
Annals of Operations Research
https://doi.org/10.1007/s10479-018-2977-x

S . I . : CLA IO 2016

An exact algorithm for the edge coloring by total labeling
problem

Fabrizio Borghini1 · Isabel Méndez-Díaz2 · Paula Zabala2

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
This paper addresses the edge coloring by total labeling graph problem. This is a labeling
of the vertices and edges of a graph such that the weights (colors) of the edges, defined by
the sum of its label and the labels of its two endpoints, determine a proper edge coloring of
the graph. We propose two integer programming formulations and derive valid inequalities
which are added as cutting planes on a Branch-and-Cut framework. In order to improve
the efficiency of the algorithm, we also develop initial and primal heuristics. The algorithm
is tested on random instances and the computational results show that it is very effective
in comparison with CPLEX. It is displayed that it reduces both the CPU time (for solved
instances) and the final percentage gap (for unsolved instances), and that it is capable of
solving instances that are out of the reach of CPLEX.

Keywords Total labeling · Edge coloring · Graph coloring · Branch-and-Cut

Mathematics Subject Classification 05C15 · 90C57 · 90C10

1 Introduction

A labeling of a graph is an assignment of labels (usually integer numbers) to graph elements.
The most common choices of graph elements are the set of all vertices (vertex labelings), the
edge set (edge labelings) or the set of all vertices and edges (total labelings).

This research was partially supported by UBACYT Grant 2014-2017 20020130100467BA.

B Paula Zabala
pzabala@dc.uba.ar

Fabrizio Borghini
fabriborghini@gmail.com

Isabel Méndez-Díaz
imendez@dc.uba.ar

1 Departamento de Computación, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina

2 Departamento de Computación, FCEN, Instituto de Investigación en Ciencias de la Computación (ICC),
CONICET-UBA , Universidad de Buenos Aires, Buenos Aires, Argentina

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-018-2977-x&domain=pdf
http://orcid.org/0000-0002-1341-4152

Annals of Operations Research

Typically, problems associatedwith labelings look for the smallest number of labels subject
to some constraints which are required to be satisfied for the labels. For example, the most
popular problems are the well-known vertex coloring problem (Jensen and Toth 1995), where
a vertex labeling must not assign the same label to adjacent vertices, and the proper edge
coloring problem (Jensen and Toth 1995), where no two adjacent edges share the same label.

The edge coloring by total labeling problem (ECTLP) is a mixing of the classic vertex
coloring and the edge coloring problem that was introduced and studied by Brandt et al.
(2010). Formally, given G = (V , E) a simple graph with vertex set V = {1, . . . , n} and
edge set E ⊆ {uv : u, v ∈ V , u �= v}, an edge coloring total k-labeling is a mapping
f : V ∪ E → {1, . . . , k} such that the weights (colors) of the edges defined by w(uv) :=
f (u) + f (uv) + f (v) define a proper edge coloring of G. The smallest integer k for which
there exists an edge coloring total k-labeling for a graph G is the edge coloring total labeling
chromatic number of G, denoted by χ ′

t (G).
The ECTLP is a relaxation of the edge-irregular total labeling problem introduced in Bača

et al. (2007), where all edge colors are required to be different.
There are relatively very few works in the literature devoted to ECTLP, all of them con-

centrate on proposing lower and upper bounds of the chromatic number or study the problem
on special classes of graphs. All the bounds are expressed in terms ofΔ, the maximum degree
of G. If N (v) is the set of vertices adjacent to v, then d(v) = |N (v)| is the vertex degree of
v and Δ is the largest vertex degree of G.

It is straightforward to compute an upper bound on χ ′
t (G) by considering a proper edge

coloring of G alongside a constant vertex labeling (i.e. f (v) = 1 ∀v ∈ V). These labels
define an edge-coloring total labeling of G. Therefore, Δ + 1 represents an upper bound
resulting directly from Vizing’s theorem (Misra and Gries 1992) for edge coloring.

Nevertheless, this bound can be improved. Consider f : E → {1, . . . , k} a proper edge
coloring of G with Δ + 1 labels. V is partitioned in two sets, A and B, where all edges
labeled with Δ and Δ+1 have one endpoint in A and the other endpoint in B. This is always
possible as the subgraph formed by the edges labeled withΔ orΔ+1 is bipartite. Then, label
1 is assigned to all vertices in A and label Δ to all vertices in B. Labels f (e) of the edges
between vertices in A remain unchanged and the edges between vertices in B are labeled
with f (e) + 1. Finally, the edges between vertices in A and B might be assigned Δ labels
at the most. It can be easily observed that by assigning these labels to vertices and edges, an
edge coloring by total labeling is defined.

On the other hand, if there is an edge-coloring total k-labeling of G, the possible color
values of the edges incident to vertex v are { f (v) + 2, f (v) + 3, . . . , f (v) + 2k}. If v has
maximum degree, these labels should be enough to label all edges incident to v; therefore,
2k − 1 must be at least Δ.

Based on these observations, in Brandt et al. (2010) present lower and upper bounds in
terms of Δ, the maximum degree of G:⌈

Δ + 1

2

⌉
≤ χ ′

t (G) ≤ Δ

In addition to this, in Brandt et al. (2010) different classes of graphs are analyzed and their
bounds were tightened. For example, if F is a forest then the general lower bound is tight,
i.e. χ ′

t (F) = ⌈
Δ+1
2

⌉
.

Moreover, for the complete graph Kn , if n �≡ 2 (mod 4), then χ ′
t (Kn) = ⌈ n

2

⌉
and if n ≡ 2

(mod 4), then χ ′
t (Kn) ≤ n

2 + 1. Finally, in Khennoufa et al. (2013) the authors determine χ ′
t

for generalized Petersen graphs and, in Seba and Khennoufa (2013), the chromatic number
of 4-regular circulant graphs Cn(1, k) is studied.

123

Annals of Operations Research

To the best of our knowledge, there are no previous works which propose algorithms,
neither heuristics nor exact ones.

Given that many coloring problems have been successfully solved by integer linear pro-
gramming [see for exampleAardal et al. (2007), Burke et al. (2012), Coll et al. (2002), Cornaz
et al. (2017), Malaguti et al. (2015)], the goal of this paper is to design an exact algorithm
based on this approach.

The remainder of the paper is organized as follows. In Sect. 2, we present two models
and their computational performances of the CPLEX default Branch-and-Cut algorithm are
compared. Some families of valid inequalities are described in Sect. 3. Section 4 is devoted to
describing heuristic algorithms for the problem. In Sect. 5, we show computational evidence
which reflects the improvement in performance when the Branch-and-Cut algorithm uses
valid inequalities as cutting planes as well as initial and primal heuristics. The paper closes
with final remarks.

2 Integer programmingmodels

It is well known that integer programming models give a natural tool to formulate coloring
problems. As stated in the introduction, to the best of our knowledge no integer programming
approach has been derived so far for ECTLP. Therefore, in this sectionwe propose two integer
programming formulations for the problem. The first one is based on general integer variables
that represent the label assigned to a vertex or edge, while the second one comes from binary
variables to indicate if a label is assigned to a vertex or edge.

2.1 Model 1

This model considers general integer variables xv ∈ {1, . . . , Δ} and xuv ∈ {1, . . . , Δ}
∀uv ∈ E , which represent the label assigned to each vertex and each edge, respectively.
Notice that labels are restricted to {1, . . . , Δ} due to the upper bound established in Brandt
et al. (2010). Moreover, for each j ∈ V and u, v ∈ N (j) (set of adjacent vertices to j), with
u < v 1, let δu jv be a binary variable that values 1 ifw(u j) < w(jv) and 0 ifw(u j) > w(jv).
Finally, let z ∈ {1, . . . , Δ} be a general integer variable that values the maximum label used
in a total labeling. The goal is to minimize z to obtain χ ′

t (G).
Based on these variables, the following is an integer programming model:

minimize z

subject to

xu ≤ z ∀u ∈ V (1)

xuv ≤ z ∀uv ∈ E (2)

xu + xu j − x jv − xv ≥ 1 − δu jv(2Δ − 1) ∀ j ∈ V , u, v ∈ N (j), u < v (3)

xu + xu j − x jv − xv ≤ −1 + (1 − δu jv)(2Δ − 1) ∀ j ∈ V , u, v ∈ N (j), u < v

1 ≤ xu, xuv, z ≤ Δ, with xu, xuv, z ∈ Z ∀u ∈ V , uv ∈ E

δu jv ∈ {0, 1} ∀ j ∈ V , u, v ∈ N (j), u < v (4)

Constraints (1) and (2) impose that every label is a lower bound for z. In this way, since we
are minimizing variable z, the optimal value corresponds to χ ′

t (G). Constraints (3) and (4)

1 Vertices are ordered according to the standard order on the natural numbers.

123

Annals of Operations Research

define an edge coloring, asserting that two edges incident to the same vertex are assigned
different colors, i.e. w(u j) �= w(jv) if j ∈ V and u, v ∈ N (j).

An optimal solution of the LP relaxation is given by x∗
v = 1 for all v ∈ V , x∗

uv = 1 for
all uv ∈ E , variables δ∗ with values 1

2Δ−1 ≤ δ∗
u jv ≤ 2Δ−2

2Δ−1 for all j ∈ V , u, v ∈ N (j) with
u < v and z∗ = 1. This shows that the LP relaxation is very weak, which affects the Branch-
and-Cut algorithm performance of the state of the art solvers based on this formulation.
Strengthening with cutting planes is needed to make the model suitable for this approach.

2.2 Model 2

The second model is based on the multimatching formulation proposed in Lee and Leung
(1993) for the edge coloring problem. For each v ∈ V and j = 1, . . . , Δ, let us be binary
variable xv j that values 1 in case that vertex v is labeled with j . Additionally, variable zuv j

that values 1 if edge uv is labeled with j . Otherwise, it takes value 0. Moreover, we consider
binary variable wuvk that values 1 if the sum of the labels assigned to u, v and uv is k, i.e.
w(uv) = k. Finally, the general integer variable y represents χ ′

t (G). The following is an
integer programming formulation based on these variables:

minimize y

subject to

Δ∑
j=1

xv j = 1 ∀v ∈ V (5)

Δ∑
j=1

zuv j = 1 ∀uv ∈ E (6)

wuvk ≥ xu j + zuvr + xvp − 2 ∀uv ∈ E, j, r , p ∈ {1, . . . , Δ}
with k = j + r + p (7)∑

∀v∈N (u)

wuvk ≤ 1 ∀u ∈ V , d(u) > 1, k ∈ {3, . . . , 3Δ} (8)

y ≥
Δ∑
j=1

j xv j ∀v ∈ V (9)

y ≥
Δ∑
j=1

j zuv j ∀uv ∈ E

xv j ∈ {0, 1} ∀v ∈ V , j ∈ {1, . . . , Δ}
zuv j , wuvk ∈ {0, 1} ∀uv ∈ E, k ∈ {3, . . . , 3Δ}

j ∈ {1, . . . , Δ}
1 ≤ y ≤ Δ, with y ∈ Z (10)

The objective function is to minimize the value of variable y.
Constraints (5) and (6) assure that exactly one label is assigned to each vertex and edge,

respectively. Constraints (7) impose value 1 to the colorwhich is the sumof the labels assigned
to u, v and uv. Constraints (8) assure that for each vertex, edges incident to it must not be
colored with the same color. Finally, constraints (9) and (10) determine that y is greater than

123

Annals of Operations Research

or equal to the label used for every vertex or edge. Since we are minimizing variable y, the
optimal value corresponds to χ ′

t (G).
An optimal solution of the LP relaxation is given by

x∗
v1 = 2Δ+1

3Δ , x∗
v2 = Δ−1

3Δ and x∗
v j = 0 for all v ∈ V , j �= 1, 2.

z∗uv1 = 2Δ+1
3Δ , z∗uv2 = Δ−1

3Δ and z∗uvl = 0 for all uv ∈ E , j �= 1, 2.
w∗
uv3 = 1

Δ
, w∗

uvk = 0 for all uv ∈ E , k �= 3
y∗ = 4Δ−1

3Δ

Even though the LP relaxation optimal value of Model 2 is greater than the LP relaxation
optimal value of Model 1, the lower bound provided is still very weak. It makes the model
very hard to solve with a standard Branch-and-Cut algorithm and it is necessary to customize
the algorithm by, for example, including cutting planes.

2.3 Comparisons of the above proposedmodels

The size of an integer programmingmodelmeasured in numbers of constraints andvariables is
not directly related to the time required for a Branch-and-Cut algorithm to solve the problem.
However, this is a first insight into the expected computational performance of a model.

In Table 1 we compare the number of variables and constraints of both models.
As Table 1 shows the size ofModels 1 and 2 depends not only on the number of vertices (n)

and edges (m) but also on the vertex degrees. It is not difficult to see that
∑
v∈V

d(v)(d(v) − 1)

2

is at mostm(Δ−1). So,m(Δ−1) and n+m+2m(Δ−1) are upper bounds on the number of
binary variables and on the number of constraints of Model 1, respectively. Then, even tough
Model 1 has more general integer variables than Model 2, it has significantly less constraints
and binary variables than Model 2. Hence, we can conclude that Model 1 is theoretically a
better model than Model 2.

In order to show some deeper insight into the performance of the models, we run the
Branch-and-Cut CPLEX default algorithm. Experiments were carried on an Intel i7 work-
station with a CPU running at 3.4 GHz and 16 GB of RAM memory, over random instances
of 15 vertices with different density percentages and 1 hour time limit. Each instance of p%
of density is generated by considering a uniform probability p that two vertices are adjacent
to each other.

In Table 2 we report on the average results obtained over 30 instances for low (less
than 30%), medium (between 40 and 60%) and high (greater than 70%) density considered.
Column #Solved refers to the number of instances that reach optimality within the time
limit and column Time to the average run time (in seconds) over solved instances. Column
%Gap shows the average final gap for unsolved instances. Table 2 shows that the higher
the density, the more difficult the instance and the worse the performance of the models. For

Table 1 Model size Model 1 Model 2

General integer var n + m + 1 1

Binary integer var
∑
v∈V

d(v)(d(v) − 1)

2
nΔ+mΔ+m(3Δ−2)

Constraints n + m +
∑
v∈V

d(v)(d(v)−1) 3nΔ + 2m + mΔ3

123

Annals of Operations Research

Table 2 Branch-and-Cut CPLEX
default

Density Model 1 Model 2

#Solved Time %Gap #Solved Time %Gap

Low 29 10.29 35 28 24.09 38.3

Medium 11 788.64 42.47 2 112.64 46.26

High 0 3600 67.58 0 3600 67.27

high density graphs, both models fail in reaching optimality for all instances within the time
limit. The final gap is higher than 60%, mainly due to the difficulty to improve the lower
bound. Low instances are the easiest and Model 1 has a considerable better performance in
terms of both number of solved instances and average time required to reach optimality. For
medium density graphs, Model 1 significantly exceeds the quantity of solved instances of
Model 2. The average time is greater because it is taken over more instances, but if we restrict
ourselves to the instances solved by Model 2, the average time is less than 1s, showing the
superiority of Model 1.

In any case, the main message of the results is that a customization of the algorithm
is needed to strengthen, among other things, bounds on the Branch-and-Cut enumeration
tree. In the next section we concentrate on studying the underlying polytope associated with
Model 1 to infer valid inequalities that could be useful as cutting planes to improve the overall
performance.

3 Valid inequalities

In this section we focus on deriving families of valid inequalities for Model 1. The first ones
correspond to inequalities based on the values of the labels. The second ones are derived
considering variables δ that define an ordering among the edges incident to a vertex.

3.1 Lower and upper bounds

Colors are defined by the labels assigned to the vertices and edges and, since these labels
take values between 1 and Δ, the color values are bounded below by 3 and above by 3Δ.
Furthermore, the colors assigned to the edges incident to a vertex must be different because
they must define an edge coloring.

Then, given v ∈ V , a lower and upper bound can be derived for the sum of the labels
assigned to the neighborhood of v.

Suppose that {vu1, vu2, . . . , vud(v)} ⊆ E is the set of edges incident to v. As for edge-
coloring all these edges should be assigned different colors, the smallest values of colors to
be assigned to these edges are {3, 4, . . . , d(v) + 2}. Nevertheless, as the label in v is present
in the colors of each edge, it is equivalent to saying that {2, 3, . . . , d(v)+ 1} are the smallest
values of the sum of the labels in each edge vui and its corresponding endpoint ui . Therefore,
the sum of any labeling should necessarily be higher or equal to the sum of this set of values:

∑
u∈N (v)

xu +
∑

u∈N (v)

xvu ≥2 + 3 + . . . + d(v) + 1 =
d(v)∑
k=1

(k + 1) (SumLB)

= d(v)(d(v) + 3)

2

123

Annals of Operations Research

Similarly, an upper bound can be applied to this sum. The following inequality takes into
account the highest color values resulting from labeling in the case of edges incident to v.
Since in the model the upper bound for vertex and edge labels is Δ, the maximum possible
color values are {3Δ, 3Δ − 1, . . . , 3Δ − d(v) + 1}. As the label in v is present in all edge
colors, it is equivalent to considering {2Δ, 2Δ, . . . , 2Δ − d(v) + 1} as the highest values of
the sum of the labels in each edge vui and its corresponding endpoint ui . Therefore, in any
case of labeling, the sum of all these labels should necessarily be lower than or equal to the
sum of the maximum values:

∑
u∈N (v)

xu +
∑

u∈N (v)

xvu ≤ 2Δ + (2Δ − 1) + · · · + (2Δ − d(v) + 1) (SumUB)

= d(v)(2Δ + 1) − d(v)(d(v) + 1)

2

Moreover, given a vertex v and an incident edge uv, such bounds could be adjusted if we
knew how many edges incident to v result with a lower color and how many are assigned an
upper color than the color assigned to uv.

The lowest color value is 3, but this lower bound is increased by 1 for each adjacent edge
with a lower color value. Variables δrvu account for this information and they are useful to
reflect the increase. Moreover, as the label in v is present in all incident edge color values, the
argument can be applied to the sum of the incident edge label and its corresponding endpoint
label. Take into account that in this case the lowest value is 2.

According to this, given v ∈ V , r ∈ N (v), the following are valid inequalities:

xvr + xr ≥ 2 +
∑

u∈N (v)
u<r

δuvr +
∑

u∈N (v)
r<u

(1 − δrvu) (ColorLB)

Note that the right-hand member is separated into two sums as a consequence of the
definition of variables δrvu or δuvr , respectively.

Similarly, an upper bound is provided by considering adjacent edges with upper color
values. The maximum color could be 2Δ but it decreases by 1 for each higher edge color
value. As a result:

xvr + xr ≤ 2Δ −
∑

u∈N (v)
u<r

(1 − δuvr) −
∑

u∈N (v)
r<u

δrvu (ColorUB)

SumLB (SumUB) inequalities are implied by the addition of ColorLB (ColorUB respec-
tively) inequalities corresponding to vertices adjacent to v.

Given that the number of ColorLB and ColorUB inequalities is 2m, they were explicitly
included in the model. Even when the number of SumLB and SumUB inequalities is n, they
were not included in the model as they are implied by previous ones.

The addition of ColorLB and ColorUB inequalities in the model improves the optimal
value of the initial LP relaxation. It shall be remembered that 1 is the optimal value irrespective
of the instance. Nevertheless, by including these inequalities a better lower bound on the
optimal value can be obtained

If v is a maximum degree vertex (d(v) = Δ), then the inequality SumLB establishes that:

∑
u∈N (v)

xvu +
∑

u∈N (v)

xu ≥ Δ2 + 3Δ

2

123

Annals of Operations Research

By definition, we know that z ≥ xu , ∀u ∈ V and z ≥ xur , ∀ur ∈ E , therefore

Δz + Δz ≥
∑

u∈N (v)

xvu +
∑

u∈N (v)

xu ≥ Δ2 + 3Δ

2
⇒

2Δz ≥ Δ(Δ + 3)

2
⇒

z ≥ Δ + 3

4

This shows that the optimal value of theLP relaxationwhenSumLBoColorLB inequalities
are included will be at least Δ+3

4 .
It is worth mentioning that according with our computational experiments, the optimal

LP relaxation achieves this lower bound in all cases.
Along the same lines, given two edges vu1 and vu2 that are incident to vertex v, the

difference between their colors can be bounded below by considering the colors assigned to
other edges incident to v. If S is a set of edges incident to v with color values between the
colors assigned to vu1 and to vu2, then this difference is at least |S| + 1.

Formally, given v ∈ V , u1, u2 ∈ N (v), S ⊂ N (v) \ {u1, u2}, the following is a valid
inequality:

(xvu1 + xu1) − (xvu2 + xu2) ≥ |S| + 1 (DifLB)

− (2Δ + |S| − 1)
(∑

u∈S
u1<u

δu1vu +
∑
u∈S
u<u1

(1 − δuvu1)
)

− (2Δ + |S| − 1)
(∑

u∈S
u2<u

(1 − δu2vu) +
∑
u∈S
u<u2

δuvu2

)

3.2 Cycles

We present below two inequality families that results from analyzing a lower bound on edge
coloring in a cycle.

Consider a cycle C = {v1v2, v2v3, . . . , vl−1vl , vlv1}. Any total labeling must define an
edge coloring. It is well known that the minimum number of colors needed for an edge
coloring is 2 in case l is even and 3 if l is odd. In the first case, it is achieved by alternating
two colors along the cycle. In the second case, the procedure is also to alternate two colors
except that an edge shall be assigned another color.

As we noted before, the colors resulting from any labeling (sum of edge and vertex labels)
are greater or equal to 3. Then, the edge coloring that uses color 3 and 4 if l is even and 3, 4
and 5 if l is odd, brings a lower bound on the sum of color values used along a cycle.

This lower bound is 3�l/2� + 4�l/2� and 3�l/2� + 4�l/2� + 5, respectively.
Based on this, the following are valid inequalities

∑
ur∈C

xur + 2
l∑

i=1

xvi ≥ (3 + 4)
l

2
l even (CycEven)

∑
ur∈C

xur + 2
l∑

i=1

xvi ≥ (3 + 4)
l − 1

2
+ 5 l odd (CycOdd)

123

Annals of Operations Research

It is worth mentioning that the optimal LP relaxation value when these inequalities are
included increases from 1 to 4

3 .

3.3 Linear ordering inequalities

Given a vertex v, variables δuvr define a linear ordering among its incident edges. Therefore,
some inequalities proposed for this problem can be adapted to ECTLP.

The linear ordering problem is a well known problem which was deeply studied in the
literature. In particular, in Grötschel et al. (1984) many valid inequality families were pro-
posed. We consider two of them which, according to the reported computational experience,
have had a good performance as cutting planes. The first one is the 3-dicycle inequality which
prevents solutions that contain cycles.

Given v, u, r , q ∈ V such that u, r , q are adjacent to v (u < r < q), the following
inequalities are valid:

δuvr + δrvq ≤ 1 + δuvq (3-dicycle-1)

δuvr + δrvq ≥ δuvq (3-dicycle-2)

This indicates that if the color value in edge uv is lower than that in edge rv and the color
value in edge rv is lower than that in qv, then the color value in uv is lower than that in qv.

The second family corresponds to k-fence inequalities. This type of inequalities was stud-
ied by Grötschel et al. (1984, 1985) and characterized as facet-defining for the polytope
associated to the problem.

Given v ∈ V and U = {u1, . . . , uk}, L = {l1, . . . , lk} ⊆ N (v), 3 ≤ k ≤ |N (v)|
2 ,

U ∩ L = ∅. The following is a valid inequality:

k∑
i=1
ui<li

δuivli +
k∑

i=1
ui>li

(1 − δlivui) +
k∑

i=1

⎛
⎜⎜⎜⎜⎜⎝

k∑
j=1
j �=i

li<u j

δlivu j +
k∑
j=1
j �=i

u j<li

(1 − δu j vli)

⎞
⎟⎟⎟⎟⎟⎠

≤ k2 − k + 1

(Fence)

Due to the fact that obtaining this type of inequalities is highly difficult, and based on the
computational results reported by Grotschel in [8], only 3− f ence inequalities are tested in
the cutting planes algorithm.

4 Heuristics

4.1 Initial heuristics

Setting up an incumbent solution is the first step in a Branch-and-Cut algorithm. This solution
establishes an upper bound for χ ′

t (G) from the very beginning, with the objective of reducing
the number of nodes in the search tree. Moreover, it makes it possible to reduce the number
of variables and constraints in the model.

First, we describe a constructive algorithm to obtain an edge coloring total Δ-labeling.
Then, we propose two heuristic approaches which aim to reduce the upper bound mentioned
above.

123

Annals of Operations Research

4.1.1 Constructive algorithm

As we described in the introduction, a constructive proof of χ ′
t (G) ≤ Δ is given in Brandt

et al. (2010). Following this proof we implement a procedure that labels vertices and edges
using Δ as the maximum value of the labeling.

The sketch of the procedure is shown in Algorithm 1.

Algorithm 1 Constructive algorithm
Require: G = (V , E),

Step 1: Following the proposal inMisra and Gries (1992), a proper edge coloring c : E → {1, 2, . . . , Δ+1}
of G is obtained.
Step 2: The subgraph determined by the edges with color Δ or Δ+ 1 is bipartite. Let us consider a partition
of V , A ∪ B = V , such that for all uv colored with Δ or Δ + 1, then u ∈ A and v ∈ B (or vice versa).
Step 3: Assign label 1 to all v ∈ A and label Δ to all v ∈ B.
Step 4: Assign label c(e) to all e = uv such that u, v ∈ A and c(e) + 1 to all e = uv such that u, v ∈ B.
Step 5: Labels assigned to the edges e = uv with u ∈ A and v ∈ B are defined by a proper edge coloring.
Since the subgraph determined by these edges is bipartite, we can assert that any edge coloring uses at most
Δ colors.
Step 6: Color the edges by assigning the sum of the labels of its endpoints and its own label.

At the end, all edges and vertices are assigned labels less than or equal to Δ. The coloring
of the edges satisfies that the edges with both endpoints in A are assigned colors between 3
and Δ + 1, the edges with both endpoints in B are assigned colors between Δ + 2 and 3Δ
and other edges are colored with color values between Δ + 2 and 2Δ + 1. It is easy to check
that this is a proper edge coloring by total Δ-labeling.

4.2 Heuristic based on vertex coloring (HVC)

This heuristic is a two phase procedure. In the first phase a vertex labeling is found. Then, in
the second phase, using the vertex labeling obtained as a starting point, labels to edges are
assigned bearing in mind that the total labeling must define an edge coloring.

During the first phase, the classical sequential heuristic for vertex coloring is applied
(Brelaz 1979). The algorithm takes each vertex in turn following a specific order and assigns
the first color available, creating a new color when necessary. The choice of which vertex to
color next is decided based on the maximal saturation degree, which is defined as the number
of different colors already assigned to its adjacent vertices.

Since a solution with Δ labels is found with the constructive heuristic, HVC attempts to
look for a solution using at most Δ − 1 labels. Then if Δ − 1 colors are not enough to color
all vertices, the algorithm fails and does not return any solution.

If the first phasewas successful in finding a vertex coloring, then the second phase attempts
to label the edges following a greedy approach. By taking the edges in turn (in arbitrary order),
to label edge e, the sum of the labels of its endpoints is obtained. Then, for each edge adjacent
to e which has already been labeled, the difference between its label and this sum is obtained.
These values determine the forbidden labels to edge e. The procedure chooses the smallest
allowable label to assign to e. Once again, if Δ − 1 labels are not enough to label the edges,
the algorithm fails and does not return any solution.

The outline of the procedure is presented in Algorithm 2.

123

Annals of Operations Research

Algorithm 2 Heuristic based on vertex coloring
Require: G = (V , E), V = {v1, . . . , vn}, E = {e1, . . . , em }
MaxLabelUsed = 1
FIRST PHASE: Vertex labeling
vertexLabel(v1) = 1
for j = 2 to n do

v j = nextV ertextoColor
vertexLabel(v j) = min{l : l ≥ 1 and vertexLabel(vi) �= l, ∀v j vi ∈ E}
if vertexLabel(v j) ≥ Δ then

return FAIL
end if
MaxLabelUsed = max(MaxLabelUsed, vertexLabel(v j))

end for

SECOND PHASE: Edge labeling
edgeLabel(e1) = 1
for j = 2 to m do

e j = (u j , v j)
p = vertexLabel(u j) + vertexLabel(v j)
W = {w : w = vertexLabel(si) + edgeLabel(ei) + vertexLabel(u j),

∀ei = si u j ∈ E , 1 ≤ i ≤ j − 1}⋃
{w : w = vertexLabel(v j) + edgeLabel(ei) + vertexLabel(ri),
∀ei = v j ri ∈ E , 1 ≤ i ≤ j − 1}

edgeLabel(e j) = min{l : l ≥ 1 and l �= w − p, ∀w ∈ W }
if edgeLabel(e j) ≥ Δ then

return FAIL
end if
MaxLabelUsed = max(MaxLabelUsed, edgeLabel(e j))

end for
return MaxLabelUsed, vertexLabel and edgeLabel

4.3 Heuristic based on an auxiliary graph (HAG)

When analyzing the HCV procedure and the experimental computational results, we observe
that if two non adjacent vertices with a common neighbour are assigned the same color, then
two different labels must be assigned to the adjacent edges. This increases the chances that
the algorithm will fail and it would be more suitable if these vertices were assigned different
colors.

In order to build a vertex labeling with this characteristic, the first step will look for a
vertex labeling for an auxiliary graph X instead of finding a vertex coloring for G. Graph X
is defined with the same set of vertices V , but there exists an edge between two vertices u and
v if and only if there is a vertex j in V such that u j and v j ∈ E . Then, let X = (V (X), E(X))

be an auxiliary graph where V (X) = V and v j, u j ∈ E ⇐⇒ uv ∈ E(X). In this way, the
vertex labeling will not force phase 2 to assign different labels to adjacent edges.

Moreover, the first step of HVC looks for a vertex coloring with at most Δ − 1 colors
by using a greedy procedure. The algorithm could fail either because the chromatic number
is greater than Δ − 1 or because the greedy process gets stuck in the color assignment. In
any case, the algorithm does not provide a solution. Actually, it is not a necessary condition
for an edge coloring by total labeling to induce a vertex coloring; it would be useful to relax
this condition and let the first phase continue even though the label assignment violates the
neighborhood restriction.

123

Annals of Operations Research

Then, in case that the procedure finds infeasible to assign a label (among the available
ones), it is allowed to assign an used label (wildcard color) in spite of being shared by
a neighbour. In this way, we manage failures and increase the chances to achieve a total
labeling. The wildcard colors are assigned in such a way that they are chosen evenly among
the colors available, i.e. the sizes of the wildcard color classes differ in at most one. The goal
is to avoid having many color repetitions and to prevent the second phase from being forced
to need more diversity of colors.

Additionally, instead of restricting the first phase to Δ − 1 labels and with the purpose

of expanding the search space, we make an iterative procedure. Since

⌈
Δ + 1

2

⌉
is a lower

bound of χ ′
t (G), we start looking for a solution using it as the maximum value of a labeling

(MaxLabel). If the algorithm fails, MaxLabel is increased by one and the procedure is
repeated.We perform several trials such that in trial T , the procedure considersMaxLabel =⌈

Δ + 1

2

⌉
+ T .

Since we know that

⌈
Δ + 1

2

⌉
≤ χ ′

t (G) ≤ Δ, then it is reasonable to range T between 0

and Δ− 1−
⌈

Δ + 1

2

⌉
. However, preliminary computational experiments show that in most

of the instances, the best solutions achieved by the algorithm are obtained when T ranges

between

⌈
Δ

8

⌉
and

⌈
3Δ

8

⌉
. Then, the algorithm limits T to these bounds to avoid spending

time by exploring unlikely useful solutions. This scheme is shown in Algorithm 3.
In order to evaluate the quality of the solutions found by the heuristics, we experiment

with graphs of 100 vertices, grouped by density in sets of 15 instances. In Table 3 we report
the average results over 1000 independent executions with different random edge order.

Column Time refers to the average run time (in seconds), AveSuccess and σ -Success
refer to the mean and standard deviation (in percentage terms) of the percentage of instances
that the heuristic could improve the initial Δ-labeling, AveImprov and σ -Improv refer to
the mean and standard deviation (in percentage terms) of the percentage of improvement and
AveGap and σ -Gap refer to the mean and standard deviation (in percentage terms) of the
percentage of gap between the solution and the lower bound provided in Brandt et al. (2010).
We do not report standard deviation of run time since it is insignificant: the 1000 independent
executions take very similar time.

Even though HAG takes more time than HVC, it is significantly more efficient. In all
instances, HAG improves the initial solution, whereas HVC shows good performance only
for low density graphs and fails many times in medium and high density graphs. Moreover,

Table 3 HCV versus HAG

Density Time AveSuccess σSuccess AveImprov σ Improv AveGap σGap

Low HVC 0.09 87 7.3 10 1.9 75 1.8

HAG 0.24 100 0 20 0.8 51 0.6

Medium HVC 0.43 53 9.2 4 0.6 76 1.2

HAG 2.11 100 0 24 0.5 48 0.7

High HVC 1.02 40 5.2 3 0.4 90 0.9

HAG 7.51 100 0 29 0.4 39 0.7

123

Annals of Operations Research

Algorithm 3 Heuristic based on an auxiliary graph
Require: G = (V , E) and X = (V , E(X))

BestMaxLabelUsed = Δ

for T =
⌈
3Δ

8

⌉
to

⌈
Δ

8

⌉
do

MaxLabelUsed = 1
FIRST PHASE: Vertex labeling of X
wildcard = 0

MaxLabel =
⌈

Δ + 1

2

⌉
+ T

vertexLabel(v1) = 1
for j = 2 to n do

v j = nextV ertextoColor
vertexLabel(v j) = min{l : l ≥ 1 and vertexLabel(vi) �= l, ∀v j vi ∈ E(X)}
if vertexLabel(v j) > MaxLabel then

vertexLabel(v j) = wildcard + 1
wildcard = (wildcard + 1)%MaxLabel

end if
MaxLabelUsed = max(MaxLabelUsed, vertexLabel(v j))

end for
SECOND PHASE: Edge labeling as in previous algorithm
if BestMaxLabelUsed > MaxLabelUsed then

Bestvertexlabel = vertexLabel
BestedgeLabel = edgeLabel
BestMaxLabelUsed = MaxLabelUsed

end if
end for
if BestMaxLabelUsed < Δ then

return MaxLabelUsed, BestvertexLabel and BestedgeLabel
else

return FAIL
end if

the average deviation with respect to the success for HVC is greater than the one for HAG,
showing a performance that ismore influenced by the order inwhich the edges are considered.
Regarding percentage of improvement and percentage of gap, HAG is considerably better
than HVC with larger improvements and lower gaps.

4.4 Primal heuristic

An important aspect in a Branch-and-Cut algorithm is the generation of feasible solutions
with the aim of reducing the size of the search tree, bearing in mind that it should be achieved
with an inexpensive computational effort.

After solving the LP relaxation at a node, a heuristic procedure can be executed. The
procedure tries to use the information in the LP relaxation (fractional) solution aiming to
improve the current best solution found so far. The proposed primal heuristic follows the
same steps as HAG, but some decisions are made by taking advantage of the information
provided by the fractional solution. From now on, we use tag * to refer to the values of the
LP relaxation optimal solution.

The primal heuristic procedure is similar to the heuristic based on an auxiliary graph
(HAG), but in step 1 of HAG, instead of choosing the minimum feasible label to vertex u,
the label is determined by rounding x∗

u to the nearest integer.

123

Annals of Operations Research

Once the vertices have been labeled, the edges are labeled next. During the second phase
of HAG, edges are considered in a non-specific order. Even when this order could be relevant,
the initial heuristic does not provide us with the necessary information to apply a specific
order for labeling.

Nevertheless, when applying primal heuristic, there exist optimal LP relaxation solutions
where variable values δ∗ suggest an order among edge colors. In some way, if for an edge
uv, the value

∑
ur∈E,r �=v δ∗

vur is small, then it could be reasonable to think that uv should
be assigned a small label. This suggests that according to the information provided by δ

variables, an increasing edge order in respect to this sum of δ values should be set in step 2
of HAG.

5 Computational experience

In this section we report on computational experiences with our Branch-and-Cut algorithm in
Model 1. The code was implemented in C++ using the CPLEX 12.6 LP solver.We performed
the experiments on a computer i7 3.4GHz and 16 GB of RAM memory.

CPU times are reported in seconds and aCPU time limit of 1800s is imposed.The algorithm
is tested on random graphs of 15, 20, 30 and 40 vertices, where an edge between each pair of
vertices is generated with an independent uniform probability p. We use 15 random graphs
with low (p less than 30%), 15 with medium (p between 40 and 60%) and 15 with high (p
greater than 70%) density.

In order to analize the performance of the heuristics and cutting planes, we consider four
implementations.

The first implementation (BC-ECTLP) applies initial and primal heuristics and it also
incorporates our cutting planes. Regarding CPLEX parameters, all of them are set to their
default values except the dynamic search and the advanced presolve linear reduction. They
must be disabled because user callback routines (primal heuristic and user cuts) are not
compatible with them. In the second one (BC-ECTLPwP) we disable our primal heuristic,
enabling CPLEX heuristics.

BC-CPLEX maintains the same values both for CPLEX and BC-ECTLP parameters,
but does not incorporate our cutting planes or our primal heuristic. Finally, the last one
(CPXDef) is the Branch-and-Cut CPLEX default setting configuration based on Model 1
with all parameters having their own default values.

In all implementations,

⌈
Δ + 1

2

⌉
is used as a lower bound of the value of the objective

function.
Regarding cutting plane generation, after several computational tests, we chose a strategy

that applies cutting plane generation at the root node. Lower and upper bound inequalities are
explicitly included in the initial formulation. In each round, violated 3-dicycle, 3-cycle and
DifLB are added as cutting planes. Regarding DifLB inequalities, we found that it is more
efficient to restrict the search to S = N (v)\{w1, w2}. Moreover, preliminary computational
experience showed that the best option is to look for cycles of size 3 and not to consider
fence inequalities. Note that, in all cases, there is a polynomial number of inequalities and the
corresponding separation problems could be efficiently tackled through direct enumeration.

The initial heuristic is run once at the beginning and the primal heuristic is applied to each
fractional solution of the search tree.

In Tables 4, 5, 6 and 7 we report average CPU time and number of nodes in the tree
over solved instances and average gap over unsolved instances for n = 15, 20, 30 and 40,

123

Annals of Operations Research

Ta
bl
e
4

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
n

=
15

D
en
si
ty

M
et
ho
d

T
im

e
N
od
es

%
G
ap

A
ve
g

B
es
t

W
or
st

#W
in

A
ve
g

A
ve
g

B
es
t

W
or
st

L
ow

B
C
-E
C
T
L
P

0.
01

0.
00

0.
05

2
11

0.
00

0.
00

0.
00

B
C
-E
C
T
L
Pw

P
0.
02

0.
00

0.
10

3
36

0.
00

0.
00

0.
00

B
C
-C

PX
0.
06

0.
00

0.
59

4
10

0
0.
00

0.
00

0.
00

C
PX

D
ef

0.
03

0.
00

0.
26

2
89

0.
00

0.
00

0.
00

M
ed
iu
m

B
C
-E
C
T
L
P

0.
20

0.
01

0.
65

9
40

2
0.
00

0.
00

0.
00

B
C
-E
C
T
L
Pw

P
0.
72

(1
4)

0.
02

3.
26

3
47

51
16

.6
7

16
.6
7

16
.6
7

B
C
-C

PX
34

.8
4

0.
03

51
5.
80

0
26

9,
29

4
0.
00

0.
00

0.
00

C
PX

D
ef

9.
65

0.
04

12
3.
40

3
89

,5
45

0.
00

0.
00

0.
00

H
ig
h

B
C
-E
C
T
L
P

72
.7
9
(8
)

0.
44

57
1.
14

3
14

6,
37

2
11

.9
0

11
.1
1

12
.5
0

B
C
-E
C
T
L
Pw

P
50

.0
3
(6
)

2.
28

18
4.
93

1
26

2,
89

0
12

.7
2

11
.1
1

20
.0
0

B
C
-C

PX
14

7.
26

(9
)

0.
36

11
00

.5
0

0
79

6 ,
59

8
13

.4
3

11
.1
1

22
.2
2

C
PX

D
ef

34
3.
14

(8
)

0.
28

16
65

.4
7

3
1,
91

0,
37

8
13

.2
9

11
.1
1

22
.2
2

123

Annals of Operations Research

Ta
bl
e
5

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
n

=
20

D
en
si
ty

M
et
ho
d

T
im

e
N
od
es

%
G
ap

A
ve
g

B
es
t

W
or
st

#W
in

A
ve
g

A
ve
g

B
es
t

W
or
st

L
ow

B
C
-E
C
T
L
P

0.
10

0.
00

0.
70

4
11

8
0.
00

0.
00

0.
00

B
C
-E
C
T
L
Pw

P
0.
39

0.
00

3.
61

4
32

52
0.
00

0.
00

0.
00

B
C
-C

PX
0.
17

0.
05

1.
31

3
10

69
0.
00

0.
00

0.
00

C
PX

D
ef

0.
08

0.
01

0.
41

4
39
4

0.
00

0.
00

0.
00

M
ed
iu
m

B
C
-E
C
T
L
P

3.
17

(1
3)

0.
29

10
.1
2

10
95

81
11

.8
1

11
.1
1

12
.5
0

B
C
-E
C
T
L
Pw

P
38

5.
76

(1
1)

1.
04

16
75

.9
1

0
1,
12

9,
28

3
12

.0
4

11
.1
1

12
.5
0

B
C
-C

PX
10

2.
01

(1
2)

0.
25

54
1.
34

2
37

1,
85

5
12

.0
4

11
.1
1

12
.5
0

C
PX

D
ef

15
9.
98

(1
1)

0.
27

10
36

.1
0

1
97

5,
47

8
11

.1
8

10
.0
0

12
.5
0

H
ig
h

B
C
-E
C
T
L
P

16
6.
26

(1
)

16
6.
26

16
6.
26

1
98

,4
74

11
.1
1

9.
09

16
.6
7

B
C
-E
C
T
L
Pw

P
**

**
**

**
**

**
0

**
**

16
.1
5

9.
09

28
.5
7

B
C
-C

PX
**

**
**

**
**

**
0

**
**

19
.9
9

9.
09

33
.3
3

C
PX

D
ef

**
**

**
**

**
**

0
**

**
19

.9
9

9.
09

33
.3
3

123

Annals of Operations Research

Ta
bl
e
6

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
n

=
30

D
en
si
ty

M
et
ho
d

T
im

e
N
od
es

%
G
ap

A
ve
g

B
es
t

W
or
st

#W
in

A
ve
g

A
ve
g

B
es
t

W
or
st

L
ow

B
C
-E
C
T
L
P

11
0.
41

0.
00

13
16

.3
2

9
19

2,
05

4
0.
00

0.
00

0.
00

B
C
-E
C
T
L
Pw

P
4.
66

(1
3)

0.
00

22
.3
6

0
12

,8
13

12
.5
0

12
.5
0

12
.5
0

B
C
-C

PX
7.
61

(1
4)

0.
00

65
.7
2

1
21

,3
76

12
.5
0

12
.5
0

12
.5
0

C
PX

D
ef

10
.5
3
(1
4)

0.
00

98
.9
6

4
37

,7
19

12
.5
0

12
.5
0

12
.5
0

M
ed
iu
m

B
C
-E
C
T
L
P

14
6.
38

(6
)

10
.2
4

49
5.
89

5
57

,5
86

9.
73

7.
69

14
.2
8

B
C
-E
C
T
L
Pw

P
62

.7
7
(1
)

62
.7
7

62
.7
7

0
84

,5
69

16
.1
5

9.
09

28
.5
7

B
C
-C

PX
35

.3
2
(1
)

35
.3
2

35
.3
2

0
59

,1
00

19
.3
1

10
.0
0

28
.5
7

C
PX

D
ef

66
8.
05

(3
)

38
7.
34

11
94

.3
4

2
96

7,
37

1
25

.4
7

10
.0
0

47
.8
3

H
ig
h

B
C
-E
C
T
L
P

17
.7
4
(1
)

17
.7
4

17
.7
4

1
36

4
16

.7
8

7.
14

22
.2
2

B
C
-E
C
T
L
Pw

P
**

**
**

**
**

**
0

**
**

26
.1
0

18
.7
5

31
.5
8

B
C
-C

PX
**

**
**

**
**

**
0

**
**

44
.0
3

18
.7
5

50
.0
0

C
PX

D
ef

**
**

**
**

**
**

0
**

**
48

.2
3

45
.8
3

50
.0
0

123

Annals of Operations Research

Ta
bl
e
7

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
n

=
40

D
en
si
ty

M
et
ho
d

T
im

e
N
od
es

%
G
ap

A
ve
g

B
es
t

W
or
st

#W
in

A
ve
g

A
ve
g

B
es
t

W
or
st

L
ow

B
C
-E
C
T
L
P

23
.2
8
(1
3)

0.
04

13
3.
65

8
25

,7
64

9.
55

9.
09

10
.0
0

B
C
-E
C
T
L
Pw

P
18

2.
50

(1
0)

0.
05

15
79

.8
3

1
27

6,
77

8
11

.1
9

9.
09

16
.6
7

B
C
-C

PX
74

.7
1
(1
1)

0.
06

27
4.
48

3
88

,1
59

11
.7
2

9.
09

16
.6
7

C
PX

D
ef

21
8.
46

(1
3)

0.
06

14
37

.8
5

3
20

4,
31

3
10

.8
0

9.
09

12
.5
0

M
ed
iu
m

B
C
-E
C
T
L
P

30
.6
1
(3
)

11
.3
2

51
.7
1

3
10

44
14

.4
5

8.
33

21
.4
3

B
C
-E
C
T
L
Pw

P
**

**
**

**
**

**
0

**
**

26
.9
5

13
.3
3

35
.2
9

B
C
-C

PX
**

**
**

**
**

**
0

**
**

42
.4
5

13
.3
3

50
.0
0

C
PX

D
ef

**
**

**
**

**
**

0
**

**
42

.3
1

13
.3
3

50
.0
0

H
ig
h

B
C
-E
C
T
L
P

**
**

**
**

**
**

**
**

**
**

18
.9
6

4.
76

26
.9
2

B
C
-E
C
T
L
Pw

P
**

**
**

**
**

**
**

**
**

**
28

.3
3

23
.0
8

34
.6
2

B
C
-C

PX
**

**
**

**
**

**
**

**
**

**
49

.2
9

48
.5
7

50
.0
0

C
PX

D
ef

**
**

**
**

**
**

**
**

**
**

49
.2
9

48
.5
7

50
.0
0

123

Annals of Operations Research

respectively. Values in parentheses show the number of instances solved to optimality within
the CPU time limit. In order to provide a more detailed analysis, we also report the best
and worst CPU time (for solved instances) and the best and worst final gap (for unsolved
instances). Moreover, the number of instances where an algorithm outperforms the other is
reported. Symbol **** is used to indicate that none of the corresponding instances could be
solved within the CPU time limit imposed.

As expected, it can be observed that the higher the density, the more difficult the instance.
Lowdensity graphs are the easiest to solve.BC-ECTLP reaches optimality for all the instances
up to 30 vertices, whereas the rest of the algorithms fail only for one or two instances. The
difference in performance ismore evident when the number of vertices increases. For n = 40,
BC-ECTLP solves 13 instances, the same as CPXDef, but the average BC-ECTLP CPU time
is 10% of CPXDef CPU time. BC-ECTLPwP and BC-CPX only solve 10 and 11 instances,
respectively, and times are significantly higher than those in BC-ECTLP. In conclusion, CPU
times and the number of solved instances show an evident outperformance of BC-ECTLP
for low density instances.

In medium density, instances with n = 20 already seems to be hard. The last three
implementations showmore difficulties thanBC-ECTLP to reach optimal solutionswithin the
time limit. Moreover, the average time required by them on solved instances is significantly
longer than the average BC-ECTLP time. BC-ECTLP success rate is 45% of all medium
instances, CPXDef success rate is 10%, BC-ECTLPwP success rate is 5% and BC-CPX
success rate is 3%. In instances where all algorithms fail, BC-ECTLP algorithm obtains
significantly better gaps, achieving final gaps that are reduced by more than 65% in respect
to CPXDef for n = 40.

High density instances are difficult, even for small sizes. Inmost of the cases, all algorithms
fail to reach the optimal solution within the time limit. However, BC-ECTLP algorithm
obtains significantly better average gaps. It is worth mentioning that the higher the size, the
more difficult for CPXDef to improve the initial gap. For n = 40, the best CPXDef final gap
is around 48% while BC-ECTLP obtains 4.76%. Furthermore, the worst BC-ECTLP final
gap is about half of CPXDef final gap.

Usually, when a primal heuristic is applied, the required time to explore each node
increases. Therefore, it makes it necessary to achieve a tradeoff between the computational
time and the benefit that the heuristic brings. In the case of our heuristic, this time increased
significantly. Nevertheless, a dramatic reduction in the number of tree nodes was observed in
the Branch-and-Cut tree. The benefit of our primal heuristic is evident when comparing the
results obtained through BC-ECTLP and BC-ECTLPwP; this proves to be essential to obtain
good feasible solutions and to significantly prune the Branch-and-Cut tree. It should be taken
into account that both implementations enable CPLEX heuristics, the difference only lies in
that BC-ECTLP, as opposed to BC-ECTLPwP, uses also our primal heuristic.

To sum up, the main message of the table is that our algorithm dominates the Branch-
and-Cut CPLEX default algorithm by the number of solved instances, the final gap and
computational time.

6 Conclusion

We have proposed two integer programming models and a Branch-and-Cut algorithm for the
edge coloring by total labeling problem.We have characterized several new valid inequalities
for one of the models and developed initial and primal heuristics.

123

Annals of Operations Research

Although no polyhedral analysis was carried out, the efficiency of the inequalities has
been demonstrated through computational experiments.

Our algorithm is competitive with state of the art generic Branch-and-Cut methods with
respect to running time and quality of the solutions obtained. It is capable of solving instances
that are out of the reach of CPLEX. We should notice that both, heuristic and cutting
planes, have contributed to the success of BC-ECTLP. The results obtained by means of BC-
ECTLPwP show that primal heuristic is crucial to finding good upper bounds and to pruning
the tree in the Branch-and-Cut model. Consequently, running times and gaps obtained are
substantially improved.

Regarding CPLEX parameters, no setting superiority is observed.
It is worth mentioning that the size of the instances considered is substantially smaller

than regular instances for other coloring problems where graphs of hundred of vertices can be
tackled in reasonable time. Based on the literature of the area, it is not surprising to observed
that vertex and edge coloring variations present a wide range of computational difficulties.
According to our experience, total labeling problems are one of the hardest types of labeling
problems. We consider that our work is a promising practical approach to be pursued in
practice for solving the edge coloring by total labeling problem. There is still further work
to do to reach the state of the art of other coloring problems and to improve the algorithm.
There is still place for new valid inequalities and other schemes to prune the search tree and
speed up computational implementation.

Moreover, we would like to highlight that the integer programming formulations, as well
as the valid inequalities, can be adapted to other edge coloring/labeling problems. Therefore,
our work might prove to be an effective tool to deal with those problems for which there
are very few or no proposals on exact algorithms in the literature. Bearing in mind that
coloring/labeling problems do not only have theoretical interest but also many applications
in practice, any advance in this direction is important to expand the state of the art in edge
coloring/labeling algorithms.

References

Aardal, K., van Hoesel, S., Koster, A., Mannino, C., & Sassano, A. (2007). Models and solution techniques
for frequency assignment problems. Annals of Operations Research, 153(1), 79–129.

Bača, M., Miller, M., & Ryan, J. (2007). On irregular total labellings. Discrete Mathematics, 307(11), 1378–
1388.

Brandt, S., Budajov, K., Rautenbach, D., & Stiebitz, M. (2010). Edge colouring by total labellings. Discrete
Mathematics, 310(2), 199–205.

Brelaz, D. (1979). Newmethods to color the vertices of a graph.Communications of the ACM, 22(4), 251–256.
Burke, E., Mareček, K., Parkes, A., & Rudová, H. (2012). A branch-and-cut procedure for the Udine Course

Timetabling problem. Annals of Operations Research, 194(1), 71–87.
Coll, P., Marenco, J., Méndez Díaz, I., & Zabala, P. (2002). Facets of the graph coloring polytope. Annals of

Operations Research, 116(1), 79–90.
Cornaz, D., Furini, F., & Malaguti, E. (2017). Solving vertex coloring problems as maximum weight stable

set problems. Discrete Applied Mathematics, 217, 151–162.
Grötschel, M., Jünger, M., & Reinelt, G. (1984). A cutting plane algorithm for the linear ordering problem.

Operations research, 32(6), 1195–1220.
Grötschel, M., Jünger, M., & Reinelt, G. (1985). Facets of the linear ordering polytope. Mathematical Pro-

gramming, 33(1), 43–60.
IBM. CPLEX Optimizer for z/OS. http://pic.dhe.ibm.com/infocenter/cplexzos/v12r6/index.jsp.
Jensen, T., & Toth, P. (1995). Graph coloring problems. Hoboken: Wiley.
Khennoufa, R., Seba, H., & Kheddouci, H. (2013). Edge coloring total k-labelling of generalized petersen

graphs. Information Processing Letters, 113(13), 489–494.

123

http://pic.dhe.ibm.com/infocenter/cplexzos/v12r6/index.jsp

Annals of Operations Research

Lee, J., & Leung, J. (1993). A comparison of two edge-coloring formulations. Operations Research Letters,
13(4), 215–223.

Malaguti, E., Méndez-Díaz, I., Miranda-Bront, J., & Zabala, P. (2015). A branch-and-price algorithm for the
(k; c)-coloring problem. Networks, 65(4), 353–366.

Misra, J., & Gries, D. (1992). A constructive proof of vizing’s theorem. Information Processing Letters, 41(3),
131–133.

Seba, H., & Khennoufa, R. (2013). Edge coloring by total labellings of 4-regular circulant graphs. Electronic
Notes in Discrete Mathematics, 41, 141–148.

123

	An exact algorithm for the edge coloring by total labeling problem
	Abstract
	1 Introduction
	2 Integer programming models
	2.1 Model 1
	2.2 Model 2
	2.3 Comparisons of the above proposed models

	3 Valid inequalities
	3.1 Lower and upper bounds
	3.2 Cycles
	3.3 Linear ordering inequalities

	4 Heuristics
	4.1 Initial heuristics
	4.1.1 Constructive algorithm

	4.2 Heuristic based on vertex coloring (HVC)
	4.3 Heuristic based on an auxiliary graph (HAG)
	4.4 Primal heuristic

	5 Computational experience
	6 Conclusion
	References

