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S U M M A R Y
The dispersion and attenuation of seismic waves are potentially important attributes for the non-
invasive detection and characterization of fracture networks. A primary mechanism for these
phenomena is wave-induced fluid flow (WIFF), which can take place between fractures and
their embedding background (FB-WIFF), as well as within connected fractures (FF-WIFF).
In this work, we propose a theoretical approach to quantify seismic dispersion and attenuation
related to these two manifestations of WIFF in saturated porous rocks permeated by two
orthogonal sets of fractures. The methodology is based on existing theoretical models for rocks
with aligned fractures, and we consider three types of fracture geometries, namely, periodic
planar fractures, randomly spaced planar fractures and penny-shaped cracks. Synthetic 2-D
rock samples with different degrees of fracture intersections are then explored by considering
both the proposed theoretical approach and a numerical upscaling procedure that provides the
effective seismic properties of generic heterogeneous porous media. The results show that the
theoretical predictions are in overall good agreement with the numerical simulations, in terms
of both the stiffness coefficients and the anisotropic properties. For the seismic dispersion and
attenuation caused by FB-WIFF, the theoretical model for penny-shaped cracks matches the
numerical simulations best, whereas for representing the effects due to FF-WIFF the periodic
planar fractures model turns out to be the most suitable one. The proposed theoretical approach
is easy to apply and is applicable not only to 2-D but also to 3-D fracture systems. Hence, it
has the potential to constitute a useful framework for the seismic characterization of fractured
reservoirs, especially in the presence of intersecting fractures.

Key words: Fracture and flow; Numerical modelling; Seismic anisotropy; Seismic attenua-
tion; Theoretical seismology.

1 I N T RO D U C T I O N

Fractures are important objects in many geological formations, as
they provide additional conduits for fluid flow. This implies that
their presence can significantly improve the effective permeability
of the involved material, especially in the case of low-permeability
reservoirs (e.g. Gale et al. 2007; Ostojic et al. 2012). Furthermore,
fractures also have a great influence on the elastic properties of
fractured formations. Due to their small aspect ratio, even a small
density of fractures can greatly reduce the elastic stiffness of the host
formation (e.g. Bristow 1960; Walsh 1965; Kuster & Toksöz 1974;
Mavko et al. 1995; Glubokovskikh et al. 2016). For these reasons,
the detection and characterization of fractures are topics of great
importance in many disciplines, such as oil/gas exploration and
production, carbon geosequestration, nuclear waste disposal, and

underground engineering, among many others (e.g. Huo & Gong
2010; Neuzil 2013; Lisjak et al. 2014; Yuan et al. 2014; Liu et al.
2017).

The most direct method for fracture detection and characteriza-
tion is the study of outcrops or core samples (e.g. Zeeb et al. 2013;
Basquet et al. 2008), which provides first-hand information on the
geometries and distribution of the fractures in the formation of inter-
est. However, it can only provide such information for a very limited
rock volume. Apart from these kinds of observations, well logging
methods are also often applied in the characterization of fracture
networks (e.g. Zazoun 2013; Che et al. 2015). Detailed information
on the fractures present around the borehole can be obtained, espe-
cially from imaging data. Nevertheless, these methods also suffer
from the limited sampling of the affected rock volume, which is con-
fined to the vicinity of the borehole. Furthermore, the accuracy of
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fracture detection and characterization through cores or logs is also
influenced by the possible existence of coring- or drilling-induced
fractures. For these reasons, non-invasive approaches that can offer
fracture information on a larger scale are of significant interest. In
this context, the seismic method presents a special value due to
its ability to provide, in a non-invasive manner, information on the
probed fractured volume on a relatively large scale (e.g. Wang et al.
2007; Liu & Martinez 2012).

In most cases, the resolution of the seismic data is insufficient
to directly image fractures and, hence, seismic attributes are often
used for this purpose (e.g. Bakulin et al. 2000a, 2000b, 2000c;
Vlastos et al. 2007; Sassen & Everett 2009; Gao 2013). In particu-
lar, in presence of mesoscopic fractures, seismic waves experience
velocity dispersion and attenuation, as well as frequency-dependent
anisotropy, which in turn can serve as valuable signatures for frac-
ture detection and characterization (e.g. Chapman 2003; Lambert
et al. 2006; Rubino et al. 2014). An important physical mechanism
for the associated energy dissipation is wave-induced fluid flow
(WIFF) between the fractures and the background pores (FB-WIFF)
(Müller et al. 2010). When a seismic wave propagates through a
fractured porous rock, due to the typically large contrast between
the compressibility of the fractures and that of the background
medium, a strong fluid pressure gradient will be induced between
these two regions. Hence, oscillatory fluid flow will occur between
them, which results in energy dissipation due to viscous friction.
Up until now, extensive research has been carried out to explore this
mechanism for rocks containing aligned fractures. Chapman (2003)
considered fluid flow both on the grain scale (between microcracks
and background pores) and fracture scale (between fractures and
background pores). The interactions between these two scales are
also analysed and the resulting frequency-dependent anisotropy is
then investigated. Brajanovski et al. (2005) modelled WIFF effects
considering a saturated rock with aligned planar fractures as a spe-
cial case of a periodic layered porous medium. Galvin & Gurevich
(2006, 2007, and 2009) studied the case of sparsely and randomly
distributed aligned penny-shaped cracks embedded in a saturated
porous rock. Gurevich et al. (2009) proposed a unified branching
function approach to describe the seismic dispersion and attenu-
ation due to the FB-WIFF, which was recently extended by Guo
et al., 2018a, 2018b) for considering the effects of finite fracture
thickness.

In a series of papers, Rubino et al. (2013, 2014, and 2017) found
that besides FB-WIFF, WIFF also occurs within connected meso-
scopic fractures (FF-WIFF), which can have a significant influence
on the dispersion, attenuation, and anisotropy of seismic waves.
Since this fluid flow critically depends on the connectivity degree
of the probed fracture network, these results suggest the possibility
to detect fracture connectivity and, hence, to quantify the effective
permeability of fractured formations using seismic data. It is then
of great importance to further explore this WIFF manifestation.
However, to date, this task has been addresses mainly using numer-
ical simulations (Rubino et al. 2013, 2014, 2017), and little work
has been done to explore the theoretical side of this manifestation
of WIFF. A recent effort in this direction was published by Guo
et al. (2017), who quantified the elastic properties of rocks con-
taining two perpendicular sets of non-intersecting and intersecting
fractures. These authors computed the stiffness coefficients in the
low- and high-frequency limits as well as at an intermediate fre-
quency range for which fractures are hydraulically isolated from
the background but full pressure communication within connected
fractures occurs. In addition, the characteristic frequencies separat-
ing the different frequency regimes were also derived. The work of

Guo et al. (2017) therefore provides the basis to further develop
a theoretical framework that allows to quantify seismic dispersion
and attenuation incorporating the effects of both FB- and FF-WIFF.
In this paper, we complement and extend the theoretical predictions
of Guo et al. (2017) to the full frequency range. The resulting ef-
fective properties are then compared with corresponding numerical
simulations.

2 T H E O RY

2.1 Unified theoretical model for the P-wave modulus in
the direction perpendicular to the fracture plane for rocks
with aligned fractures

Despite the complex geometrical properties of fractures, for sim-
plicity they are usually approximated as planar fractures or penny-
shaped cracks. If the radii of the fractures are much larger than
the predominant seismic wavelength and the fracture spacing (e.g.
large joints), fractures can be treated as planes of weakness, which
are also called planar fractures (Schoenberg 1980; Gurevich et al.
2009). In this case, fractures can be modelled as thin and highly
porous layers, and the corresponding fractured rock can be treated
as a layered porous medium (Brajanovski et al. 2005). In this con-
text, it is important to remark that this poroelastic representation
of fractures is consistent with the fact that natural fractures tend
to be ‘rough-walled’, with the walls being in contact with each
other at certain locations and often containing rock fragments,
weathering products, or mineral deposits in the regions between
the contact areas. When a seismic wave propagates through such a
medium, seismic dispersion and attenuation occurs due to FB-WIFF.
If the planar fractures are distributed periodically in an isotropic
porous background, the frequency-dependent and complex-valued
saturated P-wave modulus in the direction perpendicular to
the fracture plane can be obtained theoretically (Brajanovski
et al. 2005).

On the other hand, if the fracture radii are much smaller than the
fracture spacing but much larger than the pore sizes, the fractures are
then often modelled as penny-shaped cracks, that is, strongly oblate
spheroids. For saturated porous rocks with aligned penny-shaped
cracks, FB-WIFF will also occur in response to the propagation
of a seismic wave. If the aligned penny-shaped cracks are dis-
tributed randomly and sparsely in an isotropic porous background
medium, the complex-valued and frequency-dependent saturated
P-wave modulus in the direction perpendicular to the fracture plane
can be obtained by solving a mixed boundary value problem in the
context of Biot’s equations of poroelasticity (Galvin & Gurevich,
2006, 2007, 2009).

In order to obtain a unified model, Gurevich et al. (2009) applied
a branching function approach (Johnson 2001; Pride & Berryman
2003) to express the P-wave modulus of a saturated porous rocks
with aligned fractures in the direction perpendicular to the frac-
ture plane. The resulting frequency-dependent and complex-valued
saturated P-wave modulus csat satisfies:

1

csat
= 1

C1

[
1 +

(
C1 − C0

C0

)
/

(
1 − ς + ς

√
1 − i

ωτ

ς 2

)]
, (1)

where ω is the seismic wave angular frequency; ζ and τ are pa-
rameters that shape the P-wave dispersion and attenuation curves
as functions of frequency; and C0 and C1 represent the values of the
P-wave modulus in the low- and high-frequency limits, respectively.
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The low- and high-frequency asymptotes of eq. (1) can be ex-
pressed as

1

csat
= 1

C0
(1 + iωT ) , ωτ << ς 2, (2)

1

csat
= 1

C1

(
1 + G√−iω

)
, ωτ >> 1. (3)

Hence, the parameters T and G control the behaviours of the
P-wave modulus at low and high frequencies, respectively. The
shape parameters ζ and τ can be related to the parameters T and G
as follows:

τ =
(

C1 − C0

C0G

)2

, (4)

ς = (C1 − C0)3

2C1C2
0 T G2

. (5)

Thus, the frequency-dependent saturated P-wave modulus in the
direction perpendicular to the fracture plane can be computed if
the values of T and G are obtained. Gurevich et al. (2009) derived
expressions for these parameters for the case with infinitesimal
fracture thickness. Recently, Guo et al. (2018a) showed that the
influence of the finite fracture thickness on the P-wave modulus can
be significant, and obtained corresponding expressions for T and G
for both planar fractures and penny-shaped cracks.

For planar fractures with finite thickness, when they are dis-
tributed periodically in an isotropic porous background medium,
the saturated P-wave modulus of the fractured rock in the direction
perpendicular to the fracture plane can be obtained as follows (e.g.
Brajanovski et al. 2005):

1
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= 1
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)
+
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iωηCc
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fc H
2

) ,

(6)

where Cb and Lb are the P-wave moduli of the saturated and dry
background, respectively; κb is the permeability of the background;
fb is the fraction of background with respect to the whole porous
medium; αb = 1 − Kb/Kg is the Biot’s coefficient of the background,
with Kb being the bulk modulus of the dry background and Kg

that of the solid grains; and Mb = Kg/[(1 − Kb/Kg) − φbg(1 −
Kg/Kf)] is the Biot’s modulus of the background, with Kf being
the fluid bulk modulus and φbg the porosity of the background.
The subscript c represents the corresponding values for the porous
material infilling the fractures. In addition, H represents the distance
between consecutive fractures, and S1 = 1/H is the specific fracture
surface area per unit volume for the planar fractures. Both the
fractures and the background pores are saturated with the same
fluid with shear viscosity η.

At low frequencies, we can obtain the asymptote of eq. (6) as
follows:

1
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= 1
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⎣1 + iω

1

12
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Comparing eq. (7) with eq. (2) gives the expression of T for the
periodic planar fracture case as follows:

T = 1

12

C1 − C0

C1

(
fb
κb

+ fc
κc

)
ηH 2

Mb Lb
Cb fb

+ Mc Lc
Cc fc

. (8)

At high frequencies, the asymptote of eq. (6) is as follows:
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Comparison of eq. (9) with eq. (3) gives the expression of G for
the periodic planar fracture case as follows:

G =
2S1C1

(
αb Mb

Cb
− αc Mc

Cc

)2

√
Mb Lbη

Cbκb
+

√
Mc Lcη

Ccκc

. (10)

If the planar fractures are distributed randomly, as the fluid dif-
fusion length gets very small values at high frequencies, the energy
only dissipates in the immediate vicinity of the fracture surface.
Hence, the seismic dispersion and attenuation at high frequencies
are independent of the characteristics of the probed fracture distri-
bution. This means that the expression of G for the random planar
fracture case is the same as that for the periodic planar fracture
case (eq. 10). However, at low frequencies, due to the large fluid
pressure diffusion lengths, seismic dispersion and attenuation will
be affected by the characteristics of the fracture distribution. As
the effective fracture spacing will tend to infinity for the random
planar fracture distribution case (e.g. Gurevich et al. 2009), the
corresponding value of T will then also tend to infinity.

For penny-shaped cracks with finite thickness, Galvin &
Gurevich (2009) showed that the effects of finite fracture thick-
ness are negligible at low frequencies. Hence, we can use the same
expression for T for the penny-shaped cracks with finite thickness as
that for infinitesimal thickness case. This expression was given by
Gurevich et al. (2009), which reads

T = 2(Cb − αb Mb)2 (
2 − 4αbgb + 3α2

b g2
b

)
a2εη

15μbgb(1 − gb)2Cb Lbκb

, (11)

where μb is the dry background shear modulus and gb is the ratio of
μb to Lb; a is the radius of the penny-shaped cracks; ε = 3fc/(4πβ)
is the crack density with β being the crack aspect ratio. Substituting
the relation between the P-wave moduli of the saturated fractured
rock in the low- and high-frequency limits (Gurevich et al. 2009),
eq. (11) can be rewritten as

T = 1

5

C1 − C0

C0

(
2 − 4αbgb + 3α2

b g2
b

)
a2η

gb (1 − gb) Lbκb
. (12)

At high frequencies, it is difficult to derive an analytical expres-
sion for G corresponding to a porous rock containing penny-shaped
cracks with finite thickness. However, we can obtain an approxi-
mate expression by comparing with the planar fracture case. Due to
the small values that the fluid diffusion length gets at high frequen-
cies, energy dissipation only occurs at the immediate vicinity of the
fracture surfaces. This implies that the energy dissipation depends
critically on the fracture surface area for both the planar fracture
and penny-shaped crack cases. Gurevich et al. (2009) showed that
the expression for G for the planar fracture and penny-shaped crack
cases has the same form when the fracture thickness is infinitesimal,
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except that the specific surface areas for these two types of frac-
tures are different. Hence, for the case with finite fracture thickness
considered in this work, we also assume that the expression of G
for the penny-shaped crack case has the same form as that for the
planar fracture case. However, apart from correcting for the specific
surface area, it has to be taken into account that the physical prop-
erties of the fractures are explicitly involved in the expression of G
for fractures with finite thickness (eq. 10). To take into account the
effects due to the different geometrical characteristics of the penny-
shaped cracks with respect to planar fractures, and considering that
the amount of energy dissipation is controlled by the mechanical
contrast between fractures and background, we employ an equiva-
lent infill material when using eq. (10) for computing the value of
G for rocks containing penny-shaped cracks with finite thickness

G =
2S2C1

(
αb Mb

Cb
− αce Mce

Cce

)2

√
Mb Lbη

Cbκb
+

√
Mce Lceη

Cceκce

, (13)

where S2 = πε/a is the specific fracture surface area per unit volume
for the penny-shaped cracks, and the subscript ‘ce’ represents the
properties of the equivalent infill material. The equivalent material
has the same porosity and permeability as that for the infill mate-
rial of the penny-shaped cracks. However, the effective dry frame
P-wave and shear moduli, Lce and μce, are calculated as follows
(Brajanovski et al. 2005; Guo et al. 2018a):

Lce = fc

Z N
, (14)

μce = fc

ZT
, (15)

with ZN and ZT being the normal and tangential excess compli-
ances of the dry penny-shaped cracks, respectively; and fc being the
fraction of the penny-shaped cracks in the rock. Eqs (14) and (15)
ensure that the excess compliances of the dry rock considering pla-
nar fractures containing the equivalent infill material are the same as
those of the same rock containing penny-shaped cracks. The other
effective elastic properties of the equivalent infill material can be
calculated from Lce and μce. The values of G provided by eq. (13)
are in good agreement with corresponding numerical simulations
(Guo et al. 2018a).

More details with respect to the derivation of T and G for rocks
having aligned planar fractures or penny-shaped cracks of finite
thickness can be found in Guo et al. (2018a).

2.2 Extension to the case of rocks having two
perpendicular sets of fractures

To study the effects of fracture intersections on seismic dispersion
and attenuation, we consider a simple case consisting of a rock with
two sets of perpendicular fractures, having all the fractures the same
geometrical characteristics. We assume that the two fracture sets are
perpendicular to the x- and y-axes, respectively, and we take into
account the presence of intersecting and non-intersecting fracture
networks, such as those shown in Fig. 1.

2.2.1 Non-intersecting fracture case

For rocks with two orthogonal sets of non-intersecting fractures, a
P-wave propagating perpendicular to one of the fracture sets will

induce oscillatory fluid flow between such fractures and the back-
ground pores (FB-WIFF). The fractures parallel to the propagation
direction, on the other hand, are not expected to affect significantly
the behaviour of the seismic wave (Rubino et al. 2014). Hence, the
two P-wave moduli in the directions perpendicular to the two frac-
ture sets, c11 and c22, can be directly obtained in a similar way as for
rocks with aligned fractures (eq. 1). That is, the expressions for T and
G for the cases with orthogonal non-intersecting planar fractures as
well as for non-intersecting penny-shaped cracks can be calculated
using the same formulas as for the corresponding aligned fracture
case. As the fractures considered here have the same geometrical
characteristics, at least one of the non-intersecting fracture sets will
have the fracture spacing that is larger than the fracture radii under
the periodical distributions. This violates the definition of planar
fractures. Hence, the non-intersecting periodic planar fracture case
is not realizable and we only consider the randomly spaced planar
fracture and penny-shaped crack cases here. For randomly-spaced
planar fractures, T tends to infinity and G can be calculated using
eq. (8). For penny-shaped cracks, T and G can be calculated using
eqs (12) and (13), respectively. However, it should be noted that,
for calculating c11, the properties of the aligned fracture set in these
equations correspond to those of the fracture set perpendicular to
the x-axis, whereas for calculating c22 the properties of the fracture
set perpendicular to the y-axis should be used. Furthermore, the
P-wave moduli in the low- and high- frequency limits C0 and C1

need to be replaced by the corresponding values of c11 or c22.
It is important to remark here that, due to Poisson ratio effects,

a small amount of fluid flow also occurs between the fracture set
parallel to the wave propagation direction and the background pores.
The corresponding effects on the P-wave moduli are expected to
be negligible and, therefore, are not accounted for in the approach
proposed here. This is in agreement with the results of Rubino et
al. (2014) and is supported by the numerical analysis considered in
this work.

2.2.2 Intersecting fracture case

In the case of rocks with two perpendicular sets of intersecting
fractures, a P-wave propagating perpendicular to one of the fracture
sets will not only induce FB-WIFF, but also FF-WIFF. Hence, the
P-wave modulus in the direction perpendicular to one fracture set
will experience two stages of dispersion and attenuation, which
are due to these two manifestations of WIFF. The characteristic
frequencies for these two stages of dispersion and attenuation are
proportional to the permeability of the background medium and
that of the material composing the fractures, respectively (Guo et
al. 2017). Consequently, since typically the permeability of the
background medium is much lower than that of the fractures, the
dispersion and attenuation due to FB-WIFF occur at much lower
frequencies than in the case of FF-WIFF.

To obtain the frequency-dependent P-wave moduli c11 and c22

for the first stage of dispersion and attenuation (FB-WIFF), the
corresponding expressions for T and G are needed. For rocks with
two orthogonal sets of fractures having the same geometries, when
a P-wave propagates perpendicular to one of the fracture sets, the
resulting FB-WIFF is expected to be primarily controlled by the
stiffness contrast between such fracture set and the background
medium. Hence, it is reasonable to approximate the expressions for T
and G using the same form as those for aligned fracture case [eqs (8)
and (10) for planar fractures, and —(13) for penny-shaped cracks].
However, even in the high frequency limit of FB-WIFF, connected
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Figure 1. Geometries of the investigated 2-D synthetic rock samples. Samples (a) and (b) have 20 horizontal and 20 vertical fractures, whereas samples (c)
and (d) also have 20 horizontal fractures but 10 vertical fractures. In addition, while samples (a) and (c) contain non-intersecting fractures, in samples (b) and
(d) all vertical fractures have at least one intersection.

fractures will be in pressure communication with each other, and
hence, the system will be softer than in the case of only one set of
aligned fractures. This implies that the dispersion and attenuation
due to FB-WIFF will also be weaker in presence of connected
fractures, as shown by Rubino et al. (2014). As the dispersion
and attenuation at low and high frequencies are controlled by the
parameters T and G, respectively (eqs 2 and 3), weaker dispersion
and attenuation means smaller values of T and G for the intersecting
fracture case in comparison with the aligned fracture case. Hence,
the values of T and G need to be scaled down here. Since the
amplitude of the dispersion and attenuation are dominated by the
elastic properties in the low- and high-frequency limits (Mavko et
al. 2009), the scaled values of T and G can be easily obtained by
replacing the P-wave moduli in the low- and high-frequency limits
C0 and C1 in eqs (8), (10), (12) and (13) with the corresponding
limiting values of c11 or c22 due to FB-WIFF for the intersecting
fracture case. It should be noted that T for the randomly spaced
planar fracture case still tends to infinity (corresponding to the
zero value of ζ ). Similar to the non-intersecting fracture case, the

parameters of the fracture set perpendicular to the x-axis should be
used when calculating T and G for c11, whereas those of the other
fracture set for computing c22. In the numerical examples, we will
see that the theoretical predictions using the scaled values of T and
G are in good agreement with the numerical simulations.

For computing the P-wave moduli c11 and c22 for the second stage
of dispersion and attenuation (FF-WIFF), it is important to take into
account that if the frequency of the propagating wave is above the
high-frequency limit of FB-WIFF, the fluid in the fractures does
not have enough time to communicate with that of the background
and, therefore, the fractures are hydraulically isolated. However, the
fluid can still communicate between connected fractures. Hence, if a
P-wave propagates perpendicular to one of the fracture sets, the fluid
from such fractures will be injected into (or withdrawn from) the
connected ones during the compression (or extension) cycle. This
indicates that the fluid in the fracture set perpendicular to the wave
propagation direction is communicating with an effective medium,
for which the other fracture set acts as the porosity and the saturated
background medium acts as the solid phase. This implies that this
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process can be represented by aligned fractures embedded in an
effective medium and, again as before, the eqs (8), (10), (12) and
(13) can be used to compute the required parameters T and G. In
order to do so, the properties of the effective medium are needed.
The elastic properties of the dry effective medium are obtained
by adding the dry fractures into the saturated background medium
using the linear slip theory (Schoenberg & Sayers 1995; Guo et
al. 2017). The saturated elastic properties of this effective medium
are then obtained by using the anisotropic Gassmann’s equation
(Gurevich 2003; Guo et al. 2017). Furthermore, the permeability
of the effective medium along x-axis (or y-axis) κe can be obtained
based on the definition of permeability:

κe = κcφe, (16)

where κc is the permeability of the material composing the fracture
set parallel to x- or y- axis, and φe is the volume fraction that the
corresponding fracture set occupies.

With the properties of the effective medium and the fracture sets,
the expressions of T and G for c11 and c22 for the second stage
of dispersion and attenuation can be calculated through eqs (8),
(10), (12) and (13) by replacing the properties of the background
medium with those of the effective medium and the properties of
the aligned fractures with those of the fracture set perpendicular to
the x- and y-axes, respectively. Also, we need to replace the elastic
properties in the low- and high-frequency limits C0 and C1 with the
corresponding values for the stage of dispersion and attenuation due
to FF-WIFF. It should be noted that T for randomly spaced planar
fractures still tends to infinity here.

It is important to remark here that, different from the case of an
isotropic background, the effective medium is anisotropic. Hence,
strictly speaking, the expressions for T and G should be derived
for fractures in an anisotropic background. However, the resulting
equations may get very complicated. To keep our approach easy to
apply, we still use eqs (8), (10), (12) and (13) to calculate T and
G. However, the background porosity in these equations is replaced
by the fraction that the fracture set along x-axis occupies in the
rock for c11 and that occupied by the fracture set along y-axis for
c22. And also, the background permeability and elastic properties
are replaced by those of the effective medium along x-axis for c11

and those along y-axis for c22. This may cause some errors, which
we will discuss in the numerical example section of this work. In
addition, in our current approach, we assume that all the fractures
are connected to at least one orthogonal fracture and, hence, the fluid
pressure increase induced by the seismic wave can be released. If
there are isolated fractures, the rock will behave in a stiffer manner
due to the unreleased fluid pressure. This will also be analysed in
the numerical example section.

2.3 Elastic properties in the low- and high-frequency limits
for the two manifestations of WIFF

To determine seismic dispersion and attenuation from eq. (1), the
elastic properties in the low- and high-frequency limits for each
manifestation of WIFF are needed. For rocks with non-intersecting
fractures, only FB-WIFF occurs. Hence, we only need to obtain the
elastic properties in the low- and high- frequency limits for this
WIFF manifestation in this case. In the low-frequency limit, the
fluid in the fractures has enough time to communicate with that
in the background pores, and therefore, the fluid pressure is uni-
form throughout the rock. Under this condition, we can first add
the dry fractures into the dry background medium using the linear

slip theory (Schoenberg & Sayers 1995) to obtain the elastic prop-
erties of the dry fractured rock. The elastic properties of the satu-
rated fractured rock can then be calculated by using the anisotropic
Gassmann’s equation (Gurevich 2003). Conversely, in the high-
frequency limit, the fluid in the fractures does not have enough
time to communicate with that in the background pores. Hence, the
fractures are hydraulically isolated from the saturated background
medium. In this case, we first obtain the compliances of the hydrauli-
cally isolated fractures from the dry fracture compliances using a
theory for isolated fluid-filled fractures (Hudson 1981; Schoenberg
& Douma 1988; Gurevich 2003). Then, the elastic properties of the
saturated fractured rock can be obtained by adding the hydraulically
isolated fractures into the saturated background medium using the
linear slip theory, with the elastic properties of the saturated back-
ground calculated by using the isotropic Gassmann’s equation (Guo
et al. 2017).

For rocks with intersecting fractures, apart from FB-WIFF, FF-
WIFF can also occur. For the FB-WIFF, the elastic properties in
its low-frequency limit can be obtained by using the linear slip
theory and the anisotropic Gassmann’s equation since the fluid
pressure is uniform throughout the rocks. This procedure is similar
to that for the non-intersecting fracture case. On the contrary, in
its high-frequency limit, the fluid in the fractures does not have
enough time to communicate with that of the background pores
due to its low permeability. However, as the permeability of the
fractures is much higher than that of the background, the fluid
can still communicate within connected fractures. Hence, the fluid
pressure will be uniform inside the system of connected fractures,
but with a value different from that of the saturated background
medium. Under this condition, we can obtain the elastic properties
of the saturated fractured rock by first adding the dry fractures into
the saturated background medium using the linear slip theory. Then,
the dry fractures can be saturated using the anisotropic Gassmann’s
equation, with the saturated background medium acting as the solid
phase and the fracture porosity acting as the porosity (Guo et al.
2017). For FF-WIFF, the elastic properties in its low-frequency
limit coincide with those in the high-frequency limit of FB-WIFF.
However, in the high-frequency limit of the FF-WIFF, the fractures
will be hydraulically isolated from both the background medium and
the other fractures. Hence, similar to the non-intersecting fracture
case, we can calculate the corresponding elastic properties by adding
the hydraulically isolated fractures into the saturated background
medium using the linear slip theory.

The reader is referred to the work of Guo et al. (2017) for the
details on the determination of the elastic properties in the low- and
high-frequency limits for the two manifestations of WIFF.

2.4 Full stiffness coefficients

With the values of T and G obtained for the P-wave moduli in the
directions along the x- and y-axes (c11 and c22), and the correspond-
ing elastic properties in the low- and high-frequency limits, the
frequency-dependent P-wave moduli c11 and c22 can be calculated.
For rocks with non-intersecting fractures, c11 and c22 can be written
as follows:

1

cii
= 1

ch f
ii

[
1 +

(
ch f

ii − cl f
i i

cl f
i i

)
/

(
1 − ςi + ςi

√
1 − i

ωτi

ς 2
i

)]
,

i = 1, 2 (17)

where cl f
i i and ch f

ii are the corresponding P-wave moduli in the low-
and high- frequency limits, respectively; and ζ i and τ i are the shape

Downloaded from https://academic.oup.com/gji/article-abstract/213/2/1244/4834409
by Bibliotheque Cantonale et Universitaire user
on 01 May 2018



1250 J. Guo et al.

parameters for cii, which can be calculated from Ti, Gi, cl f
i i , and ch f

ii

using eqs (4) and (5).
For rocks with intersecting fractures, there are two stages of seis-

mic dispersion and attenuation which are due to the FB- and FF-
WIFF. For each stage, we can calculate the frequency-dependent
P-wave moduli c11 and c22 through the use of eq. (17), with the
involved parameters evaluated for the considered WIFF manifesta-
tion. We can then combine these two stages of seismic dispersion
and attenuation as follows:

1

cii
= 1

ch f 2
i i

{
1+

[
ch f 2

i i − c1
i i (ω)

c1
i i (ω)

]
/

(
1 − ς2i + ς2i

√
1 − i

ωτ2i

ς 2
2i

)}
,

i = 1, 2(18)

where ch f 2
i i is the P-wave moduli along x- or y- axis in the high-

frequency limit for the second stage of seismic dispersion and at-
tenuation (due to FF-WIFF) and ζ 2 i and τ 2i are the corresponding
shape parameters; and c1

i i (ω) is the frequency-dependent P-wave
moduli calculated from eq. (17) for the first stage of seismic disper-
sion and attenuation (due to FB-WIFF).

Hence, we have obtained the frequency-dependent P-wave mod-
uli c11 and c22 for both rocks with non-intersecting and intersecting
fractures. For the other stiffness coefficients, we can also obtain
their frequency-dependent values from eqs (17) and (18). Follow-
ing Gurevich et al. (2009), for all the stiffness coefficients, each
stage of dispersion and attenuation (due to FF- or FB-WIFF) is
expected to be controlled by two crossover frequencies:

ωP = 2ς 2

τ
, (19)

ωM = C1

C0

1

τ
. (20)

These two crossover frequencies separate each stage of dispersion
and attenuation in three regimes where the seismic velocities and at-
tenuation, or stiffness coefficient, vary with frequency in a different
manner.

Numerical simulations (Guo et al. 2017) show that all the stiff-
ness coefficients have similar frequency-dependent behaviours for
samples with relatively high symmetry (equal number of horizon-
tal and vertical fractures). As discussed by Guo et al. (2017), the
characteristic frequency for FB-WIFF is controlled by the fracture
geometries and the properties of the background medium, whereas
that for FF-WIFF is determined by the fracture geometries and the
properties of an effective background medium. Hence, for sam-
ples with relatively low symmetry, the crossover frequencies for
FB-WIFF for all the stiffness coefficients should still be similar
as both the properties of the background medium and the fracture
geometries do not change with the incidence angle of the seis-
mic wave. However, for FF-WIFF, while the fracture geometries
remain unchanged with the wave incidence angle, the properties
of the effective background medium can vary. This may result in
some shifts of the corresponding crossover frequencies for different
stiffness coefficients. Nevertheless, since we consider fractures hav-
ing identical shapes and physical properties, these frequency shifts
should be rather small unless the number of horizontal and vertical
fractures are drastically different. Hence, for the general case, ωP

and ωM for c11 and c22 for a given stage of dispersion and attenua-
tion (FB- or FF-WIFF) are expected to be similar, and close to the
crossover frequencies of the remaining stiffness coefficients. Based
on this fact, the shape parameters for the other stiffness coefficients

can be obtained as follows:

τ ′ = C0

C ′
0

C ′
1

C1

τ, (21)

ζ ′ =
√

τ ′

τ
ζ, (22)

where, for the first or second stage of dispersion and attenuation, τ

and ζ are the shape parameters for c11 or c22 with C0 and C1being
the values of c11 or c22 in the low- and high- frequency limits
respectively, and τ ’, ζ ’, C ′

0 and C ′
1 are the corresponding values for

a different stiffness coefficient of interest.
Using the thus obtained shape parameters τ ’ and ζ ’ and also the

elastic properties in the low- and high-frequency limits for each
stage of dispersion and attenuation (Section 2.3), the frequency-
dependent values of the other stiffness coefficient can be obtained
from eq. (17) for the non-intersecting fracture case and from eq.
(18) for the intersecting fracture case. It should be noted here that
the τ ’ and ζ ’ can be estimated from either c11 or c22 using eqs (21)
and (22), as the resulting values are expected to be close. Here, we
use the average values of τ ’ and ζ ’ obtained from both c11 and c22.

2.5 Seismic wave velocity and attenuation as functions
of incidence angle and associated anisotropic parameters

Once the full stiffness coefficients are computed, we can calculate
the seismic wave velocity and attenuation as functions of incidence
angle. Guo et al. (2017) show that the effective elastic properties
of saturated rocks containing two sets of orthogonal fractures cor-
respond to those of an orthorhombic medium. Hence, the complex
velocities of the qP-, qSV-, and SH-waves can be calculated from
the stiffness coefficients using the formulas for orthorhombic me-
dia. The complex velocities in the x–y plane can then be calculated
as follows (Mavko et al. 2009):

Ṽq P =
(

c66 + c22cos2θ + c11sin2θ

+
√

(c66 + c22cos2θ + c11sin2θ )2 − 4M

)1/2

(2ρ)−1/2, (23)

ṼqSV =
(

c66 + c22cos2θ + c11sin2θ

−
√

(c66 + c22cos2θ + c11sin2θ )2 − 4M

)1/2

(2ρ)−1/2, (24)

ṼSH =
(

c55sin2θ + c44cos2θ

ρ

)1/2

, (25)

where ρ is the density of the saturated fractured rock, θ is the inci-
dence angle measured with respect to the y-axis, and the expression
for M is as follows:

M = (
c66cos2θ + c11sin2θ

) (
c22cos2θ + c66sin2θ

)
− (c12 + c66)2sin2θcos2θ. (26)

The complex velocities for seismic waves propagating in the x–z
and y–z planes can be calculated in a similar way, as can be seen
in Mavko et al. (2009). After obtaining the complex velocities, the
corresponding phase velocities and attenuations for the qP-, qSV-,
and SH-waves can be computed as follows (e.g. Carcione et al.
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2013):

V =
[

Re

(
1

Ṽ

)]−1

, (27)

1

Q
=

∣∣∣∣∣ Im
(
Ṽ 2

)
Re

(
Ṽ 2

)
∣∣∣∣∣ , (28)

where Ṽ represents the complex velocities of either qP-, qSV-, or
SH-waves, and V and 1/Q are the corresponding phase velocities
and attenuations.

To study the anisotropic properties of fractured rocks, it is con-
venient to plot Thomsen’s style anisotropic parameters. For or-
thorhombic media, the velocity anisotropic parameters in the x–y
plane can be computed as follows (Tsvankin 1997; Collet et al.
2014):

ε(3) = Re (c22 − c11)

2Re (c11)
, (29)

δ(3) = [Re (c12 + c66)]2 − [Re (c11 − c66)]2

2Re (c11) Re (c11 − c66)
, (30)

γ (3) = Re (C44 − C55)

2Re (C55)
. (31)

The velocity anisotropic parameters in the other planes (x-z and
y-z planes) can be calculated in a similar way (Tsvankin 1997; Collet
et al. 2014).

3 N U M E R I C A L E X A M P L E S

3.1 Sample parameters

Following Rubino et al. (2014) and Guo et al. (2017), we consider
2-D synthetic square samples of side length 20 cm containing 2
orthogonal sets of fractures (Fig. 1), which are representative of
different geological formations of interest. The samples shown in
Figs 1(a) and (b) contain 20 horizontal and 20 vertical fractures. The
major difference between them is that the two perpendicular fracture
sets are non-intersecting for one sample, but mostly intersecting for
the other one. On the other hand, the samples included in Figs 1(c)
and (d) also have 20 horizontal fractures and are characterized by
contrasting degrees of fracture connectivity, but they only have 10
vertical fractures.

The coordinate system for the samples is established in Fig. 1,
such that the x-axis is along the horizontal direction and the y-axis
is along the vertical direction. The z-axis is perpendicular to the
x–y plane and the samples are long enough along this direction to
ensure that they satisfy the plane strain condition. The properties
of the fractures and backgrounds, which remain unchanged for all
the samples considered in the analyses, were presented by Guo et
al. (2017) and we repeat them here for the convenience of readers.
For the background we consider a porosity of 0.1 and, for the solid
grains, we use a bulk modulus of 37 GPa and a density of 2.65 g
cm−3. In addition, the dry bulk and shear moduli for this region are
26 GPa and 31 GPa, respectively, whereas its permeability is 10−4

mD. The fractures, on the other hand, have a rectangular geometry
with a constant length of ∼4 cm and a thickness of 0.06 cm. We
represent them with a highly compliant porous material having a
porosity of 0.8 and a permeability of 100 D. The solid grains com-
posing this porous infill material have the same properties as those

of the background medium, whereas the dry bulk and shear mod-
uli are 0.04 and 0.02 GPa, respectively (Nakagawa & Schoenberg
2007; Rubino et al. 2014). Both the background medium and the
fractures are assumed to be fully saturated with water, with a bulk
modulus of 2.25 GPa, a shear viscosity of 0.001 Pa s, and a density
of 1.09 g cm−3.

Apart from obtaining the stiffness coefficients for the described
samples using the theoretical approach presented in this work, for
comparison we also compute these parameters employing a numer-
ical upscaling procedure (Rubino et al. 2016). To do so, three nu-
merical oscillatory relaxation tests are applied on a given sample of
interest, and the responses are obtained by solving the Biot’s (1941)
quasi-static poroelastic equations. The volume average responses
of the probed sample allow us to define an equivalent anisotropic
viscoelastic solid which, in turn, provide us with the stiffness co-
efficients of interest. This numerical approach is briefly outlined in
Appendix.

To predict the frequency-dependent stiffness coefficients theoret-
ically, we need to calculate the dry fracture compliance matrixes for
the fracture sets perpendicular to the x-axis (Sc1) and y- axis (Sc2):

Sc1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

Z N1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ZT 3 0
0 0 0 0 0 ZT 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (32)

Sc2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 Z N2 0 0 0 0
0 0 0 0 0 0
0 0 0 ZT 4 0 0
0 0 0 0 0 0
0 0 0 0 0 ZT 2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (33)

Here, each fracture set has two different tangential fracture compli-
ances due to the fact that the fracture lengths along x- and z-axes
are different for our 2-D samples (Far et al. 2013). Hence, there are
six dry fracture compliances in total for these two sets of fractures.
However, for the calculation of the elastic properties of the 2-D
samples, we only need to know four fracture compliances: ZN1, ZN2,
ZT1, and ZT2 (Guo et al. 2017).

The dry fracture compliances ZN1, ZN2, ZT1, and ZT2 can be cal-
culated by using the theoretical formulas for 2-D fracture compli-
ances or the general Eshelby’s model (Mura 1987; Sevostianov &
Kachanov 1999; Kachanov & Sevostianov 2005; Guo et al. 2018a).
However, the values obtained from these theoretical models have
notable discrepancies with respect to the ones inverted from the
stiffness coefficients of the dry samples computed from the nu-
merical simulations (Guo et al. 2017). One possible reason for the
observed discrepancies is the effect of fracture interactions, which
are not considered in the theoretical models. To quantify the effects
of fracture interactions on the theoretical models, we employ the
schemes of the differential effective medium and self-consistent ap-
proximation. However, contrary to our expectation, there is nearly
no improvement in the agreement between the theoretically pre-
dicted and numerically inverted dry fracture compliances. This is
consistent with the work of Grechka & Kachanov (2006), who
found that in rocks with random distributions of fractures, the in-
fluence of fracture interactions is rather small due to the cancella-
tion of the competing effects of stress shielding and amplification,
which is also confirmed by Guo et al. (2018a). Hence, there should
be another reason for the discrepancies. Since the 2-D fractures
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Table 1. Dry stiffness coefficients for the samples shown in Fig. 1 provided
by the numerical simulations.

Sample shown
in Fig. 1(a)

Sample shown
in Fig. 1(b)

Sample shown
in Fig. 1(c)

Sample shown
in Fig. 1(d)

c11 (GPa) 27.18 25.82 40.22 33.77
c12 (GPa) 0.27 2.07 0.81 2.38
c16 (GPa) − 0.14 − 0.39 0.28 0.84
c22 (GPa) 33.01 32.57 33.86 34.06
c26 (GPa) − 0.49 1.06 0.11 0.87
c66 (GPa) 9.56 7.65 12.11 10.27

considered in the theoretical models have elliptical shapes whereas
those in the numerical simulations are rectangular, the differences
in fracture geometry can be responsible for the discrepancies. To
confirm this, we use elliptical fractures in the numerical simulations
and compare the results with the theoretical predictions. We observe
that the agreement between the theoretically predicted and numer-
ically inverted dry fracture compliances improves greatly (Guo et
al. 2018a). This verifies that the difference in the fracture geometry
considered in the theoretical models and numerical simulations is
the primary reason for the discrepancies. However, as this paper is
an extension of that published by Guo et al. (2017), we keep on
using rectangular fractures as Guo et al. (2017) for consistency. To
compare the theoretical predictions with the numerical simulations,
we then compute the dry fracture compliances from the stiffness
coefficients of the dry samples obtained from the numerical simu-
lations (shown in Table 1) as follows (Guo et al. 2017):

Z Ni = Sii − 1/E2D
b , i = 1, 2, (34)

ZT 1 + ZT 2 = S66 − 2
(
1 + ν2D

b

)
/E2D

b , (35)

where S is the dry compliance matrix of the 2-D samples, which can
be inverted from the dry stiffness matrix provided by the numerical
simulations; and E2D

b and ν2D
b are the Young’s modulus and Poisson

ratio of the 2-D background medium, respectively, which have the
following relations with the 3-D parameters under the plane strain
condition:

E2D
b = Eb

1 − ν2
b

, (36)

ν2D
b = νb

1 − νb
. (37)

It should be noted that eq. (35) only provides the sum of ZT1 and
ZT2. However, their individual values can be estimated based on the
fact that the ratios of the normal to tangential compliance ZN/ZT

for the considered sets of orthogonal fractures are expected to have
close values since they are generated in the same fashion. Hence,
ZT1 and ZT2 can be obtained as follows:

ZT i = Z Ni
ZT 1 + ZT 2

Z N1 + Z N2
, i = 1, 2. (38)

The use of the numerically inverted dry fracture compliances
in the theoretical model guarantees that the normal and tangen-
tial compliances of the dry fractures considered in the numerical
simulations and in the theoretical approach are equal, thus allow-
ing the comparisons between the two methodologies. With the dry
fracture compliances, the stiffness coefficients of the samples in
the low- and high-frequency limits for each manifestation of WIFF
can be computed following the steps described above. To obtain the
frequency-dependent behaviour of the stiffness coefficients, the val-

ues of T and G also need to be calculated, which requires the elastic
properties of the fracture infill material. To compare the 3-D theo-
retical predictions with the 2-D numerical simulations, we calculate
the effective elastic properties of the equivalent planar fracture infill
material from the properties of the dry 2-D fractures. For each set
of the fractures, these properties are calculated through eqs (14)
and (15) using the fraction of the fracture set in the rock fci and the
numerically inverted compliances for the dry 2-D fractures ZNi and
ZTi. Then, these effective fracture infill material properties are used
in the calculation of the values of T and G for the planar fracture
model, and the value of G for the penny-shaped crack model.

Furthermore, we also need to use the specific surface area and
the fracture density of the 2-D fractures in the calculations of T and
G, which have the following forms for 2-D rectangular fractures
(Kachanov & Sevostianov 2005; Guo et al. 2018a):

S2D
i = fci

hci
, i = 1, 2 (39)

εi = ni a2

A
, i = 1, 2 (40)

where S2D
1 , fc1, hc1, ε1, n1 are the specific fracture surface area,

fraction of fractures in the rock, fracture thickness, fracture density,
and number of fractures for the fracture set perpendicular to x-axis.
In addition, the subscript 2 represents the corresponding values for
the other fracture set, whereas a and A are the fracture radius and
area of the sample, respectively.

Using these effective properties of the dry fractures and the other
known parameters, the theoretical predictions can be obtained for
the three types of fracture geometries (periodic planar fractures,
randomly spaced planar fractures and penny-shaped cracks). Since
the samples satisfy the plane strain condition, the results of the
3-D theoretical predictions for the stiffness coefficients can then be
compared directly with the 2-D numerical simulations.

3.2 Comparison and analysis

It can be found from the numerical simulation results for the con-
sidered samples that only four stiffness coefficients (c11, c12, c22 and
c66) need to be considered for the saturated samples, as the other two
stiffness coefficients (c16 and c26) turn out to be rather negligible
(not shown here for brevity). Hence, in this work we only compare
these four stiffness coefficients obtained from the numerical sim-
ulations and the theoretical predictions. In addition, the numerical
simulations also allow us to verify that all the stiffness coefficients
have similar frequency-dependent behaviours for both samples with
relatively low symmetry (Figs 1a and b) and high symmetry (Figs 1c
and d). This validates our assumption that the frequency-dependent
behaviours of all the stiffness coefficients should be similar, even
for samples with relatively low symmetry. Hence, in the rest of the
work we mostly focus the analysis on the stiffness coefficient c22.

3.2.1 Dispersion and attenuation due to FB-WIFF

Fig. 2 shows the dispersion (variation of the real part with frequency)
and attenuation (ratio of the imaginary part to the real part) of c22 due
to FB-WIFF for the samples shown in Figs 1(a) and (b). As explained
before, the non-intersecting periodic planar fracture case is not real-
izable, hence, we only consider the randomly spaced planar fracture
and penny-shaped crack cases for the rock with non-intersecting
fractures. It can be seen that, for such rock (Fig. 1a), the theoretical
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(a)

(c)

(b)

(d)

Figure 2. Dispersion and attenuation of c22 due to FB-WIFF for the samples containing 20 horizontal and 20 vertical fractures. Panels (a) and (b) show the
results for the sample with non-intersecting fractures (Fig. 1a), while panels (c) and (d) correspond to the sample with intersecting fractures (Fig. 1b).

predictions provided by the penny-shaped crack model are in better
agreement with the numerical simulations than the randomly spaced
planar fracture model (Figs 2a and b). This result is consistent with
that obtained for samples with aligned fractures (Guo et al. 2018a),
which is reasonable as when a seismic wave propagates along the
y-axis, WIFF primarily occurs between the horizontal fractures and
the background for both the non-intersecting and aligned fracture
cases. It should also be noted that, even though the fractures in the
sample have rectangular geometry (not penny-shaped) and they may
interact with each other, good agreement can be found between the
results given by the penny-shaped non-interaction crack model and
the numerical simulations. This is due to the fact that the effects of
the geometry of the fractures and the fracture interactions are taken
into account in the theoretical approach, at least partially, by using
the numerically-inverted dry fracture compliances.

For the sample with intersecting fractures (Fig. 1b), it can be
seen that, also in this case, the theoretical predictions are in good
agreement with the numerical simulations (Figs 2c and d). More-
over, the results provided by the penny-shaped crack model match
the numerical simulations best. Due to fluid pressure equilibration
occurring between connected horizontal and vertical fractures, we
use scaled values of T and G to calculate seismic dispersion and

attenuation due to FB-WIFF, as explained before. The results de-
picted by Figs 2(c) and (d) demonstrate that this approach works
well and only small discrepancies are observed between the results
of the penny-shaped crack model and the numerical simulations.

It is interesting to notice that, for both samples, the attenuation
curves at high frequencies given by the theoretical models are sim-
ilar. This is because the energy dissipation at high frequencies only
occurs in the immediate vicinity of the fractures, which implies that,
regardless of the geometry of the fractures, the resulting attenuation
is controlled by their specific surface area (Gurevich et al. 2009;
Guo et al. 2018a). As we use the same specific surface area obtained
from the real geometries of the considered fractures for the theo-
retical models, their predictions of attenuation at high frequencies
coincide.

The samples studied above have an equal number of horizon-
tal and vertical fractures, which can be regarded as a special case
characterized by a high degree of symmetry. In order to check
if our theoretical models are valid in more general situations, we
investigate two more samples with non-intersecting and intersect-
ing fractures (Figs 1c and d). Similar to the samples depicted by
Figs 1(a) and (b), these new samples have 20 horizontal fractures;
however, in order to reduce their degree of symmetry, they only
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(a) (b)

(c) (d)

Figure 3. Dispersion and attenuation of c22 due to FB-WIFF for the samples containing 10 vertical and 20 horizontal fractures. Panels (a) and (b) show the
results for the sample with non-intersecting fractures (Fig. 1c), while panels (c) and (d) correspond to the sample with intersecting fractures (Fig. 1d).

have 10 vertical fractures. Fig. 3 shows the theoretical results for
c22 along with the numerical simulations. We can see that, again as
before, the theoretical predictions given by the penny-shaped crack
model match the numerical simulation results best. For the sample
with non-intersecting fractures (Fig. 1c), the results are very simi-
lar to those corresponding to the sample with 20 vertical fractures
(compare Figs 2a and b with Figs 3a and b). This further demon-
strates that the influence of vertical fractures on the dispersion and
attenuation of c22 is rather small in absence of fracture intersections.
For the sample with intersecting fractures (Fig. 1d), we see that the
value of c22 in the high-frequency limit of FB-WIFF is higher than
that corresponding to the sample containing 20 vertical fractures
(compare Fig. 2c with Fig. 3c). This is produced by an increase in
the number of non-intersecting horizontal fractures, which do not
release their fluid pressure into connected vertical fractures, thus
behaving stiffer.

It can be noted that, in contrast to the case of the sample shown
in Fig. 1(b), the theoretically predicted value of c22 in the high-
frequency limit of FB-WIFF for the sample shown in Fig. 1(d) is
slightly lower than the numerical simulation result (Fig. 3c). This is
due to the fact that, for the sample shown in Fig. 1(b), nearly every

fracture is intersected by at least one orthogonal fracture, and hence
the fluid pressure is uniform throughout the whole fracture sys-
tem. Therefore, the theoretical prediction obtained by saturating the
fractures through the use of the anisotropic Gassmann’s equation
is in good agreement with the numerical simulation results. How-
ever, for the sample shown in Fig. 1(d), there are several horizontal
fractures that are not intersected by any of the vertical fractures.
Hence, the fluid pressure increase in these horizontal fractures can-
not be released by flowing into the vertical ones, which results in the
effective stiffening of the sample. Thus, the theoretical prediction
in the high-frequency limit of this WIFF manifestation based on
the anisotropic Gassmann’s equation underestimates the numerical
simulation results.

As extensively discussed by Guo et al. (2017), the characteristic
frequency of FB-WIFF is controlled by the diffusivity of the back-
ground medium and the fracture radius for both the non-intersecting
and intersecting fracture cases. When the diffusion length computed
using the physical properties of the background is comparable to
the fracture radius, maximum seismic attenuation due to fluid flow
between the fractures and the background occurs. It is interesting
to note here that, as can be seen in Figs 2 and 3, there is a slight
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shift of the characteristic frequency of FB-WIFF between the non-
intersecting and intersecting fracture cases. For the non-intersecting
fracture case, when a seismic wave propagates in the direction per-
pendicular to one set of the fractures, fluid flow primarily occurs
between this set of fractures and the background medium. However,
in the intersecting fracture case, as the fluid pressure is equilibrated
between connected horizontal and vertical fractures, the fluid flow
between connected fractures that are parallel to the propagation di-
rection and the background medium will also be significant (Rubino
et al. 2014). Hence, the different fluid flow characteristics between
the non-intersecting and intersecting fracture cases is expected to
be responsible for the slight shift of the characteristic frequency of
FB-WIFF between these two cases.

3.2.2 Dispersion and attenuation due to FF-WIFF

Fig. 4 shows the dispersion and attenuation of c22 due to FF-WIFF
for the samples depicted by Figs 1(b) and (d). We see that, in con-
trast to the case of FB-WIFF, the theoretical predictions given by
the periodic planar fracture model match the numerical simulations
best. As explained before, the theoretical predictions for FF-WIFF
are based on an effective background medium approach. For c22, the
effective background medium is composed of the saturated back-
ground as the solid phase and the fractures along the y-axis as the
pore space. The good agreement between the theoretical predictions
provided by the periodic planar fracture model and the numerical
simulations indicates that the behaviour of the fractures is largely
consistent with that of periodic planar fractures in an effective back-
ground medium when FF-WIFF occurs. Further inspection of the
curves shown in Fig. 4 indicates that the discrepancies between
the theoretical predictions of the planar fracture model and the nu-
merical simulations are primarily found at low frequencies. This is
probably due to the fact that FB-WIFF does not vanish completely at
the low frequencies of FF-WIFF. Hence, these two manifestations
of WIFF interact with each other for such frequencies, an effect
that is not considered in the theoretical predictions presented in this
work. Moreover, it is worthwhile to mention here that the charac-
teristic frequency of FF-WIFF is controlled by the diffusivity of the
effective background medium and the fracture radius, as discussed
in Guo et al. (2017). The FF-WIFF will induce maximum seismic
attenuation when the diffusion length is comparable to the fracture
radius.

It is important to remark that the effective background medium
used here is anisotropic, whereas the background medium for
FB-WIFF is isotropic. As discussed above, the theoretical models
were originally developed for fractures embedded in an isotropic
background medium. Hence, to take into account the anisotropic
properties of the effective background medium and, at the same
time, to keep our approach simple to apply, we use the properties
of the anisotropic effective background medium in the considered
direction of wave propagation to replace the original isotropic back-
ground properties. This ignores the influence of the properties of the
anisotropic background medium in other directions on the FF-WIFF.
This, in turn, may be another source of discrepancies between the
theoretical predictions and the numerical simulations. Furthermore,
the porosity in the effective background medium is of the same or-
der of magnitude as the fracture porosity. However, our theoretical
models assume that the fracture porosity should be much smaller
than the porosity in the effective background medium. Hence, this
assumption is violated here. This can also cause some errors in
the theoretical predictions. In addition, the fractures are assumed to

be interconnected to each other in the theoretical model, whereas
some fractures are not connected to other fractures in the investi-
gated samples, especially for that shown in Fig. 1(d). This influences
the fluid flow characteristics between fractures and hence can be an-
other reason for the discrepancies observed between the theoretical
predictions and numerical simulations. All these important points
will require detailed analysis in the future.

3.2.3 Dispersion and attenuation of all the stiffness coefficients
for the full frequency range

In Fig. 5, we compare the theoretical predictions and numerical sim-
ulations of the dispersion and attenuation of all the stiffness coeffi-
cients for the full frequency range for samples with non-intersecting
(Fig. 1a) and intersecting fractures (Fig. 1b). The theoretical pre-
dictions for the effects caused by FB-WIFF are given by the penny-
shaped crack model, whereas the periodic planar fracture model is
used for representing those caused by FF-WIFF. For brevity, the re-
sults for the samples shown in Figs 1(c) and (d) are not included, as
they are qualitatively similar to those corresponding to the chosen
samples.

For the sample with non-intersecting fractures, we can see good
agreement between the theoretical predictions and the numerical
simulations (Figs 5a and b). We observe that, in contrast to c11

and c22, the real part of c12 decreases with frequency, which corre-
sponds to negative attenuation. However, c12 does not control any
type of seismic wave by itself and, hence, the attenuation of seismic
waves propagating through the probed medium remains positive
even though that of c12 is negative. Furthermore, we can notice in
the numerical simulations a small shift of the characteristic fre-
quency of c12 compared to that of c11 and c22. In the theoretical
predictions, we assume that all the stiffness coefficients have nearly
the same characteristic frequency. This inconsistency is probably
due to fracture interactions, which are not taken into account by
the theoretical predictions. In addition, small discrepancies can be
found between the theoretical predictions and the numerical simu-
lations for c11 at low frequencies. This is likely to be due to fluid
diffusion interaction effects at low frequencies. As the vertical frac-
tures tend to concentrate in small areas (Fig. 1a), fluid diffusion
interaction can easily occur between adjacent vertical fractures at
low frequencies (Müller & Rothert 2006). From the point of view
of the diffusion process, adjacent vertical fractures tend to merge,
which results in an apparent increase of the effective length of frac-
tures at low frequencies. This is not considered in the theoretical
predictions, which may cause the small discrepancies observed for
c11 at low frequencies. To verify this, we increase the radii of the
vertical fractures by a factor of 1.5 when calculating the value of T
needed for the theoretical approach. The resulting estimates, which
are shown as circles in Figs 5(a) and (b), improve the agreement
with the numerical simulations for c11.

It is interesting to note that the shear modulus c66 shows small
dispersion and attenuation in the numerical simulations for the sam-
ple with non-intersecting fractures. In the theoretical predictions,
it was assumed that SV-waves propagating along the x- or y- axis
do not perturb the fluid pressure field. This, in turn, implies that
the shear modulus c66 for the saturated sample is equal to that for
the dry sample and is independent of frequency. However, in the
numerical simulations, due to the heterogeneities of the fractured
sample, a smooth fluid pressure gradient is induced and, hence, fluid
flow occurs causing slight dispersion and attenuation of c66. This
phenomenon was also observed by Caspari et al. (2016).
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(a) (b)

(c) (d)

Figure 4. Dispersion and attenuation of c22 due to FF-WIFF. Panels (a) and (b) depict the results for the sample shown in Fig. 1(b), while panels (c) and (d)
correspond to the sample shown in Fig. 1(d).

For the sample with intersecting fractures, good agreement is
also observed between the theoretical predictions and the numerical
simulations. We see small discrepancies for c12, especially for the
dispersion and attenuation due to FF-WIFF. This is primarily due
to the fact that the theoretically-predicted value of c12 in the high-
frequency limit for this WIFF manifestation is slightly lower than the
value given by the numerical simulations. Hence, the corresponding
theoretically-predicted dispersion and attenuation are slightly larger
than the numerical simulation results. In addition, it is interesting
to notice that for this sample the dispersion and attenuation of c66

in the numerical simulations turned out to be higher than for the
sample with non-intersecting fractures. This means that the fluid
pressure gradient induced by SV-waves propagating along the x- or
y- axis for samples with intersecting fractures is much larger than
for samples with non-intersecting fractures.

3.2.4 Anisotropic properties

Following Guo et al. (2017), it is interesting to compare Thomsen’s
style anisotropy parameters given by the theoretical predictions and

the numerical simulations. Using the stiffness coefficients provided
by the theoretical predictions and the numerical simulations, the
anisotropy parameters ε(3) and δ(3) are then calculated using eqs
(29) and (30) for the samples shown in Figs 1(a) and (b). For the
sample with non-intersecting fractures, Fig. 6(a) shows that the
theoretical predictions are in overall good agreement with the nu-
merical simulations. Some small discrepancies can be seen, which
are primarily caused by the inaccurate value of c11 given by the the-
oretical predictions. If we use the improved value of c11 (circles in
Fig. 5a) to calculate the anisotropy parameters (circles in Fig. 6a),
the discrepancies between the theoretical predictions and the nu-
merical simulations get smaller, especially for ε(3). For the sample
with intersecting fractures, we also see overall good agreement be-
tween the theoretical predictions of the anisotropy parameters and
the numerical simulations (Fig. 6b). In particular, we see that the
theoretical prediction of ε(3) matches very well with the numerical
simulations. On the other hand, while the theoretical prediction of
δ(3) is systematically slightly lower than the numerical simulations,
their variations with frequency are similar. The observed differences
are mainly due to the discrepancies in the coefficients c12 and c66.
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(a) (b)

(c) (d)

Figure 5. Theoretical predictions (dashed lines) and numerical simulations (solid lines) for all the stiffness coefficients and for the full frequency range. Panels
(a) and (b) depict the results for the sample shown in Fig. 1(a), while panels (c) and (d) correspond to the sample shown in Fig. 1(b). The circles in panels (a)
and (b) represent the results for c11 considering increased radii of the vertical fractures to account for fluid pressure diffusion interactions.

To further compare the anisotropic properties given by the theo-
retical predictions and the numerical simulations, we calculate the
phase velocity and attenuation of qP- and qSV-waves as functions
of incidence angle. For the sample with non-intersecting fractures
(Fig. 1a), we know from Fig. 5 that the largest discrepancies be-
tween the theoretical predictions and the numerical simulations oc-
cur for frequencies close to the characteristic frequency of FB-WIFF
(∼0.01 Hz). Hence, we compare the predictions at this particular
frequency. We observe in Figs 7(a) and (b) that the angle-dependent
velocities provided by the theoretical prediction and the numer-
ical simulations are in very good agreement, whereas some dis-
crepancies arise in the case of attenuation. This is primarily due
to the differences in c12 and c66 given by the two approaches.
In the case of the sample with intersecting fractures (Fig. 1b),
we compare the angle-dependent predictions at a frequency of
105 Hz, for which the largest discrepancies took place (Fig. 5).
Figs 7(c) and (d) indicate that relatively good agreement between
the theoretical predictions and the numerical simulations also oc-
curs in this case. However, significant discrepancies between the two

approaches arise, especially for the qSV-wave at incidence angles
of 0◦ and 90◦. The observed discrepancies are also primarily due
to the differences in c12 and c66. In particular, the shear modulus
c66 is frequency-independent in the theoretical predictions, whereas
it shows some frequency-dependency in the numerical simulations
due to the heterogeneity of the sample (Caspari et al. 2016). Indeed,
if we assume no frequency-dependency for c66 in the numerical
simulations, the agreement between theoretical predictions and nu-
merical simulations improves greatly (not shown here for brevity).
Hence, in the future, the theoretical model can be further developed
to incorporate the frequency-dependency of the shear modulus c66.
This should greatly reduce the discrepancies between theoretical
predictions and numerical simulations.

It is interesting to note here that the attenuation of P-waves prop-
agating with an incidence angle of 45◦ vanishes in the theoretical
predictions for the sample with intersecting fractures. This is due
to the fact that, when the P-wave propagates in this direction, it
will generate the same fluid pressure in the horizontal and ver-
tical fractures and, hence, fluid flow within connected fractures is
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(a)

(b)

Figure 6. Anisotropic parameters calculated using the stiffness coefficients
provided by the theoretical predictions (dashed lines) and the numerical
simulations (solid lines). Panels (a) and (b) depict the results for the samples
shown in Figs 1(a) and (b), respectively. The theoretical predictions consid-
ering increased radii of the vertical fractures to account for fluid diffusion
interactions are also given in panel (a) as circles.

negligible. However, this attenuation value does not completely van-
ish in the case of the numerical simulations, which is also due to
the frequency dependence of c66.

Hence, we have compared the angle dependence of the phase
velocity and attenuation of qP- and qSV-waves for the two samples
(Figs 1a and b) at the frequencies that showed the largest discrep-
ancies between the theoretical predictions and numerical simula-
tions. For other frequencies, the discrepancies are expected to be
much smaller. These results, combined with the comparison of the
anisotropic parameters, allow us to conclude that the anisotropic
properties given by the theoretical predictions and numerical simu-
lations are in overall good agreement with each other.

4 D I S C U S S I O N

In this paper, we considered seismic dispersion and attenuation
in saturated porous rocks containing two orthogonal sets of non-
intersecting and intersecting mesoscopic fractures. To validate our
theoretical model, we compared its predictions with corresponding

numerical simulations. However, due to the high computational cost
of 3-D numerical simulations, we only considered 2-D cases and
compare the results with 3-D theoretical predictions. To enable this
comparison, we obtained effective parameters for the 2-D samples
and then substituted them into the 3-D theoretical model, as shown
in Section 3.1. The good agreement between the theoretical predic-
tions and the numerical simulations means that a model designed
for axisymmetric penny-shaped cracks is also valid for slit 2-D frac-
tures (especially for the FB-WIFF effects) (Fig. 8). This observation
is a surprise to the authors, and suggests that the characteristics of
seismic dispersion and attenuation are not particularly sensitive to
the in-plane shape of the fractures. Recall that in the theoretical
model, the crack diameter controls the characteristic frequency of
the dispersion and attenuation (e.g. Guo et al. 2017). For the slit frac-
tures modelled in numerical simulations (Fig. 8), the corresponding
length scale parameter is slit length L, while fracture ‘depth’ D is
infinite. Thus, the agreement between theory and simulations also
means that the characteristics of the dispersion and attenuation are
controlled by the smaller of the two fracture length parameters L,
and are relatively insensitive to the larger of these parameters D.
A similar observation was made by Barbosa et al. (2017) through
comparisons of 2-D and 3-D numerical simulations for very simple
fracture networks.

Up until now, a number of theoretical models have been proposed
to study seismic wave propagation in saturated porous rocks with
multiple sets of fractures (e.g. Liu et al. 2006; Chapman 2009). How-
ever, these models assume that the fractures are hydraulically con-
nected to the background medium, but unconnected to each other.
Hence, effects due to fluid flow between the background medium
and the fractures (FB-WIFF) are considered, whereas those related
to flow within connected fractures (FF-WIFF) are neglected (e.g.
Liu et al. 2006; Chapman 2009). Thus, these models should pre-
dict frequency-dependent elastic properties for the non-intersecting
fracture cases similar to those provided by our theoretical model.
However, in presence of connected fractures these models cannot
account for the corresponding effects on both FB- and FF-WIFF. A
detailed comparison between these models and the one proposed in
this paper will be carried out in the future.

It is important to remark here that, in presence of intersecting
fractures, the degree of seismic dispersion and attenuation caused
by FB-WIFF is significantly reduced due to the fluid pressure com-
munication within connected fractures, as shown in Fig. 5. In addi-
tion, the velocity anisotropy of such rocks can also be significantly
reduced due to variations of the stiffening effects of the fracture
fluid in response to FF-WIFF (Rubino et al. 2017). Hence, it is of
great importance to consider both manifestations of WIFF when in-
terpreting seismic data from fractured reservoirs. This, in turn, may
provide the possibility to extract information on the connectivity
degree of fracture networks from seismic recordings.

5 C O N C LU S I O N S

In this work, we proposed a theoretical approach to describe seis-
mic dispersion and attenuation of saturated porous rocks containing
two orthogonal sets of non-intersecting or intersecting fractures.
The methodology was based on theoretical models for rocks with
aligned fractures, and three types of fracture geometries were con-
sidered, namely, periodic planar fractures, randomly spaced planar
fractures and penny-shaped cracks. For rocks with non-intersecting
fractures, seismic dispersion and attenuation are produced by
FB-WIFF, a process similar to that arising in rocks containing
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(a) (b)

(c) (d)

Figure 7. Phase velocity and attenuation of qP- and qSV-waves as functions of incidence angle given by the theoretical predictions (dashed lines) and the
numerical simulations (solid lines). Panels (a) and (b) show the results for the sample with non-intersecting fractures (Fig. 1a) at a frequency of 0.01 Hz,
whereas panels (c) and (d) correspond to the sample with intersecting fractures (Fig. 1b) and a frequency of 105 Hz.
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L 

(b) 
Figure 8. Schematic representation of the 2-D slit fractures considered in the numerical simulations (a), and the penny-shaped cracks (oblate spheroid)
considered in the theoretical predictions (b).

aligned fractures. Hence, the theoretical models for aligned frac-
tures can be directly extended to this case for computing the P-
wave moduli in the directions perpendicular to the two fracture sets,
from where the remaining elastic moduli are derived. For rocks
with intersecting fractures, FF-WIFF also occurs at higher frequen-

cies. Similar to the non-intersecting fracture case, the effects due
to FB-WIFF can be computed by extending the theoretical models
for aligned fractures. Conversely, for computing the effects caused
by FF-WIFF, an effective background medium was introduced. The
theoretical models for aligned fractures were then used, with the
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original background replaced by the effective medium, where the
fractures perpendicular to the propagation direction were immersed.

2-D synthetic rock samples containing two orthogonal sets of
fractures with varying degrees of intersections were then explored.
To do this, apart from the theoretical predictions, numerical simu-
lations were also carried out, which consist of an upscaling method
in the framework of Biot’s quasi-static equations of poroelasticity.
The results show that the theoretical predictions are in overall good
agreement with the numerical simulations. For the effects caused by
FB-WIFF, the theoretical model for penny-shaped cracks matches
the numerical simulations best, whereas for those produced by
FF-WIFF the model for periodic planar fractures is the most suit-
able one. Furthermore, we also observe good agreement between
the theoretical predictions and the numerical simulations of the
anisotropic properties. The proposed theoretical approach is conve-
nient to apply in practice, and is applicable not only to 2-D but also
to 3-D fracture systems. Therefore, it has the potential to constitute
a powerful tool to assist in the seismic characterization of fracture
systems.
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A P P E N D I X : N U M E R I C A L U P S C A L I N G
P RO C E D U R E

Following Rubino et al. (2014), we represent fractures as highly
compliant and permeable heterogeneities embedded in a stiffer
porous background, and we model the behavior of fractured media
in the framework of Biot’s (1941) theory of quasi-static poroelas-
ticity. Fluid-pressure communication between fractures and their
embedding background as well as within connected fractures can
take place, which allows to account for the effects produced by the
two manifestations of WIFF.

In order to estimate the effective seismic properties of fractured
rocks, we employ a numerical upscaling procedure based on the ap-
plication of three oscillatory relaxation tests on a square sample that
is representative of the formation of interest (Rubino et al. 2016).
First, we apply homogeneous oscillatory vertical displacements on
the top and bottom boundaries of the representative sample, while it
is not allowed to have horizontal displacements on the lateral bound-
aries. Moreover, we do not allow the fluid to flow into the sample or
out of it. Next, a second test similar to the previous one is applied,
but the normal displacements are applied on the lateral boundaries.
Finally, a third test consisting of a simple shear is applied to the
probed sample.

The solid and relative fluid displacements in response to the
three tests are obtained by numerically solving, under correspond-
ing boundary conditions, the Biot’s (1941) quasistatic poroelastic
equations in the space-frequency domain:

∇ · σ = 0, (A1)

iω
η

κ
w = −∇ p f , (A2)

where σ is the total stress tensor, pf is the fluid pressure, w is the
average relative fluid displacement, η is the shear viscosity of the
pore fluid, κ is the rock permeability and ω is the angular frequency.

Next, for each test, we compute the volume averages of the stress
and strain components, which are needed for performing the up-
scaling:

〈
εk

i j

〉 = 1

V

∫
�

εk
i j dV, (A3)

〈
σ k

i j

〉 = 1

V

∫
�

σ k
i j dV, (A4)

where ε is the strain tensor, � is the domain of volume V that rep-
resents the probed sample and k = 1,2,3 denotes the kth oscillatory
test described above.
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Assuming that the average responses of the probed sample can be
represented by an equivalent homogeneous anisotropic viscoelastic
solid, the average strain and stress components are then connected
through a complex-valued frequency-dependent equivalent Voigt
stiffness matrix C:⎛
⎜⎝

〈
σ k

11

〉
〈
σ k

22

〉
〈
σ k

12

〉
⎞
⎟⎠ =

⎛
⎝ c11 c12 c16

c12 c22 c26

c16 c26 c66

⎞
⎠

⎛
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〈
εk

11

〉
〈
εk

22

〉
〈
2εk

12

〉
⎞
⎟⎠ . (A5)

Please note that the stiffness coefficients in eq. (A5) are similar
to those of the corresponding 3-D samples under the plane strain
condition.

Eq. (A5) holds for the three oscillatory tests described above. We
therefore establish nine equations, and the six unknown stiffness
coefficients are obtained by using a classic least-squares algorithm.
The reader is referred to the work of Rubino et al. (2016) for the
details of the numerical upscaling procedure.

Downloaded from https://academic.oup.com/gji/article-abstract/213/2/1244/4834409
by Bibliotheque Cantonale et Universitaire user
on 01 May 2018


