
Re 3.602 3.141 1.33 0.2228
Rh 2.702 2.259 2.09 0.2196
Ru 2.999 2.589 1.51 0.2140
Sb 0.650 0.405 5.17 0.3132
Sc 1.170 1.040 1.46 0.2637
Si 1.245 1.039 1.41 0.1920
Sn 0.677 0.563 4.13 0.2062
Sr 0.409 0.348 3.30 0.3513
Ta 3.008 2.498 2.14 0.2334
Tb 1.090 0.801 5.00 0.2847
Tc 3.002 2.651 1.38 0.2193
Th 1.510 1.155 5.22 0.2935
Ti 2.011 1.846 1.30 0.2343
Tl 0.577 0.490 3.64 0.2762
U 1.860 1.685 1.99 0.2478
V 2.552 2.211 1.66 0.2143
W 3.255 2.964 0.79 0.2238
Y 1.073 0.997 1.16 0.2865
Yb 0.460 0.417 1.29 0.3167
Zn 0.966 0.844 1.95 0.2473
Zr 1.917 1.653 2.29 0.2574

Table 2
Crystallographic relations used to calculate the spacing h between the closest-packed
planes in each crystal structure, for the elements considered in the present work.

Structure Elements h Closest-packed planes

bcc
ffiffi
2

p
2 a ð1 1 0Þ

fcc
ffiffi
3

p
3 a ð1 1 1Þ

hex 1
2 c ð0 0 2Þ

rho Bi, Sb
ffiffi
3

p
2

a cffiffiffiffiffiffiffiffiffiffiffiffiffi
3 a2þc2

p ð0 1 2Þ in the hexagonal cell

ort Ga 1
2 a ð2 0 0Þ

ort U 1
2 c ð0 0 2Þ

dia Ge, Si 1
2

ffiffi
2

p a ð2 2 0Þ
tet In a cffiffiffiffiffiffiffiffiffiffi

a2þc2
p ð1 0 1Þ

tet Sn 1
2

ffiffi
2

p a ð2 2 0Þ
cub Mn 1

3
ffiffi
2

p a ð3 3 0Þ
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4.2. Crystallographic evaluation of h distances

The h values corresponding to the idea of “the height of a monolayer
of atoms on the bulk crystal surface”, were evaluated as the distance
between the closest-packed planes, using the lattice parameters and the
relations listed in Table 2 for each structure. The results are also pre-
sented in Table 1.
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4.3. Analysis of the h vs. dC plots

In order to critically test the Shi [10] approach, the dC þ 4 δ values
obtained in Section 4.1 were combined with two extreme assumptions
about the Tolman parameter stated in relation with eq. (6), viz., δ ¼ 0
and δ ¼ h. In this latter case the model predicts that the elements Lu and
W should not present the amorphous phase, which cannot in principle be
ruled out.

The h vs. dC plots presented in Fig. 5a and Fig. 5b were constructed
with the two previously mentioned Tolman parameters, respectively. The
dotted lines in these graphics represent the Shi relation (eq. (2)).

It is evident that the Shi [10] relation does not account for the general
trend of the data points in Fig. 5. The reason is that the h parameter varies
between about 0.2 nm and 0.4 nm, i.e., a relatively narrow range,
compared with that of the critical diameter dC , which ranges from
negative values (for those few elements predicted not to form an amor-
phous phase) up to about 7 nm. Moreover, it seems possible to represent
the data points in Fig. 5 by means of a band whose scatter limits are
indicated by the parallel dashed lines. The straight solid lines are
described by the equations ð0:212þ 0:018 dCÞ (Fig. 5a) and ð0:234þ
0:016 dCÞ (Fig. 5b), clearly showing that the variables h and dC exhibit a
very small dependency on each other, if any exists.

It is evident from Fig. 5 that it is not possible to find a simple, direct
relation between the assessed h and the predicted dC. In other words, the
critical diameter at which a crystalline particle becomes unstable with
respect to the amorphous state cannot be predicted by relying upon a
purely crystallographic parameter. In fact, dC has to be evaluated by
thermodynamic calculations of the relative stability of the phases
involved. The current work constitutes a first step forward in such
research direction.

5. Summary and concluding remarks

The procedure for evaluating the crystallinity limit h presented in the
extensively quoted paper by Shi [10] involves an approximate crystal-
lographic argument. In order to test the accuracy of his method, a twofold
strategy was applied. First, an alternative evaluation of h that better re-
alizes Shi's idea of the height of a monolayer of atoms on the bulk crystal
surface was adopted. Second, a thermodynamic calculation of dC, which
involves a thermodynamic account of the bulk- and surface contributions
to the crystalline/amorphous relative phase stability for nanoparticles,
was performed.

The relation between the so-established h and dC was compared with
that given by the Shi approach. It is found that his relation does not ac-
count for the main trends of the current empirical results. In fact, instead
of his proportionality relation between h and dC, the current results
would be better accounted for by a scatter band of about 0.2 nm in width
with h values varying weakly with dC.

The key conceptual result of the current work is that, instead of the h



Fig. 5. The distance h between the closest-packed planes as a function of the critical diameter dC . a) Tolman parameter ¼ 0 nm b) Tolman parameter ¼ h.
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parameter, which is based only upon considerations about the structure
of the crystalline phase, the crystallinity limit would be more reliably
accounted for by the thermodynamically determined quantity dC . To this
aim, additional experimental information on the bulk- and surface con-
tributions to the crystalline/amorphous relative stability for elements at
low temperatures is necessary to overcome the limitations of the cur-
rent database.
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