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In this paper we present a polynomial time algorithm that determines if an input graph
containing no induced seven-vertex path is 3-colorable. This affirmatively answers a ques-
tion posed by Randerath, Schiermeyer and Tewes in 2002. Our algorithm also solves the
list-coloring version of the 3-coloring problem, where every vertex is assigned a list of
colors that is a subset of {1,2,3}, and gives an explicit coloring if one exists.

1. Introduction

A k-coloring of a graph G=(V,E) is a function f : V →{1, . . . ,k} such that
f(v) 6= f(w) whenever vw∈E. The vertex coloring problem, whose input is
a graph G and a natural number k, consists of deciding whether G is k-
colorable or not. This well-known problem is one of Karp’s 21 NP-complete
problems [16] (unless k = 2; then the problem is solvable in linear time).
Stockmeyer [24] proved that the problem remains NP-complete even if k≥3
is fixed, and Maffray and Preissmann proved that it remains NP-complete
for triangle-free graphs [19].

List variations of the vertex coloring problem can be found in the lit-
erature. For a survey on that kind of related problems, see [25]. In the
list-coloring problem, every vertex v comes equipped with a list of permitted
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colors L(v), and we require the coloring to respect these lists, i.e., f(v)∈L(v)
for every v in V . For a positive integer k, the k-list-coloring problem is a
particular case in which |L(v)| ≤ k for each v in V , but the union of the
lists can be an arbitrary set. If the size of the list assigned to each vertex is
at most two (i.e., 2-list-coloring), the instance can be solved in O(|V |+ |E|)
time [6,7,26], by reducing the problem to a 2-SAT instance, which Aspvall,
Plass and Tarjan [1] showed can be solved in linear time (in the number
of variables and clauses). The list k-coloring problem is a particular case of
k-list-coloring, in which the lists associated to each vertex are a subset of
{1, . . . ,k}. Since list k-coloring generalizes k-coloring, it is NP-complete as
well.

Because of the notorious hardness of k-coloring, efforts were made to un-
derstand the problem on restricted graph classes. Some of the most promi-
nent such classes are the classes of H-free graphs, i.e., graphs containing no
induced subgraph isomorphic to H, for some fixed graph H. Kamiński and
Lozin [15] and independently Král, Kratochv́ıl, Tuza, and Woeginger [17]
proved that for any fixed k,g ≥ 3, the k-coloring problem is NP-complete
for the class of graphs containing no cycle of length less than g. As a conse-
quence, if the graph H contains a cycle, then k-coloring is NP-complete for
k≥3 for the class of H-free graphs.

The claw is the complete bipartite graph K1,3. A theorem of Holyer [12]
together with an extension due to Leven and Galil [18] imply that if a graph
H contains a claw, then for every fixed k ≥ 3, the k-coloring problem is
NP-complete for the class of H-free graphs.

Combined, these two results only leave open the complexity of the k-
coloring problem for the class of H-free graphs where H is a fixed acyclic
claw-free graph, i.e., a disjoint union of paths. There is a nice recent survey
by Hell and Huang on the complexity of coloring graphs without paths and
cycles of certain lengths [10] and another nice survey by Golovach et al. [8].
We denote a path and a cycle on t vertices by Pt and Ct, respectively.

The strongest known results related to our work are due to Huang [13],
who proved that 4-coloring is NP-complete for P7-free graphs, and that 5-
coloring is NP-complete for P6-free graphs. On the positive side, Hoàng,
Kamiński, Lozin, Sawada, and Shu [11] have shown that k-coloring can be
solved in polynomial time on P5-free graphs for any fixed k. Huang [13]
conjectures that 4-coloring is polynomial-time solvable for P6-free graphs.
This conjecture, if true, thus settles the last remaining open case of the
complexity of k-coloring Pt-free graphs for any fixed k ≥ 4. On the other
hand, for k=3 it is not known whether there exists a t such that 3-coloring
is NP-complete for Pt-free graphs. Randerath and Schiermeyer [21] gave a
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t
4 5 6 7 8 . . .

3 O(m) [5] O(nα) [20] O(mnα) [21] P ? . . .

4 O(m) [5] P [11] ? NPC [13] NPC . . .

5 O(m) [5] P [11] NPC [13] NPC NPC . . .

6 O(m) [5] P [11] NPC NPC NPC . . .
...

...
...

...
...

...
. . .

Table 1. Table of known complexities of the k-coloring problem in Pt-free graphs. Here,
n is the number of vertices in the input graph, m the number of edges, and α is the matrix
multiplication exponent known to satisfy 2≤ a < 2.376 [4]. The boldfaced complexity is

the topic of this paper, while ‘?’ stands for open problems.

polynomial time algorithm for 3-coloring P6-free graphs. Later, Golovach et
al. [9] showed that the list 3-coloring problem can be solved efficiently for
P6-free graphs. Some of these results are summarized in Table 1.

We show that the 3-coloring problem for P7-free graphs is polynomial, an-
swering positively a question first posed in 2002 by Randerath et al. [21,22].
Our algorithm even works for the list 3-coloring problem. This is not trivial:
there are cases where k-coloring and list k-coloring have different complex-
ities (unless P = NP). For instance, in the class of {P6,C5}-free graphs,
4-coloring can be solved in polynomial time [3] while list 4-coloring is NP-
complete [14]. Our main theorem reads as follows.

Theorem 1. One can decide whether a given P7-free graph G has a list
3-coloring, and find such a coloring (if it exists) in polynomial time. The
running time of the proposed algorithm is O(|V (G)|21(|V (G)|+ |E(G)|)).

The algorithm given by Theorem 1 is based on the following ideas. First
we apply some preprocessing techniques and compute a small 2-dominating
set (i.e., a set such that every vertex has distance at most two to some ver-
tex of the set). Then we use a controlled enumeration based on a structural
analysis of the considered graphs, in order to reduce the problem to a poly-
nomial number of instances of list 3-coloring in which the size of the list
of each vertex is at most two. These instances, in turn, can be solved via
2-SAT.

2. Notation and preliminaries

We start by establishing some notation and preliminary results. A stable set
in a graph G is a subset of pairwise non-adjacent vertices of G. Let X and Y
be two sets of vertices of G. We say that X is complete to Y if every vertex
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in X is adjacent to every vertex in Y , and that X is anticomplete to Y if no
vertex of X is adjacent to a vertex of Y .

If in a graph coloring context each of the vertices v in G is assigned a list
L(v)⊆{1,2,3} of possible colors, we call L= {L(v) : v∈V (G)} a palette of
G. A palette L′ is a subpalette of L if L′(v)⊆L(v) for each v∈V (G). Given
a graph G and a palette L, we say that a 3-coloring c of G is a coloring of
(G,L) if c(v)∈L(v) for all v ∈V (G). We also say that c is a coloring of G
for the palette L. We say that (G,L) is colorable if there exists a coloring of
(G,L). We denote by (G,L) a graph G and a collection L of palettes of G.
We say (G,L) is colorable if (G,L) is colorable for some L∈L. Further, c is
a coloring of (G,L) if c is a coloring of (G,L) for some L∈L.

An update of the list of a vertex v from w means we delete an entry from
the list of v that appears as the unique entry of the list of a neighbor w of
v. Clearly, such an update does not change the colorability of the graph. If
a palette L′ is obtained from a palette L by updating repeatedly until for
every vertex v, if v has a neighbor u with L′(u)={i}, then i 6∈L′(v), we say
we obtained L′ from L by updating. For a fixed w∈V (G) if a palette L′ is
obtained from a palette L by repeatedly updating vertices v from vertices
w′ that are connected to w by a path all whose vertices have current lists
of size one, and continuing to do so until no candidates for updating are
left, then we say we obtained palette L′ from palette L by updating from w.
Finally, if in either of these two procedures we update all vertices v except
those from a fixed set T , we say we obtained L′ by updating except on T .

Let us illustrate these notions with a quick example. Consider C6 with
lists {1}, {2,3}, {2}, {1,2}, {2,3}, {1,2} (in this order). Then updating from
v1 gives lists {1}, {2,3}, {2}, {1,2}, {3}, {2}, while updating from v1 except
on {v6} leaves us with the initial lists. Note that updating can be carried
out in O(|V (G)|+ |E(G)|) time.

By reducing to an instance of 2-SAT, which can be solved in linear time
in the number of variables and clauses [1], several authors [6,7,26] indepen-
dently proved the following.

Lemma 2. If a palette L of a graph G is such that |L(v)| ≤ 2 for all v ∈
V (G), then a coloring of (G,L), or a determination that none exists, can be
obtained in O(|V (G)|+ |E(G)|) time.

Let G be a graph. A subset S of V (G) is called monochromatic with
respect to a given coloring c of G if c(u) = c(v) for all u,v ∈ S. Let L be
a palette of G, and Z a set of subsets of V (G). We say that (G,L,Z) is
colorable if there is a coloring c of (G,L) such that S is monochromatic with
respect to c for all S∈Z.



THREE-COLORING AND LIST THREE-COLORING OF GRAPHS 5

A triple (G′,L′,Z ′) is a restriction of (G,L,Z) if

(a) G′ is an induced subgraph of G,
(b) the palette L′ is a subpalette of L restricted to the set V (G′), and
(c) Z ′ is a set of subsets of V (G′) such that if S∈Z then S∩V (G′)⊆S′ for

some S′∈Z ′.
Let R be a set of restrictions of (G,L,Z). We say that R is colorable if at
least one element of R is colorable. If L is a set of palettes of G, we write
(G,L,Z) to mean the set of restrictions (G,L′,Z) where L′∈L.

Note that if two sets S and S′ are monochromatic and have a non-empty
intersection, then S∪S′ is monochromatic, too. Thus, for each triple (G,L,Z)
there is an equivalent triple (G,L,Z ′) such that Z ′ contains only mutually
disjoint sets. During our algorithm, we compute the set family Z such that
the sets are mutually disjoint. Under this assumption, the proof of Lemma 2
can be easily modified to obtain the following generalization [23].

Lemma 3. If a palette L of a graph G is such that |L(v)|≤2 for all v∈V (G),
and Z is a set of mutually disjoint subsets of V (G), then a coloring of
(G,L,Z), or a determination that none exists, can be obtained in O(|V (G)|+
|E(G)|) time.

Proof. By traversing once each set in Z, create a vector r that maps each
vertex v with a representative r(v) on its set (the same representative for
all the vertices in one set). Define r(v) = v if v does not belong to a set
in Z. Traversing the vector r once, iteratively for each v ∈ V (G), update
L(r(v))=L(r(v))∩L(v). If at some point L(r(v))=∅, return that no coloring
exists. These steps can be performed in O(|V (G)|) time.

If none of the lists L(r(v)) is empty, compute the 2-SAT formula that ex-
presses the coloring problem of (G,L,Z), similarly as for (G,L) in Lemma 2.
Namely, define for each vertex v∈V (G) and each color j∈L(r(v)) the vari-
able xr(v)j to model that vertex v gets color j. Notice that if v and w are in
the same set of Z, then r(v)=r(w), thus the sets of Z will be monochromatic
in every coloring derived from a solution of the formula.

If L(r(v)) = {j}, add (xr(v)j) as a clause, and if L(r(v)) = {j,k}, add
(xr(v)j ∨xr(v)k) as a clause. This ensures every vertex gets a color. Finally,
for each edge vw∈E(G) and each color j∈L(r(v))∩L(r(w)), add the clause
(¬xr(v)j ∨¬xr(w)j). This ensures two adjacent vertices get different colors.
Notice also that two adjacent vertices in the same set of Z will produce an
unfeasible formula, as desired.

The formula can be constructed in O(|V (G)|+ |E(G)|) time and has
O(|V (G)|+ |E(G)|) variables and clauses. Since the algorithm that solves
2-SAT is linear in the number of variables and clauses [1], we are done.
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We write N(S) for the set of vertices of V (G)\S with a neighbor in S.
For disjoint sets of vertices S,T of V (G), let NT (S)=N(S)∩T . If S={s} we
just write NT (s). For a vertex set S, let S =S∪N(S). If S =V (G), we say
that S is dominating G, or is a dominating set. Moreover, if S is dominating
and the subgraph induced by S is connected, then we call S a connected
dominating set. If S dominates G, we call S 2-dominating.

For a graph G with a palette L, call a (nonempty) 2-dominating set
S⊆V (G) which induces a connected subgraph a seed of (G,L), if |L(v)|=1
for each v∈S and |L(v)|=2 for each v∈N(S). Note that we do not require
the palette L to be updated.

Observe that for any seed S, and for any two non-adjacent vertices v,w∈
N(S) the following holds.

(1) There is an induced v–w path of at least 3 vertices whose
inner vertices all lie in S.

The next result is essential to our proof.

Theorem 4 (Camby and Schaudt [2]). For all t≥3, any connected Pt-
free graph has a connected dominating set whose induced subgraph is either
Pt−2-free, or isomorphic to Pt−2.

We use the following easy corollary of Theorem 4 in order to prove the
existence of a small seed in P7-free graphs that may be 3-colorable.

Corollary 5. Every connected P7-free graph G has either a connected 2-
dominating set of size at most 3 or a complete subgraph of 4 vertices. The
set or the subgraph can be found in O(|V (G)|3|E(G)|) time.

Proof. We prove the first statement by applying Theorem 4 to the graph in
question, say G. Let S be the connected dominating set of G whose induced
subgraph, say H, is either a P5 or P5-free. If H is a P5, the three non-leaf
vertices of H form a connected 2-dominating set of G, as desired. Otherwise,
another application of Theorem 4 shows that H has a connected dominating
set S′ whose induced subgraph is either a P3 or P3-free. If |S′| ≤ 3, S′ is a
connected 2-dominating set of G of at most three vertices. Otherwise, as
a connected P3-free graph is complete, |S′| ≥ 4 implies that G contains a
complete subgraph on 4 vertices.

Now we turn to the second statement. It suffices to run through all triples
T of vertices (O(|V (G)|3) triples), and check if there is a common neighbor
v of T such that T ∪{v} induces a complete subgraph (O(|E(G)|) possible
vertices v). If not, we check whether T induces a connected subgraph and
all vertices of the graph are within distance 2 from T . We can test the
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second property by using two steps of a breadth-first-search (that has time
complexity O(|E(G)|)).

This corollary will help us to reduce in the next section the original
instance to a polynomial number of simpler instances. In each of these, the
vertices having lists of size 1 or 2 satisfy some structural properties and the
vertices having lists of size 3 form a stable set. We will in turn solve these
special instances in Section 3.1 by reducing them to a polynomial number
of instances to which we can apply Lemma 3.

3. Proof of Theorem 1

Let G be a graph and v be a vertex of G. Observe first that if G[N(v)] is
not bipartite, then G is not 3-colorable. Observe also that if G[N(v)] is a
connected bipartite graph with bipartition U,W , then in every 3-coloring of
G each of the sets U and W is monochromatic.

Let (G,L) be a list 3-coloring instance, such that for every v ∈ V (G),
G[N(v)] is bipartite. We now describe a procedure that we call the neigh-
borhood reduction.

If there is a vertex v with |L(v)| = 3 such that G[N(v)] is connected,
proceed as follows. Let U,W be a bipartition of G[N(v)]. We construct the
graph G′ we obtain from G by deleting v and replacing the neighborhood of v
with an edge uw, where NG′(u)∩V (G)=NG(U)∩V (G′), and NG′(w)∩V (G)=
NG(W )∩V (G′). In the case that W is empty, say, we can assume U ={u},
and we just define G′=G−{v}. The list of u is the intersection of all lists
of vertices from U , and similar for w and W . Clearly, G admits a coloring
for L if and only if G′ admits a coloring for the new palette.

We iterate the above procedure until G[N(v)] is disconnected for each
vertex v with |L(v)| = 3. The term neighborhood reduction refers to the
whole process until it stops.

The following claim says that this reduction preserves the property of
being Pt-free, for t≥3.

Claim 6. If G is a Pt-free graph (t≥3), then the graph obtained from the
neighborhood reduction is Pt-free.

Proof. It suffices to consider one reduction step. Let us say we contracted
the neighborhood of the vertex v in G, and obtained the graph G′. It remains
to show that G′ is still Pt-free.

To see this, suppose Q is an induced Pt in G′. Since G is Pt-free, it follows
that V (Q)∩{u,w} is non-empty. Note that if Q contains both u and w, then
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u,w are consecutive on Q. So (in any case) we can write Q as Q1−Q2−Q3,
where V (Q2)⊆{u,w} and Q1,Q3 avoid {u,w}. We can assume that Q1,Q3

are not empty, as otherwise it is easy to substitute Q2 with one or two
vertices in U ∪W , and thus find an induced Pt in G, a contradiction.

Observe that Q1,Q3 each have exactly one vertex q1, q3 in N(V (Q2)). If
|V (Q2)| = 1, we may assume both these vertices lie in N(U), and we can
substitute Q2 = u with either a common neighbor of q1, q3, or with a path
u1−v−u2 with u1∈U∩N(q1) and u2∈U∩N(q3). This gives an induced Pt

in G, a contradiction.
So assume |V (Q2)|= 2, and without loss of generality Q2 = u−w, q1 is

adjacent to u and q3 to w. Then q1 is anticomplete to W and has a neighbor
u1 in U , and q3 is anticomplete to U and has a neighbor w1 in W . We can
thus replace Q2 with the path u1−w1 if they are adjacent, or with the path
u1−v−w1 if they are not. This gives an induced Pt in G, yielding the final
contradiction.

Let G∗ be a connected P7-free graph with a palette L∗. We preprocess
first the instance by applying the neighborhood reduction according to the
input palette L∗, but, in order to simplify the following presentation and
discussion of our algorithm, after that preprocessing, we do not take the
input palette L∗ into account. Instead, we consider the palette L1 with
L1(v) ={1,2,3} for each vertex v. We intersect the current lists with L∗ at
the very end of the first phase of the algorithm only.

Here is an overview over the steps taken in the algorithm.

(a) Assert that for every vertex v of G∗, G∗[N(v)] is bipartite. Otherwise,
we can report that G∗ is not 3-colorable.

(b) Reduce the instance so that the neighborhood of every vertex v with
|L∗(v)|= 3 is disconnected. Let G be the graph obtained. By Claim 6,
G is P7-free.

(c) Apply Corollary 5 to G and obtain a connected 2-dominating set S1 of
size at most 3. (Notice that as we have asserted that every vertex has a
bipartite neighborhood, G cannot contain a complete subgraph of size
4).

(d) For each feasible coloring of S1 do the following to (G,L1).
(1) Update the lists of all remaining vertices to get a palette L2 and a

larger seed S2. The set S2 is the largest connected superset of S1

containing only vertices with lists of size 1.
(2) By guessing a partial coloring of the graph, obtain an equivalent set

of palettes L3.
(3) After another iteration, obtain a refined equivalent set of palettes
L4.
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(4) For each palette L∈L4, intersect L with the input palette L∗ and
obtain a palette L′.

(5) Update, and apply Lemma 11 to check for colorability.

We now describe the individual steps in more detail. The first
step as well as the neighborhood reduction can be performed in
O(|V (G∗)|(|V (G∗)|+ |E(G∗)|)) time. The complexity associated to Corol-
lary 5 is O(|V (G)|3|E(G)|) time. As we report that the graph is not 3-
colorable otherwise, we may assume that G[N(v)] is bipartite for every ver-
tex v of G, and that we have obtained a 2-dominating connected set S1 of
G of size at most 3. For technical reasons, if S1 is a singleton, we add one of
its neighbors to S1. Thus, we can assume that |S1|≥2. We will go through
all possible 3-colorings of S1, and check for each whether it extends to a col-
oring of G which respects the palette L∗. This is clearly enough for deciding
whether (G,L∗) is colorable.

So from now on, assume the coloring on S1 is fixed and that for every
other vertex v of G we have L1(v) = {1,2,3}. We update the lists of all
vertices in G. Note that updating can be done in O(|V (G)|+ |E(G)|) time,
because each edge vw needs to be checked at most once (either updating v
from w or updating w from v). After updating to palette L2, consider the
largest connected set S2 of vertices with lists of size 1 that contains S1. We
claim that S2 is a seed for (G,L2). Indeed, since S1 dominates G, so does S2.
Also, all vertices in N(S2) must have lists of size 2, since they are adjacent,
but do not belong to S2. So S2 is a seed.

In the case that two adjacent vertices of S2 have the same entry on their
list, we abort the algorithm for that sub-instance and report that the current
3-coloring of S1 does not lead to a valid 3-coloring of G.

Claim 7. For every vertex v in N(S2) there is an induced path on at least
3 vertices contained in S2∪{v} having v as an endpoint.

Proof. This holds since S2 is connected, |S2| ≥ |S1| ≥ 2, and v is not adja-
cent to two vertices of S2 that have different entries on their lists (because
|L2(v)|=2 after updating).

Now, in two steps j=3,4, we will refine the set of subpalettes of L1 we are
looking at, starting with L2={L2}. At each step we replace the set Lj−1 of
palettes from the previous step with a set Lj . More precisely, each element
L of Lj is a subpalette of some element Pred(L) of Lj−1. We will argue
below why it is sufficient to check colorability for the new set of palettes.

For each of the palettes L in Lj , we will define a seed SL and a set
TL ⊆ N(SL). We start with SL2 = S2 and TL2 being the set of vertices
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x ∈N(SL2) for which there does not exist an induced path x− y− z with
|L2(y)|=3 and z /∈SL2 . We will ensure for each palette L that SL⊇SPred(L)

and TL⊇TPred(L). Furthermore, the seeds SL and the sets TL will have the
following properties:

(A) for all x∈N(SL)\TL, there is an induced path x−y−z with |L(y)|=3
and z /∈SL, and for no x∈TL is there such a path; and

(B) for each vertex v∈V (G)\SL either |L(v)|=1 or |L(v)|=3.

Let us now get into the details of the procedure. Successively, for j =
3,4, we consider for each L ∈ Lj−1 a set of subpalettes of L obtained by
partitioning the possible colorings of induced paths x−y−z with x∈N(SL)\
TL, |L(y)|=3 and z /∈SL into a polynomial number of cases. The set Lj will
be the union of all the sets of subpalettes corresponding to lists L in Lj−1.
The idea is to make the seed grow, and after these two steps, obtain a set
of palettes we can deal with, and such that the graph admits a coloring for
the original palette if and only if it admits a coloring for one of the palettes
in the set.

For each i∈{1,2,3}, let Pi be the set of paths x−y−z with x∈N(SL)\TL,
|L(y)|=3 and z /∈SL, and such that i /∈L(x). We will order the paths of Pi
non-increasingly by |N(x)\(N(y)∪N(z)∪SL)|, i.e., the number of vertices
w (if any) such that w−x−y−z is an induced path and w 6∈SL.

We can compute and sort the paths of Pi in O(|V (G)|4) time. Moreover,
this order of the paths induces an order on the set Yi of vertices y that are
midpoints of paths x−y− z in Pi. The vertices in Yi are ordered by their
first appearance as midpoints of the ordered paths in Pi. Let ni = |Yi|, and
Yi={yi,1, . . . ,yi,ni}.

For each i∈{1,2,3}, we consider the following cases.

(a) All vertices in Yi are colored i.
(b) There is a k, 1≤k≤ni, such that the first k−1 vertices of Yi are colored

i, and the first path x−yi,k− z in Pi is colored such that the color of
yi,k is different from i, the color of every vertex in W =N(x)\(N(yi,k)∪
N(z)∪SL) is i, and the color of z is i if W is empty.

(c) There is a k, 1 ≤ k ≤ ni, such that the first k− 1 vertices of Yi are
colored i, and the first path x− yi,k− z in Pi is colored such that the
color of yi,k is different from i, the color of z is different from i if W =

N(x)\ (N(yi,k)∪N(z)∪SL) is empty, and if W is nonempty, there is a
vertex w of W that gets a color different from i.

In order to do that, we consider all choices of functions f : {1,2,3} →
{a,b,c}. For each of these choices, we generate a set Lf of subpalettes of L,
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and Lj will be the union of all sets Lf . For fixed f the first step to obtain
Lf consists of defining Li,f for i=1,2,3 in the following way.

If Pi is empty, then set Li,f ={L}. Otherwise, the set is as follows.

If f(i) = a, set L̂(y) = {i} for every y ∈ Yi and L̂(v) = L(v) for every

v∈V (G)\Yi. Set Li,f ={L̂}.
If f(i) 6=a, for each k∈{1, . . . ,ni}, let x and z be such that x−yi,k−z is

the first path in Pi having yi,k as midpoint, and let W =N(x)\ (N(yi,k)∪
N(z)∪SL).

If f(i) = b, consider all subpalettes L̂ of L which only differ from L on

W ∪ {yi,1, . . . ,yi,k,z}, and satisfy L̂(yi,k) = {i′} for some i′ 6= i, L̂(v) = {i}
for all v ∈W ∪{yi,1, . . . ,yi,k−1}, |L̂(z)| = 1, and L̂(z) = {i} if W is empty.

Update these palettes L̂ from yi,k except on TL and let Li,f be the set of all
palettes found in this way, for every choice of k. Note that, in each palette,
the updated list of x has size 1, and that the number of palettes generated
this way is O(|V (G)|).

If f(i) = c, if W is nonempty, for each w∈W consider all subpalettes L̂

of L which only differ from L on {yi,1, . . . ,yi,k,z,w}, and satisfy L̂(v) = {i}
for all v ∈ {yi,1, . . . ,yi,k−1}, |L̂(yi,k)|= |L̂(z)|= |L̂(w)|= 1, L̂(yi,k) 6= {i}, and

L̂(w) 6={i}. If W is empty, consider all subpalettes L̂ of L which only differ

from L on {yi,1, . . . ,yi,k,z}, and satisfy L̂(v) = {i} for v ∈ {yi,1, . . . ,yi,k−1},
|L̂(yi,k)|= |L̂(z)|= 1, L̂(yi,k) 6= {i}, and L̂(z) 6= {i}. Update these palettes L̂
from yi,k except on TL and let Li,f be the set of all palettes found in this
way, for every choice of k and of w (if such a w exists). Note that again,
in each palette, the updated list of x has size 1, and that the number of
palettes generated this way is O(|V (G)|2).

Finally, for each triple (L1,L2,L3)∈L1,f×L2,f×L3,f consider the palette

L̃ obtained from intersecting the lists of L1,L2,L3, taking intersections at
each vertex. Update the palette L̃ from any vertex in SL, except on TL. Let
Lf be the set of all palettes L̃ thus generated.

Observe that |Lf |=O(|V (G)|6), since |Li,f |=O(|V (G)|2) for i=1,2,3.
For each L′∈Lf , let SL′ be a maximal connected set of vertices with list

size 1 that contains SL. Then SL′ is a seed.
Note that for each L′∈Lf , all vertices v in TL satisfy |L′(v)|=2, since they

were never updated. Let TL′ be the union of TL with all vertices x∈N(SL′)
which are not the starting point of an induced path x−y−z with |L′(y)|=3
and z /∈SL′ .

Clearly, TL′⊆N(SL′). Property (A) holds because of the way we defined
TL′ , and because there are no new paths of the type described in (A) that
start at vertices in TL, as seeds grow and lists shrink. Property (B) holds
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because SL was a seed satisfying Properties (A) and (B), and when defining
palettes in Lf by the cases (a), (b), and (c), we have reduced the size of some
vertex lists from 3 to 1, never to 2; then we only updated from vertices in
SL except on TL, thus every vertex that got a list of size 1 by updating is
connected to SL by a path all whose vertices have current lists of size one,
and is now in SL′ and, consequently, every vertex that got a list of size 2 by
updating is in N(SL′).

Claim 8. There is a coloring of G for the palette L2 if and only if G has a
coloring for at least one of the palettes in L4.

Proof. Indeed, observe that when obtaining Lj from Lj−1, we consider for
each L ∈ Lj−1 and for each i ∈ {1,2,3} the possibility that all induced 3-
vertex-paths that start in N(SL) and then leave SL have their second vertex
colored i (when f(i)=a). We also consider the possibility that there is such
a path whose second vertex is colored with a different color (when f(i) = b
or f(i) = c). In that case, we consider separately the possible colorings of a
fourth vertex w, if such a w exists.

Note that |Lj+1|=O(|Lj | · |V (G)|6) for each j = 2,3. Since |L2|= 1, the
number of palettes in L4 is O(|V (G)|12).

Next we prove that during the above described process, the union of our
seed with the set TL actually grows.

Claim 9. For each L∈Lj , we have N(SPred(L))⊂SL∪TL.

Proof. Let L′=Pred(L) and let f be the function used to produce L from
L′. In order to see Claim 9, suppose there is a vertex x′∈N(SL′)\(SL∪TL).
As x′ /∈ SL and SL ⊇ SL′ , we know that x′ ∈ N(SL). Furthermore, since
x′ /∈TL, there is an induced path x′−y′−z′ with |L(y′)|= 3 and z′ /∈SL. In
particular, z′ /∈SL′ and since lists only shrink, |L′(y′)|=3. So f(i) 6=a, where
i is such that i /∈L(x′)=L′(x′). Thus f(i)∈{b,c}, and so there is an induced
path x− y− z with x ∈N(SL′), y,z /∈N(SL′), L(x) 6= {i}, L(y) 6= {i}, and
|L(x)|= |L(y)|= |L(z)|= 1, and thus x,y,z ∈SL. Since y′,z′ 6∈SL, it follows
that there are no edges between {y′,z′} and {x,y,z}. Also, since x′∈N(SL),
there are no edges from x′ to vertices v∈{x,y,z} with L(v)(L(x′). In other
words, the only possible edge between {x,y,z} and {x′,y′,z′} is x′z, and if
this edge is present, we have that L(z) = {i}. On the other hand, by (1),
there is a path Q of at least 3 vertices connecting x and x′ whose interior
lies in SL′ (in particular, the interior of Q is anticomplete to {y′,z′,y,z}).
So, since G is P7-free, the edge x′z has to be present and thus we have
L(z)={i}.
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Now, assume there is an extension of x−y−z to an induced path w−x−y−z
with w 6∈SL′ . Then, as the sequence w−x−y−z−x′−y′−z′ is not an induced
P7, there is an edge from w to one of x′,y′,z′. Observe if |L(w)|= 1, then
w ∈ SL and neither wy′ nor wz′ is an edge. Hence either |L(w)| ≥ 2, or
L(w)={i}, and in the latter case the only edge from w to {x′,y′,z′} is wx′.
As this happens for all possible choices of w, we see that f(i) 6=c, and thus
f(i) = b. This means that for all possible w, w is adjacent to x′. But now,
observe that

N(x) \ (N(y) ∪N(z) ∪ SL′) ( N(x′) \ (N(y′) ∪N(z′) ∪ SL′),

since z is in the right hand side set, but not in the left hand side set. This
is a contradiction to the choice of the path x−y−z for the definition of L
from L′ and f .

We conclude that there is no extension of x−y− z to an induced path
w−x−y−z. But then, the fact that L(z)={i} implies that again, f(i) 6=c,
and thus, f(i)=b. The existence of the edge x′z gives a contradiction to the
choice of the path x−y−z for the definition of L from L′ and f . This proves
Claim 9.

Next, we prove that two steps of performing the above procedure suffice
to take care of all paths on three vertices that start in the boundary of the
current seed, and then leave the seed.

Claim 10. For each L∈L4, we have N(SL)⊂TL.

Proof. Suppose there are L ∈ L4 and x ∈ N(SL) such that x /∈ TL. Then
by (A) there is a path x− y− z with |L(y)|= 3 and z /∈ SL. Clearly y and
z are anticomplete to SL. Let L′=Pred(L) and L′′=Pred(L′). Choose an
induced path P from x to N(SL′′) with all vertices but x in SL, say it ends
in x′′ ∈ N(SL′′). By Claim 9, N(SL′′) ⊆ SL′ ∪ TL′ . On the other hand, as
TL′ ∩SL=∅, x′′∈SL′ . In particular, x 6=x′′.

Let x1 be the neighbor of x in P . Since x 6∈SL∪TL, by Claim 9, x1∈SL\SL′ .
As the subpath of P from x1 to x′′ goes from SL \SL′ to SL′ , it contains a
vertex x′ in N(SL′). The vertex x′ may be x1, but x′ is different from x′′

because x′′ ∈ SL′ . As x′ is in the subpath from x1 to x′′, x′ 6= x. Summing
up, x, x′ and x′′ are three distinct vertices, and so P together with the path
x−y−z and the path provided by Claim 7 for x′′ gives a path on at least 7
vertices, a contradiction.

By Claim 8, (G,L2) is colorable if and only if (G,L) is colorable for some
L ∈ L4. For each L ∈ L4 our aim is to check whether there is a coloring
of (G,L). This we will do, after some more discussion, with the help of
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Lemma 11 below. So from now on, let L∈L4 be fixed. Let X be the set of
all vertices in V (G)\SL with lists of size 1, and set Y =V (G)\(SL∪X). By
construction, |L(y)|=3 for each y∈Y .

By Claim 10, no vertex of N(SL) is the starting point of an induced path
x−y−z with y∈Y and z∈X∪Y . In other words, for each y∈Y , all edges
between N(y)∩SL and N(y)\SL are present.

Now we intersect L with the given input palette L∗, and then update. Let
L′ be the resulting palette. We may assume that |L′(v)|≥1 for all v∈V (G),
otherwise we may safely report that (G,L′) is not colorable, and thus L does
not lead to a feasible coloring of (G,L∗). Let Y ′ be the set of vertices y of Y
such that |L′(y)|=3. We noticed that for each y∈Y , all the edges between
N(y)∩SL and N(y)\SL are present. Since Y ′ is a subset of the vertices v
such that |L∗(v)|=3 and we have applied the neighborhood reduction at the
beginning of the algorithm and the graph did not change, for y∈Y ′ one of
the sets N(y)∩SL or N(y)\SL must be empty. Since SL⊇S2 is a dominating
set, we conclude that N(y)\SL=∅, and thus

(2) N(y) ⊆ SL for each y ∈ Y ′.

Consider the set S′ of all vertices that are connected to SL by a (possibly
trivial) path containing only vertices with lists L′ of size 1. Note that S′ is
a seed. In particular, SL⊆S′ and by (2), we have N(y)⊆S′ for every y∈Y ′.
That is, Y ′ is a stable set anticomplete to V (G)\(S′∪Y ′).

We are now in a situation where the following lemma applies, solving the
remaining problem.

Lemma 11. Let G be a connected P7-free graph with a palette L. Let S
be a seed of G such that if v ∈S and w∈N(S) are adjacent, then they do
not share list entries. Assume that the set X of vertices having lists of size
3 is stable and anticomplete to V (G)\ (S∪X). Assume also that no vertex
in X has a connected neighborhood. Then we can decide whether G has a
coloring for L in O(|V (G)|9(|V (G)|+ |E(G)|)) time.

The next subsection is devoted to the proof of Lemma 11. Since we have
|L4|=O(|V (G)|12) many lists to consider, and need to apply Lemma 11 to
each of these, the total running time of the whole algorithm amounts to
O(|V (G)|21(|V (G)|+ |E(G)|)).

3.1. Proof of Lemma 11

Let G, L, S and X be as in the statement of Lemma 11.
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In this proof we make extensive use of the concept of monochromatic set
constraints as defined in Section 2. Note that (G,L) is colorable if and only
if the triple (G,L,∅) is colorable. Our aim is to define a set R of restrictions
of (G,L,∅) with the property that in any element of R there are no vertices
with list of size 3, and (G,L,∅) is colorable if and only if R is colorable.
Moreover, R has polynomial size and is computable in polynomial time.

If X = ∅, we simply let R= {(G,L,∅)}. Otherwise, for all i = 1,2,3, let
Di be the set of vertices v∈N(S) with L(v) = {1,2,3}\{i}, and for x∈X,
let Ni(x) =N(x)∩Di, for i= 1,2,3. Observe that, under the hypothesis of
Lemma 11, for every d∈Di and for every s∈S∩N(d), we have L(s) ={i}.
By the same hypothesis, no vertex of X has neighbors in S.

If N(x)⊆Di for some x∈X and some i∈{1,2,3}, then setting L(x)={i}
does not change the colorability of (G,L,∅), so we may assume that for
every x∈X at least two of the sets N1(x),N2(x),N3(x) are non-empty. Let
X1 be the set of vertices x∈X for which N2(x) is not complete to N3(x);
for every x ∈ X1 fix two vertices n2(x) ∈ N2(x) and n3(x) ∈ N3(x) such
that n2(x) is non-adjacent to n3(x). Define similarly X2 and n1(x),n3(x) for
every x∈X2, and X3 and n1(x),n2(x) for every x∈X3. Since no vertex of
X has a connected neighborhood and X is a stable set and anticomplete to
V (G)\(S∪X), it follows that X=X1∪X2∪X3.

Before we state the coloring algorithm, we need some auxiliary state-
ments. For a path P with ends u,v let P ∗=V (P )\{u,v} denote the interior
vertices of P .

Claim 12. Let i, j ∈{1,2,3}, i 6= j, and let ui,vi ∈Di and uj ,vj ∈Dj , such
that {ui,vi,uj ,vj} is a stable set. Then there exists an induced path P with
ends a,b∈{ui,vi,uj ,vj} such that
(a) {a,b} 6={ui,uj} and {a,b} 6={vi,vj},
(b) P ∗ is contained in S and, in particular, |L(v)|=1 for every v∈P ∗, and
(c) P ∗ is anticomplete to {ui,vi,uj ,vj}\{a,b}.

Proof. Note that each of ui,uj ,vi,vj has a neighbor in S, and G[S] is con-
nected. Let P be an induced path with P ∗⊆S that connects ui with vi. If
P is not as desired, at least one of uj ,vj has a neighbor on P . Let p be the
neighbor of uj or vj on P that is closest to vi; by symmetry we may assume
p is a neighbor of uj . Note that p is not adjacent to ui,vi∈Di, because p is
already adjacent to uj ∈Dj . Hence, if uj−p−P −vi is not as desired, then
vj must have a neighbor on p−P −vi. Among all such neighbors, let p′ be
the one that is closest to p (possibly p′=p). As before, p′ is not adjacent to
any of ui,vi∈Di, and thus, uj−p−P −p′−vj is the desired path.
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Claim 13. Let {i, j,k} = {1,2,3}. Let x,y ∈ Xi, let nj ∈ Nj(x) and nk ∈
Nk(x) such that nj is non-adjacent to nk. Then there is an edge between
{x,nj ,nk} and {y,nj(y),nk(y)}.

Proof. Assume there is no such edge. Then in particular, vertices
nj ,nj(y),nk,nk(y) are distinct, and we can apply Claim 12 to obtain a path
P with P ∗⊆S that connects two vertices from {nj ,nj(y),nk,nk(y)} in way
that P ∗, together with nj−x−nk and nj(y)−y−nk(y), forms an induced
path of length at least 7, a contradiction.

Next we distinguish between several types of colorings of G, and show
how to reduce the list sizes assuming that a coloring of a certain type exists.
For this, let {i, j,k}={1,2,3}. We call a coloring c of a restriction (G′,L′,Z ′)
of (G,L,Z)

(A) a type A coloring with respect to i if there exists an induced path nj−x−
nk−z−mj with x,z∈Xi, nj∈Nj(x), mj∈Nj(z), and nk∈Nk(x)∩Nk(z)
such that c(nj)= i, c(x)=j and c(z)=k (this implies c(nk)=c(mj)= i),
or the same with the roles of j and k reversed;

(B) a type B coloring with respect to i if it is not a type A coloring with
respect to i, and there exists an induced path x− nk − z −mj with
x,z∈Xi∩V (G′), mj∈Nj(z), nk∈Nk(x)∩Nk(z) such that c(x)=j and
c(z)=k (this implies c(nk)=c(mj)= i), or the same with the roles of j
and k reversed;

(C) a type C coloring with respect to i if it is not a type A or type B coloring,
and there exist z ∈Xi ∩V (G′), mj ∈Nj(z) and nk ∈Nk(z) such that
c(mj)=c(nk)= i.

We will show in Claim 14 how to refine the instances to test if a graph
admits a type A coloring with respect to a color i; in Claim 15 how to refine
the instances to test if a graph admits a type B coloring with respect to i
under the assumption that it does not admit a type A coloring with respect
to i; in Claim 16 how to refine the instances to test if a graph admits a type
C coloring with respect to i under the assumption that it does not admit
a type A or type B coloring with respect to i; finally, in Claim 17 we show
how to refine the instances to test if a graph admits a coloring under the
assumption that it does not admit a type A, or type B, or type C coloring
with respect to i. After the claims, we describe how to combine them in
order to obtain the desired list of restrictions of the original instance.

Claim 14. Let (G′,L′,Z ′) be a restriction of (G,L,Z). There exists a set
Li of O(|V (G)|3) subpalettes of L′ such that
(a) |L′′(v)|≤2 for every L′′∈Li and v∈Xi∩V (G′), and
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(b) (G′,L′,Z ′) admits a type A coloring with respect to i if and only if
(G′,Li,Z ′) is colorable.

Moreover, Li can be constructed in O(|V (G)|4) time.

For every x,z ∈ Xi ∩ V (G′) and nj ∈ Nj(x) for which there are nk ∈
Nk(x)∩Nk(z) and mj ∈Nj(z) such that nj−x−nk−z−mj is an induced
path, we construct a palette L′′=Lx,z,nj depending on x,z,nj ; for the same
case with triples x,z ∈ Xi ∩ V (G′), nk ∈ Nk(x), and the roles of j and k
reversed, we construct in an analogous way a palette L′′=L′x,z,nk depending
on x,z,nk. The set Li will be the set of all palettes L′′ obtained in this way.
So the number of palettes in Li is O(|V (G)|3).

For x,z,nj as above (we will assume the first case in the definition, the
other case is analogous), we define L′′ by setting L′′(x) = {j}, L′′(z) = {k},
L′′(nj)={i}, and leaving L′′(v)=L′(v) for all v∈V (G′)\{x,z,nj}. Update
Nj(z) from z, and Nk(x) from x. Let nk and mj be such that nk∈Nk(x)∩
Nk(z), mj∈Nj(z), and nj−x−nk−z−mj is an induced path. Note that after
updating, L′′(nk)=L′′(mj)={i}. Now, for each vertex v∈Dj ∪Dk that has
a neighbor v′∈{x,z,nj ,nk,mj}, update v from each such neighbor v′. Next,
for every vertex y ∈Xi∩V (G′), if nj(y) or nk(y) now has list size 1, then
update y from both nj(y) and nk(y), and also update y from mj ,nj and nk

in the case that y is adjacent to any of them. Call the obtained palette L′′

(slightly abusing notation). By the way we updated, it only takes O(|V (G)|)
time to compute this palette. The total time for constructing all palettes for
Li thus amounts to O(|V (G)|4).

In order to see Claim 14 (a), we need to show that |L′′(y)| ≤ 2 for all
y∈Xi∩V (G′). For contradiction, suppose |L′′(y)|=3 for some y∈Xi∩V (G′).
By Claim 13, there must be edges between {x,nj ,nk} and {y,nj(y),nk(y)},
and also between {z,mj ,nk} and {y,nj(y),nk(y)}. By the way we updated
L′′, the only possibly edges between these sets are those connecting nj(y)
with x, and nk(y) with z. Consequently, nj(y)x and nk(y)z are both edges,
and so mj−z−nk(y)−y−nj(y)−x−nj is a P7, a contradiction.

For Claim 14 (b), first note that by construction, if (G′,Li,Z ′) is colorable
then (G′,L′,Z ′) has a type A coloring with respect to i. On the other hand, if
c is a type A coloring of (G′,L′,Z ′) with respect to i, then there is an induced
path nj−x−nk−z−mj with x,z∈Xi, nj ,mj∈Nj(x), and nk∈Nk(x) such that
c(nj) = c(mj) = c(nk) = i, c(x) = j, and c(z) =k (or the same with the roles
of j and k reversed). Since updating does not change the set of possible
colorings for a list, c is a coloring for the list L′′ = Lx,z,nj (respectively,
L′′=Lx,z,nk). So Li is as required for Claim 14 (b).
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Claim 15. Let (G′,L′,Z ′) be a restriction of (G,L,Z) that does not admit
a type A coloring. There exists a set Li of O(|V (G)|2) subpalettes of L′ such
that
(a) |L′′(v)|≤2 for every L′′∈Li and v∈Xi∩V (G′), and
(b) (G′,L′,Z ′) admits a type B coloring with respect to i if and only if

(G′,Li,Z ′) is colorable.
Moreover, Li can be constructed in O(|V (G)|3) time.

Proof. For every x,z∈Xi∩V (G′) for which there exist nk ∈Nk(x)∩Nk(z)
and mj∈Nj(z) such that x−nk−z−mj is an induced path, we construct a
palette L′′=Lx,z, depending on x and z. For the case with the roles of j and
k reversed, we construct analogously a palette L′′=L′x,z. The set Li will be
the set of all palettes L′′ obtained in this way. So the number of palettes in
Li is O(|V (G)|2).

Given a pair of vertices x, z in Xi∩V (G′) satisfying the hypothesis, let
nk and mj such that nk∈Nk(x)∩Nk(z), mj∈Nj(z), and x−nk−z−mj is an
induced path. Let M be the set of all n∈Nj(x) for which n−x−nk−z−mj

is an induced path.
Define L′′ by setting L′′(x) = {j}, L′′(z) = {k}, L′′(nk) = L′′(mj) = {i},

and L′′(n) ={k} for all n∈M , and leaving L′′(v) =L′(v) for all v∈V (G′)\
({x,z,nk,mj}∪M). Now, for each vertex v∈Dj∪Dk that has a neighbor v′

in {x,z,mj ,nk}, update v from each such neighbor v′. Next, for every vertex
y∈Xi∩V (G′), if nj(y) or nk(y) now has list size 1, then update y from both
nj(y) and nk(y), and also update y from mj and nk in the case that y is
adjacent to either of them. Call the obtained palette L′′. Note that by the
way we updated, it takes O(|V (G)|) time to compute this palette. The total
time for constructing all palettes for Li thus amounts to O(|V (G)|3).

In order to see Claim 15 (a), we need to show that |L′′(y)| ≤ 2 for all
y∈Xi∩V (G′). For contradiction, suppose |L′′(y)|=3 for some y∈Xi∩V (G′).
Then nj(y) 6∈M∪{mj} and nk(y) 6=nk. By Claim 13, it follows that nk(y) is
adjacent to z, and by the way we updated L′′, the only other possible edge
between {x,nk,z,mj} and {y,nj(y),nk(y)} would be xnj(y). However, since
nj(y) 6∈M , we deduce that nj(y) is non-adjacent to x. Let s be a neighbor
of nj(y) in S with L(s)={j}. Then s is anticomplete to {nk,x,y,z,nk(y)}.
So x−nk−z−nk(y)−y−nj(y)−s is a P7, a contradiction.

For Claim 15 (b), note that by construction, if (G′,Li,Z ′) is colorable
then (G′,L′,Z ′) has a type B coloring with respect to i. On the other hand,
if c is a type B coloring of (G′,L′,Z ′) with respect to i, then there is an
induced path x−nk−z−mj with x,z∈Xi, mj∈Nj(x), and nk∈Nk(x)∩Nk(z)
such that c(mj)=c(nk)= i, c(x)=j, and c(z)=k (or the same with the roles
of j and k reversed). Since c is not a type A coloring, it follows that c(v)=k
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for all v in M . Since updating does not change the set of possible colorings
for a list, c is a coloring for L′′=Lx,z. So Li is as required for Claim 15 (b).

Claim 16. Let (G′,L′,Z ′) be a restriction of (G,L,Z) that does not admit
a type A or type B coloring. There exists a set Li of O(|V (G)|2) subpalettes
of L′ such that
(a) |L′′(v)|≤2 for every L′′∈Li and v∈Xi∩V (G′), and
(b) (G′,L′,Z ′) admits a type C coloring with respect to i if and only if

(G′,Li,Z ′) is colorable.
Moreover, Li can be constructed in O(|V (G)|4) time.

Proof. For every z∈Xi∩V (G′) having non-adjacent neighbors mj ∈Nj(z)
and nk ∈Nk(z), we construct two families of palettes, one for each of the
possible colors j,k of z in a type C coloring, z, mj , nk are as in the definition
of a type C coloring. We only describe how to obtain the family of palettes L′′

with L′′(z)={k}; the definition of the family of palettes L′′ with L′′(z)={j}
is analogous, with the roles of j and k reversed.

Let Nz be the set of vertices nk in Nk(z) having a non-neighbor in Nj(z).
For each such vertex nk, let W =Wz,nk be the set of all w∈Xi∩V (G′) such
that there exists an induced path w−nk−z−mj with mj ∈Nj(z). We will
order the vertices of Nz non-increasingly by |W |. We can compute and sort
the vertices of Nz in O(|V (G)|3) time.

For each nk∈Nz, define L′′=Lz,nk by setting L′′(z)=L′′(w)={k} for all
w∈W , L′′(nk) ={i}, L′′(n′k) ={j} for every n′k ∈Nz having an index lower
than the index of nk in Nz, and leaving L′′(v)=L′(v) for all the remaining
vertices. Update each vertex of Nj(z) from z. Now, for each vertex v that has
a neighbor in {z}∪Nk(z)∪Nj(z)∪W , update v from each such neighbor v′.
Next, for every vertex y∈Xi∩V (G′), if nj(y) or nk(y) now has list size 1, then
update y from both nj(y) and nk(y). Call the obtained palette L′′. Note that
by the way we updated, it takes O(|V (G)|2) time to compute this palette.
The number of palettes Lz,nk is O(|V (G)|2), and the same for the case with
the roles of j and k reversed. Then Li, the set of all palettes obtained in
this way, has cardinality O(|V (G)|2), and can be constructed in O(|V (G)|4)
time. We may assume that |L′′(v)|≥1 for all v∈V (G′), otherwise we detect
that the palette L′′ does not lead to a feasible solution to L′.

In order to see Claim 16 (a), we need to show that |L′′(y)| ≤ 2 for all
y∈Xi∩V (G′). For contradiction, suppose |L′′(y)|=3 for some y∈Xi∩V (G′).
Let mj be a non-neighbor of nk in Nj(z). Note that by the way we up-
dated, L′′(mj) = {i}. Claim 13 guarantees an edge between {z,mj ,nk} and
{y,nj(y),nk(y)}. By the way we updated L′′, nj(y) 6= mj , nk(y) 6= nk,
z is not adjacent to nj(y), and there is no edge between {mj ,nk} and
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{y,nj(y),nk(y)}. So z is adjacent to nk(y). Since nk(y) is not adjacent to
mj , nk(y) belongs to Nz, and as it has two colors in its list L′′, its index
is greater than the index of nk in Nz. As y is adjacent to nk(y) and not to
{mj ,nk}, y ∈Wz,nk(y) \Wz,nk . Since |Wz,nk | ≥ |Wz,nk(y)|, there is a vertex
x ∈Wz,nk \Wz,nk(y). By definition, L′′(x) = {k}, thus x is not adjacent to
{y,nj(y)}. Let s be a neighbor of nj(y) in S with L(s) = {j}. Then s is
anticomplete to {nk,x,y,z,nk(y)}. So x−nk−z−nk(y)−y−nj(y)−s is a
P7, a contradiction.

For Claim 16 (b), note that by construction, if (G′,Li,Z ′) is colorable
then (G′,L′,Z ′) has a type C coloring with respect to i. On the other hand,
if c is a type C coloring of (G′,L′,Z ′) with respect to i, then there is a path
nk−z−mj with z∈Xi∩V (G′), mj∈Nj(z), nk∈Nk(z), and c(mj)=c(nk)= i.
Assume c(z) = k (the case c(z) = j is analogous), and consider the path
nk−z−mj that minimizes the index of nk in Nz. Since c(m′j)= i for every

m′j in Nj(z), it follows that c(n′k)=j for every n′k∈Nz having a lower index
than the index of nk in Nz.

Since c is not a type A or B coloring, for every vertex w ∈ Wz,nk we
have c(w) = c(z) = k. Since updating does not change the set of possible
colorings for a list, c satisfies the palette L′′=Lz,nk . So Li is as required for
Claim 16 (b).

Claim 17. Let (G′,L′,Z ′) be a restriction of (G,L,Z). Assume that
(G′,L′,Z ′) does not admit a type A, type B, or type C coloring with respect
to i (i.e., no coloring with a vertex x of Xi∩V (G′) having neighbors colored
i both in Nj(x) and Nk(x)). Let Yi be the set of vertices x ∈ Xi ∩V (G′)
such that Ni(x) = ∅, and let Zi =

⋃
y∈Yi{Nj(y),Nk(y)}. Then (G′,L′,Z ′) is

colorable if and only if (G′\Yi,L′,Z ′∪Zi) is colorable, and any 3-coloring of
(G′\Yi,L′,Z ′∪Zi) can be extended to a 3-coloring of (G′,L′,Z ′) in O(|V (G)|)
time.

Proof. It is enough to prove that for every coloring c of (G′,L′,Z ′) and
every x ∈ Xi ∩ V (G′) such that Ni(x) = ∅, the sets Nj(x) and Nk(x) are
monochromatic with respect to c. Supposing this is false, we may assume
that for some coloring c there are vertices u,v ∈ Nj(x) with c(u) = i and
c(v)=k. Since there are no type A or type B colorings and c is not of type
C, it follows that c(w)=j for every w∈Nk(x). But then x has neighbors of
all three colors, contrary to the fact that c is a coloring.

Let Z = ∅. Recall that our aim was to define a set R of restrictions of
(G,L,Z) with the property that in any element of R there are no vertices
with list of size 3, and such that (G,L,Z) is colorable if and only if R is
colorable. We now construct R as follows. Apply Claims 14, 15, 16 and 17
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with i=1 to (G,L,Z) to create setsR2, . . . ,R5, each consisting of O(|V (G)|3)
restrictions of (G,L,Z). For every x∈X1 and every (G′,L′,Z ′)∈R2∪R3∪R4,
we have that |L′(x)|≤2. For (G′,L′,Z ′)∈R5, if x∈X1 and |L′(x)|=3, then
Nj(x) 6=∅ for every j∈{1,2,3}. Repeat this with i=2 for every restriction in
R2∪R3∪R4∪R5, and then again with i=3 for every restriction obtained with
i=2. This creates a set R′ of O(|V (G)|9) restrictions. Finally, we construct
R from R′ by removing all restrictions that still contain lists which have
size three for some vertex. Following Claims 14, 15, 16 and 17, the whole
computation can be done in O(|V (G)|9 · |V (G)|)=O(|V (G)|10) time.

Let us say that x∈X is wide if N1(x) 6=∅,N2(x) 6=∅ and N3(x) 6=∅. Due
to the construction of R′ it holds that if |L′(x)|=3 for some (G′,L′,Z ′)∈R′,
then x is wide.

It remains to show that (G,L,Z) is colorable if and only if R is colorable.
By Claims 14, 15, 16 and 17, we know that if R is colorable then (G,L,Z)
is colorable. Now assume that (G,L,Z) is colorable, and let c be a coloring
of (G,L,Z). Consider any wide vertex x. Since the neighborhood of x can
only have two distinct colors in total, there are two vertices nj ∈Nj(x) and
nk∈Nk(x) such that c(nj)=c(nk)= i, for some distinct j,k∈{1,2,3}. Then
c is a type A, type B, or type C coloring with respect to i. Consequently, by
Claims 14, 15, 16, there is a restriction (G′,L′,Z ′)∈R′ that is colorable, and
where for every wide vertex y∈X∩V (G′) it holds that |L′(y)|≤2. Therefore
(G′,L′,Z ′)∈R.

We now come to the running time analysis. Using Lemma 3, we can check
in O(|V (G)|+|E(G)|) time whether a given restriction (G′,L′,Z ′) of (G,L,Z)
is colorable. Since we have O(|V (G)|9) many restrictions to consider, and
these can be computed in O(|V (G)|10) time, the total running time amounts
to O(|V (G)|9(|V (G)|+ |E(G)|)). This completes the proof.
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