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Viscosity of pure supercritical fluids
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a Planta Piloto de Ingenierı́a Quı́mica, Universidad Nacional del Sur CC 717, 8000 Bahı́a Blanca, Argentina
b Mail Stop 170, Chemical Engineering Department, University of Nevada-Reno, 1664 N. Virginia St., Reno, NV 89557-0136, USA

c LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quı́mica,
Faculdade de Engenharia da Universidade do Porto, Rua do Dr. Roberto Frias, 4200-465 Porto, Portugal

Received 16 September 2004; accepted 17 May 2005

Abstract

In this work, we propose a model for representing the viscosity of supercritical pure fluids over a wide range of conditions. A given pure
real fluid is represented as a Lennard–Jones (LJ) fluid having effective values of the LJ intermolecular potential parameters. The LJ fluid
is actually a corresponding states fluid where the dimensionless variables have, as a distinguishing feature, a dependency on parameters
meaningful at molecular level. We have paid special attention to the qualitative behavior of the model when used beyond the conditions of
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the supporting molecular LJ simulation data. The model is able to correlate the pure compound viscosity of real supercritical flu
wide range of conditions with average absolute-value relative deviations less than or equal to 7% in most cases. The correlation
adjustable parameters per pure compound.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Practical use of supercritical fluids requires reliable mod-
els for their thermophysical properties. Supercritical extrac-
tion and processing typically take place at conditions where
a solute (or a number of them), and eventually a co-solvent,
are highly diluted in a supercritical solvent. For this reason,
models used to represent the thermophysical properties of
such diluted mixtures should match the pure solvent limit or
at least approach it with an acceptable level of error, which
implies, as a requirement, the availability of accurate models
for pure supercritical fluids. Such models should preferably
make reference to some adopted form for the intermolecular
potential function. In this work, we concentrate on modeling
the viscosity of pure real fluids at temperatures and pressures
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beyond their critical values, i.e., at supercritical conditio
The model is based on the well-known Lennard–Jones i
molecular potential.

Viscosity is a complex property to model because den
strongly influences its temperature dependence. At high
sity, viscosity decreases with temperature, while the beh
is the opposite at low density. At intermediate density val
local extrema appear for viscosity as a function of temp
ture. This involved behavior implies crossing viscosity ve
pressure isotherms.

There are different kinds of models for viscosity availa
in the literature. Some of them do not specify an intermo
ular potential function (see, e.g., Ref.[1]) and hence the
are regarded as purely empirical correlations[2]. On the
other hand, models that do specify an intermolecular po
tial function are often limited to subcritical fluids and
require the use of compound-specific correlations for
pressure–density–temperature relationship (see, e.g.
[3]).

Zabaloy et al.[4] discussed the different ways in whi
molecular simulation data can be used. In this work,
0896-8446/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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Nomenclature

AAD% average absolute-value percent relative devia-
tion = (100/NP)

∑NP
i=1|ηcalc − ηexp|/ηexp

cp critical point
CS corresponding states
EOS equation of state
k Boltzmann constant
liq saturated liquid
LJ Lennard–Jones
m mass of one molecule
Max AD% maximum absolute-value percent relative

= maxNP
i=1{100|ηcalc − ηexp|/ηexp}

MD molecular dynamics
N number of molecules
NA Avogadro’s number
NP number of data points
P absolute pressure
Pc critical pressure
Pr practical reduced pressure
P+

SFE LJ meltingP+

PVT pressure–volume–temperature
r intermolecular distance
RP Rowley and Painter
Sσ slope forσ as a function ofTr
SFE solid–fluid equilibrium
T absolute temperature
Tc critical temperature
Tr practical reduced temperature
TP triple point
U intermolecular potential energy
V system volume
vap saturated vapor
VLE vapor–liquid equilibrium
VTD viscosity–temperature–density
z compressibility factor

Greek letters
ε depth of the LJ potential well
η (Newtonian shear) viscosity
η0 viscosity at zero density
ηexp experimental viscosity
ηcalc calculated viscosity
ρ+

fluid,SFE dimensionless density of dense LJ fluid in
equilibrium with LJ solid

ρ mole density (e.g., mol l−1 units)
ρc critical mole density (e.g., mol l−1 units)
σ LJ separation distance at zero energy
σc critical value ofσ

propose a model for the viscosity of pure supercritical
fluids, which makes use of molecular simulation results
for the Lennard–Jones (LJ) fluid. The link between the
dimensionless pressure, temperature, density and viscosity

is set by analytical functions designed so that recent LJ
molecular simulation results are reproduced over a wide
range of conditions. The use we make in this work of a
pressure–density–temperature LJ equation of state (EOS), on
top of providing a more consistent LJ reference, makes pos-
sible to avoid the use of compound-specific PVT EOSs for
computing densities from the set pressure and temperature.

A key problem we deal with here is the need of setting
up proper interpolation and extrapolation schemes. Zabaloy
et al. [4] raised this issue and proposed criteria to guide the
definition of such schemes, but left the extrapolation prob-
lem unsolved. The problem of extrapolating arises when it is
required to calculate the viscosity of a real fluid at temperature
and density conditions which correspond to LJ dimension-
less temperature and density coordinates beyond the range of
the supporting molecular simulation data. On the other hand,
interpolation between states where the LJ fluid exists as an
homogeneous (one-phase) stable fluid is required when a real
homogeneous fluid is at temperature and density conditions
corresponding to LJ dimensionless coordinates where the LJ
fluid is actually heterogeneous (e.g., when the LJ fluid is in
a state of vapor–liquid equilibrium). According to our expe-
rience, the problem of interpolating–extrapolating molecular
simulation data is by no means trivial. In this work, we pro-
pose a solution to this problem.

The basic methodology in this work is the same than that
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f Ref. [4]. One of the fundamental differences betw
his work and Ref.[4] is the introduction of extrapolatio
chemes. On the other hand, adjustable parameters we
sed in Ref.[4] due to the exploratory nature of such work
ontrast, in the present application-oriented work, we in
uce a couple of suitable adjustable parameters to imp

he model performance.

. The Lennard–Jones fluid

The expression for the Lennard–Jones intermolec
otential is as follows:

(r) = 4ε

⌊(σ

r

)12 −
(σ

r

)6
⌋

(1)

herer is the intermolecular distance,u the intermolecula
otential energy,ε the depth of the LJ potential well andσ

s the LJ separation distance at zero energy. The LJ flu
imple but realistic: it qualitatively reproduces the visc
ehavior observed for real fluids over a wide range of co

ions[4].
The values of the physical properties of the LJ fluid

ccessed through computer experiments. This is also th
or every model fluid, which, as the LJ fluid, only exists wit

mathematical universe. The phase diagram of the LJ
s known[4]. In spite of the relative simplicity of Eq.(1),
apor–liquid, solid–vapor and solid–fluid transitions app
n the LJ phase diagram[4]. From this, it is clear that Eq.(1)
aptures the essential behavior found for real substanc
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The LJ reduced temperatureT+, reduced pressureP+,
reduced densityρ+ and reduced viscosityη+ are convention-
ally defined as follows:

T+ = kT

ε
(2)

P+ = Pσ3

ε
(3)

ρ+ = N

V
σ3 = NAρσ3 (4)

η+ = η
σ2

√
mε

(5)

wherek is the Boltzmann constant,T the absolute tempera-
ture,P the absolute pressure,N the number of molecules,V
the system volume,NA Avogadro’s number,ρ the mole den-
sity in units such as moles per liter,η the Newtonian shear
viscosity andm is the mass of one molecule.

3. Lennard–Jones viscosity

Rowley and Painter (RP)[5] computed LJ shear viscosities
at conditions covering wide ranges of density and tempera-
ture (0.8≤ T+ ≤ 4), using the method of molecular dynamics
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lation data and the VTD qualitative behavior constraints that
Zabaloy et al.[4] identified. Such constraints are met by the
functional form + parameter values here reported, within and
beyond the range of the supporting RP LJ molecular simula-
tion data, as shown below.

Zabaloy et al.[4] used the same expression for the LJ
viscosity limit at zero density (η+

0 ) than Rowley and Painter
[5]. Such expression cannot be used forT+ > 4, i.e., beyond
the range of applicability given in Ref.[5], because the trend
for η+

0 versusT+ becomes opposite to the correct one for
T+ > 4.

4. New Lennard–Jones analytical viscosity
representation

In this work, we use the following analytical form for the
LJ viscosity–temperature–density relationship.

η+ = η+
0 +

10∑
i=2

3∑
j=1

bji

(ρ+)i

(T+)j−1 (6)

where η+
0 does not correspond to Ref.[5]. We rather

use forη+
0 the Chapman–Enskog equation coupled to the

Neufeld–Janzen–Aziz expression for the collision integral,
a
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w
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η
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MD). They built an analytical equation by correlating th
D results. Such analytical equation relates the viscosiη+

o T+ andρ+, and it requires calculating the LJ reduced
osity limit at zero densityη+

0 which Rowley and Painte
orrelated as a function ofT+ (see Ref.[5] for details).

Zabaloy et al.[4] slightly changed the form of the R
ennard–Jones analyticalη+ versus (T+, ρ+) function and
e-fitted its parameters so that certain qualitative beh
onstraints, considered appropriate for a model to be
n wide ranges of temperature and density, would be
y their LJ analytical viscosity–temperature–density (VT
elationship. Zabaloy et al.[4] changed the RP analytic
unction in anticipation of setting up robust extrapola
chemes for cases where the real fluid conditions fall ou
he original ranges of applicability of the LJ VTD analy
al relationship. Although Zabaloy et al.[4] identified the
eed for extrapolation schemes as a relevant issue, with
ontext of molecular-simulation-based engineering-orie
eal-fluid model building, they left the problem of defin
uch schemes as an open question.

Extrapolation recipes may consist of truncated Ta
xpansions of the function to be extrapolated. Such app
enerally implies discontinuities in higher order derivat
t the boundary where the switch between the original f

ion and the extrapolating function takes place.
In this work, we have found a way to avoid discontinu

arrying extrapolation recipes for the LJ viscosi
emperature–density relationship. We did so by choos
unctional form and sign restrictions on parameter va
onsistent with both, the RP supporting LJ molecular s
s presented in Eqs. (9-3.9) and (9-4.3) of Ref.[6], which
re applicable within the wide range 0.3≤ T+ ≤ 100. In this
ork, we rewrite Eqs. (9-3.9) of Ref.[6], in terms of the
bove defined dimensionless variables, as follows:

+
0 = 0.176288(T+)1/2

Ωυ(T+)
(7)

hereΩυ(T+) is the collision integral, which is a functio
f T+, as its single independent variable, and is given in
9-4.3) of Ref.[6].

The form of Eq.(6)is different from the (exponential) for
f Eq. (15) in Ref.[4]. As it will become clear below, suc
ifference in form is of much more fundamental importa

han it may seem at first sight.

.1. Viscosity constraints

Based on both, LJ molecular simulation viscosity data
eal fluid viscosity data, Zabaloy et al.[4] concluded that th
ollowing constraints on the derivatives of the LJ visco
ere suitable for an analytical model to be used over a

ange of conditions:

∂η+

∂ρ+

)
ρ+=0

= 0 (8)

∂η+

∂ρ+ > 0, for ρ+ > 0 (9)

∂(∂η+/∂ρ+)

∂ρ+ > 0, for ρ+ ≥ 0 (10)
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∂(∂η+/∂ρ+)

∂T+ < 0, for ρ+ > 0 (11)

Eq.(8) corresponds to a flat viscosityη+ versus densityρ+

curve at constant temperatureT+ whenρ+ approaches zero.
Constraint(9) implies a monotonic increase for viscosity
with density at constant temperature. Restriction(10) sets a
monotonic increase of the viscosity versus density slope with
density at constant temperature. Constraint(11) establishes
that, at constant density, the viscosity versus density slope
decreases with temperature. As Zabaloy et al.[4] discussed,
constraints(8)–(11)set a qualitative viscous behavior sim-
pler than the observed one, both, for the Lennard–Jones fluid
and for real fluids. However, they grasp the essential known
viscous behavior of fluids, over a wide range of conditions,
thus providing a convenient reference viscosity description
with well-defined qualitative trends (see Ref.[4] for more
details).

Zabaloy et al.[4] imposed restriction(8) by construction
within the analyticalη+ versus (T+,ρ+) function that they pro-
posed, and restrictions(9)–(11)during the parameter fitting
process. They verified the fulfillment of restrictions(9)–(11)
for more than 12,000 regularly spaced points in the domain
0.8≤ T+ ≤ 4 and 0≤ ρ+ ≤ 1. Yet, their parameters values[4]
do not guarantee meeting the constraints(9)–(11)outside the
tested range.
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is that constraints(8)–(11)will be met not only within theT+

andρ+ ranges of the RP molecular simulation data we used
here to compute the values of thebij parameters but also at any
arbitrary (positive) values ofT+ andρ+ as long as the wide
T+ range of Eq.(7) is not exceeded. Therefore, the simple
extrapolation recipe in this work, to be applied when theρ+

(or theT+) value exceeds the range of the RP LJ molecular
simulation viscosity data, consists of simply using the very
same equation resulting from the imposed reproduction of
RP data, i.e., Eq.(6) [with the (positive)bij parameters we
report later in this article], coupled to Eq.(7).

Using Eq.(6) for computing the viscosityη+, with bji > 0,
at any values ofT+ andρ+, implies that the viscosity and all
its partial derivatives (of any degree) with respect toT+ and
ρ+ are in this model continuous functions ofT+ andρ+.

4.2. General Lennard–Jones viscosity parameters

We fitted thebij parameters of Eq.(6) so as to reproduce
the 134 Rowley and Painter[5] LJ viscosity data left after
excluding 37 data points withT+ andρ+ values at which the
LJ fluid is unstable, i.e., not homogeneous. The 37 data points
we screened out correspond, at infinite time, to conditions
of vapor–liquid equilibrium for the LJ fluid. The 134 RP
molecular simulation LJ viscosity data we used here have an
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On the other hand, Eq.(6) implies the following expres
ions for the partial derivatives involved in the above
ented constraints:

∂η+

∂ρ+ =
10∑
i=2

3∑
j=1

ibji

(ρ+)i−1

(T+)j−1 (12)

∂(∂η+/∂ρ+)

∂ρ+ =
10∑
i=2

3∑
j=1

i(i − 1)bji

(ρ+)i−2

(T+)j−1 (13)

∂(∂η+/∂ρ+)

∂T+ =
10∑
i=2

3∑
j=1

i(1 − j)bji

(ρ+)i−1

(T+)j
(14)

Notice that, sinceη+
0 depends only onT+, the derivative

f η+
0 with respect toρ+ is zero. Eq.(12) reflects this fact.

It can be shown that Eq.(12)meets restriction(8). Observe
hat all terms in Eq.(12)are proportional to some integer no
ero power of density and hence they all vanish as de
ends to zero. A key point in this work is that Eqs.(12)–(14),
espectively, meet restrictions(9)–(11) if we force all bji

arameters to be positive. Notice that the factorsi [Eq. (12)]
nd the factorsi(i−1) [Eq.(13)] are all positive for thei range
f variation within Eqs.(12)and(13). On the other hand, th

actorsi(1− j) are zero or negative for thei andj ranges o
ariation within Eq.(14). The key feature of Eq.(6) coupled
o the following restrictions:

ji > 0, for all (i, j) pairs (15)
verage uncertainty of 10.3% and a maximum uncertain
4.6%[5]. We report the values for thebij parameters that w
omputed in this work inTable 1. Notice that all of them ar
ositive. These values correspond to a bias of 0.005% a
n average absolute-value percent relative deviation (AA
f 4.6% with respect to the 134 RP data points we acce
eing the maximum absolute-value percent relative devi
qual to 13.9%. Hence, Eq.(6) (Table 1) reproduces the R
riginal molecular simulation 134-point-data-set within
eported uncertainty. These AAD% and bias values im
hat the RP LJ molecular simulation data support the
f constraints(8)–(11)and/or the use of Eq.(6) coupled to
estrictions(15).

The parameters ofTable 1, which are general for the L
uid, make possible to connect molecular level paramete
acroscopic properties through fast calculations perfor
sing Eq.(6). Due to the use of Eq.(7) and to the fulfillmen
f restrictions(8)–(11)by Eq.(6) coupled to the paramete
iven inTable 1, the viscosity–temperature–density ana
al representation we use in this work for the LJ fluid sho
ot be regarded as the result of a blind polynomial fi
roper qualitative behavior is given by Eq.(6) (Table 1) at any

emperature–density condition: within and beyond the ra
f the supporting molecular simulation data.Fig. 1 shows
set of viscosity versus density isotherms generated
q. (6) (Table 1). The temperature valuesT+ = 0.8 (subcriti-
al) andT+ = 4 (supercritical) correspond to the limits of
emperature range of the original RP LJ data. As expe
hese two isotherms are consistent with restrictions(8)–(11).
t can be seen thatη+ at T+ = 0.8 increases faster wi
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Table 1
Values for the dimensionless parameters of Eq.(6) obtained in this work

j i bji j i bji j i bji

1 2 1.325875× 100 1 5 0.510490× 100 1 8 0.110954× 100

2 2 4.529702× 10−11 2 5 1.477943× 10−11 2 8 7.921571× 10−4

3 2 4.759355× 10−11 3 5 3.471516× 10−11 3 8 3.712390× 10−2

1 3 0.411250× 100 1 6 0.441143× 100 1 9 8.260164× 10−2

2 3 1.598922× 10−2 2 6 1.478254× 10−12 2 9 1.466775× 100

3 3 2.341807× 10−11 3 6 5.342499× 10−6 3 9 2.822336× 100

1 4 2.053585 10−4 1 7 0.253873 100 1 10 2.287980× 10−13

2 4 1.682684× 10−7 2 7 4.255116× 10−4 2 10 7.244097× 10−2

3 4 1.428941× 10−11 3 7 1.003290× 10−7 3 10 0.309918× 100

density thanη+ at T+ = 4, which leads to the appearance
of an intersection point. The LJ vapor–liquid equilibrium
density values atT+ = 0.8 are aboutρ+

vap,VLE = 0.006 and

ρ+
liq,VLE = 0.8 [7], respectively, while the liquid density at

solid–fluid equilibrium is aboutρ+
liq,SFE = 0.88 [8]. Eq. (6)

(Table 1) hence acts, atT+ = 0.8, as an interpolation tool in
the rangeρ+

vap,VLE, ρ+
liq,VLE and as an extrapolation tool for

ρ+ > ρ+
liq,SFE. Fulfillment of restriction(9) guarantees the

absence of loops in the viscosity versus density curve, at all
temperatures. The increase of viscosity with temperature at
zero density is the result of Eq.(7) for η+

0 , which gives a
monotonically increasingη+

0 as a function ofT+ throughout
its full applicability range. AtT+ = 0.5 the LJ fluid is actu-
ally below its triple point temperature[8]. Therefore, it exists
either as a low-density gas or as a high-density solid—it can-
not exist as a dense fluid. Consequently theT+ = 0.5 curve
in Fig. 1 is thus, for most of its density range, the result of
extrapolating fluid-state information available at higher tem-
perature. Notice that theT+ = 0.5 isotherm inFig. 1 relates
to theT+ = 0.8 isotherm in a way qualitatively analogous to
that of theT+ = 0.8 isotherm with theT+ = 4 isotherm. The
T+ = 10 (supercritical) curve inFig. 1 also shows a proper
qualitative behavior. If instead of Eq.(7), we had used at
T+ = 10 the equation available in Ref.[5] forη+

0 , then, the low-
density part of theT+ = 10 isotherm would have fallen below
t ble.

hors
g o
1 lues

F rated
u

of T+ of the RP[5] LJ simulation data. Outside such tem-
perature range,Fig. 2 shows values of viscosity, which are
extrapolations, except for the zero density isochor, which Eq.
(7) fully sets. It can be seen that Eq.(6) (Table 1) produce
smooth and well-behaved extrapolations of the supporting
molecular simulation data. The thick solid vertical line corre-
sponds to the LJ critical value ofT+ [9], while the thin vertical
solid line identified as TP corresponds to the LJ triple point
value ofT+ ([8]). At high-density viscosity decreases with
temperature, i.e., the behavior is the opposite to that shown
at low density. At intermediate densities the isochors show
minima. This rich behavior comes from the fact that, while
the first term of the right hand side of Eq.(6) is a monotoni-
cally increasing function ofT+, the second double summation
term, used with positivebij parameters [restrictions(15)], is
a monotonically decreasing function ofT+. Notice that both
terms in Eq.(6) used withTable 1parameters are always
positive. The appearance ofFig. 2 would not have changed
had we generated it for much wider ranges ofT+ andρ+.
This is true as long as the (very wide)T+ range of Eq.(7) is
not violated. This is a very important feature of the present
model.

Eq. (6) (Table 1) makes it possible on one hand to avoid
performing a long molecular simulation run every time that a
viscosity value for the Lennard–Jones fluid is required. On the
other hand it acts as an smoothing equation on the raw RP[5]

F duced
t se the
t e
s ature
[

heT+ = 0.8 isotherm, which would not have been accepta
Fig. 2shows a set of viscosity versus temperature isoc

enerated using Eq.(6) (Table 1), in theT+ range from 0.3 t
0. The two vertical dashed lines indicate the extreme va

ig. 1. Viscosity vs. density isotherms for the Lennard–Jones fluid gene
sing Eq.(6) (Table 1).
ig. 2. Lennard–Jones (LJ) reduced viscosity as a function of the LJ re
emperature at varying density values. The dashed vertical lines enclo
emperature range of the supporting RP[5] molecular simulation data. Th
olid vertical lines indicate the range from the LJ triple point temper
8] to the LJ critical point temperature[9].
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molecular simulation data. Finally, outside the temperature
range of the RP data (both at high and low temperatures),
Eq. (6) (Table 1), which depends on the zero-density vis-
cosity values which Eq.(7) provides, generates acceptable
extrapolations of the RP data. Notice that Eq.(6) (Table 1) is
applicable to the Lennard–Jones fluid at any fluid state: gas,
liquid or supercritical fluid. However, later in this work, we
limit the real-fluid LJ-based modeling of viscosity to super-
critical conditions only.

5. Lennard–Jones PVT analytical representation

The usual engineering need is to calculate viscosities at a
given temperature and pressure rather than at given temper-
ature and density. Kolafa and Nezbeda[9] proposed an ana-
lytical EOS for the Lennard–Jones fluid, i.e., the PVE/hBH
LJ-EOS, which interrelates the temperature, the pressure, and
the density of the LJ fluid. The PVE/hBH LJ-EOS is based
on critically assessed computer simulation data from several
sources. We use such equation here in combination with Eq.
(6) to calculate viscosities at given temperature and pressure.
The PVE/hBH LJ-EOS is the following:

z = P+

ρ+T+ = fKN(ρ+, T+) (16)

w f
ρ -
c lity
o
( um
w id
e ium
b LJ
fl eda
[ to
t OS
i atic
d riti-
c
[

T

P

ρ

c s the
c re
t d
t
w
r

sus
d ntain

Fig. 3. Pressure as a function of reduced molar volume for the Lennard–
Jones fluid at supercritical temperatures and mostly at supercritical pressures.
We generated the curves using Eq.(16). (�) Critical point.

pressure ranges where there are two meaningful values of
density (vapor and liquid) at a given (positive) pressure.

Fig. 3 shows the pressureP+ as a function of the inverse
density for four isotherms corresponding to temperature val-
ues greater than or equal to the critical temperature. All curves
correspond to Eq.(16). Most of the pressure range inFig. 3
is supercritical. The variable 1/ρ+ is a reduced molar volume.
The critical isotherm shows a characteristic flat region where
the volume is very sensitive to small changes in pressure.
Fig. 3 indicates that at a given supercriticalT+ value there is
only oneρ+ value compatible with a givenP+ value.

6. Combining LJ viscosity and PVT analytical
representations

Fig. 4 shows the Lennard–Jones reduced viscosityη+ as
a function of the practical reduced temperatureTr (=T/Tc) at
varying values of the practical reduced pressurePr (=P/Pc).
Here,Tc andPc are, respectively, the critical temperature and
critical pressure. We generatedFig. 4 by combining basi-
cally Eqs.(16)and(6) (Table 1). We provide more details in
Appendix A. The curve labeled “Pr = 0” corresponds to zero
density. Hence, it is a direct result of Eq.(7). The curve labeled
“Pr = 0 (liq)” corresponds to liquid viscosities at the limit of
zero pressure. This curve exists because Eq.(16) provides
l ures.
T eep
p ac-
t res.
M hich
F real
fl as
h ver-
t the
r
T e
s
w ata
herez is the compressibility factor andfKN is a function o
+and T+ available in the original Ref.[9] and more con
isely in Ref. [4]. The temperature range of applicabi
f Eq. (16) is 0.68≤ T+ ≤ 10. The range forρ+ is from 0
zero) to the density of the dense LJ fluid in equilibri
ith the LJ solid (ρ+

fluid,SFE). Here, we mean by solid–flu
quilibrium situations not corresponding to the equilibr
etween the solid and a low-density vapor which for the
uid happens atT+ less than about 0.68. Kolafa and Nezb
9] built Eq. (16) without imposing constraints related
he location of the critical point. Hence, the PVE/hBH E
s a classical Lennard–Jones EOS. This is not problem
ue to small critical enhancement for viscosity. The c
al coordinates corresponding to Eq.(16) are the following
9]:

+
c = 1.3396 (17)

+
c = 0.1405 (18)

+
c = 0.3108 (19)

The value ofT+
c implies that the RP[5] LJ viscosity data

orrespond to a maximum temperature of roughly 3 time
ritical temperature. Zabaloy et al.[4] presented a procedu
o computeρ+

fluid,SFE. In this work, which is ultimately limite
o temperatures such thatT+ ≥ T+

c , the computedρ+ values
ere always less thanρ+

fluid,SFE. On the other hand, theT+

ange of Eq.(16)was never exceeded.
It can be shown that Eq.(16) generates pressure ver

ensity isotherms at subcritical temperatures, which co
iquid-like roots at zero pressure at low enough temperat
he “Pr = 1” curve is the critical isobar which shows a st
ortion typical of the critical region and a minimum char

eristic of the transition from lower to higher temperatu
inima appear also at higher pressures. The behavior, w
ig. 4depicts is in essential agreement with that found in
uids. Zabaloy et al.[4] generated a similar figure, which w
owever limited to the temperature range indicated with

ical dashed lines inFig. 4. Such temperature range is
ange of the RP supporting molecular simulation data[5].
he full temperature range ofFig. 4 curves is basically th
ame than the applicability range of Eq.(16) which is much
ider (maxTr is about 7.5) than that of the RP viscosity d
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Fig. 4. LJ reduced viscosityη+ as a function of the practical reduced tem-
peratureTr (=T/Tc) for the Lennard–Jones Fluid at varying practical reduced
pressurePr(=P/Pc) values. The vertical dashed lines indicate the temperature
range of the supporting RP LJ molecular simulation data[5] (seeAppendix
A for details).

[5]. At Tr higher than about 3 inFig. 4; Eq. (6) (Table 1)
actually acts, on the supporting molecular simulation data,
as an extrapolation equation and it gives a proper shape for
the isobars at such higher temperatures. Notice that the rich
variety of trends for the viscosity as a function of tempera-
ture and pressure depicted inFig. 4 is basically implied by
the simple intermolecular potential function defined by Eq.
(1), i.e., no experimental real fluid viscosity data were used
at all for generatingFig. 4.

For known values ofm, ε andσ the viscosityη at given
temperatureT and pressureP is calculated as follows: (a)
calculateT+ [Eq. (2)] andP+ [Eq. (3)]; (b) calculateρ+ using
Eq. (16); (c) calculateη+ using Eq.(6); (d) calculateη from
Eq.(5).

Viscosity diverges at the critical point (see, e.g., Ref.[17]).
Yet, Eq.(6) does not account for the critical enhancement for
viscosity that takes place in the neighborhood of the critical
point. In contrast with the case of the thermal conductivity, the
critical enhancement in viscosity is small and becomes impor-
tant only within a narrow region around the critical point[4].
Therefore, the present model does not account for such crit-
ical enhancement effect. This is not noticeably important, in
view of the fact that supercritical extraction and processing
is carried out at conditions far enough from the region where
the solvent critical enhancement effect takes place (see Ref.
[4] for more details). Eqs.(6) and(16), which apply to the LJ
fl fluid
i sion-
l dency
o

7. Real-fluid LJ-based viscosity modeling:
compound-specific parameters

To explore the potential of a LJ-based modeling of the
viscosity of pure fluids, Zabaloy et al.[4] assumed that a real
fluid behaves as a LJ fluid having a critical temperatureTc and
a critical pressurePc exactly matching the real fluid exper-
imental values. Such assumption is equivalent to supposing
that real fluids behave as LJ fluids with effective intermolec-
ular potential parameters consistent with the experimental
critical coordinates. The viscosity predictions were[4] thus
based only on molecular weight,Tc andPc [4]. For a given
pure compound the parametersε andσ are forced to match
the experimental values ofTc andPc by combining Eqs.(2),
(3), (17)and(18)with the experimental values ofTc andPc.
For reasons that will become clear below, we defineσc as the
value ofσ computed, as described, from the experimentalTc
andPc (seeAppendix Bfor details).

The LJ-based model of Ref.[4] has an unknown quali-
tative behavior beyond the density and temperature ranges
of the supporting molecular simulation data. Besides, it is
purely predictive, i.e., the viscosity of a given pure fluid at
set temperature and pressure is computed from the molecular
weight and from the experimental values ofTc andPc. Such a
limited input information is not enough to quantitatively rep-
resent the viscosity of real fluids whose molecules are polar
a
L und
s
i n
a ities.
A
t f vis-
c m
t to set
σ epen-
d
t ed
t

α

r-
a e
c s
i
a ental
v al
t
c ame-
t
b
P ree-
d ond
uid, interrelate sets of dimensionless variables. The LJ
s therefore a corresponding states fluid where the dimen
ess variables have, as a distinguishing feature, a depen
n parameters meaningful at molecular level.
nd/or non-spherical. Ruckenstein and Liu[10] studied the
J-based modeling of self-diffusion coefficients. They fo
uch property to be more sensitive toσ than toε. Follow-

ng Ruckenstein and Liu[10], we here setσ, in a way, as a
djustable parameter set to match experimental viscos
constant value forσ, different fromσc, giving, in certain

emperature–density region, better numerical values o
osity thanσc, would imply a critical pressure different fro
he experimental one. To solve this dilemma we decided

as temperature dependent. The use of temperature d
ent LJ parameters is valid for engineering purposes[11]. In

his work we setσ as a linear function of the practical reduc
emperature, as follows:

σ = σ

σc
= 1 + Sσ(Tr − 1) (20)

From Eq.(20), it is evident that at the critical tempe
ture σ becomes equal to its critical valueσc and henc
onsistency with the experimental criticalT, P coordinate
s kept. In this work, we set the (dimensionless) slopesσ as
n adjustable parameter, which we fit against experim
iscosities. On the other hand, we keptε constant, i.e., equ
o its critical value, at all temperatures. From Eq.(20) it is
lear that, unless we introduce another adjustable par
er, the viscosity along the critical isotherm, whereTr = 1,
ecomes completely set by the experimental values ofTc and
c and by the molecular weight. To gain a degree of f
om to remove such limitation we introduce now a sec
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adjustable parameter defined as follows:

η = Fη+√
mε

σ2 (21)

Notice that atF = 1 Eqs. (5) and (21) become identi-
cal. F is a dimensionless corrective parameter, which acts
directly on the LJ viscosity (which is equal toη+√

mε/σ2).
From the practical point of view, parameterF has on the LJ
viscosity a role analogous to parameterAD on the LJ self
diffusion coefficient in Ref.[10]. The parameterAD [10] is
the translational–rotational coupling factor, which accounts
for the non-spherical nature of real fluid molecules. To illus-
trate the use of the above equations we provide a calculation
example inAppendix B.

8. Results and discussion

Table 2shows results for the Lennard–Jones based mod-
eling of the viscosity of supercritical pure fluids.Table 2also
shows, for every pure compound, details about the database
we used in this work, i.e., the temperature and pressure ranges
and the number of experimental data points. The total num-
ber of experimental data points is 2844. The two “Prediction
Results” columns show the average and maximum percent
deviations when no adjustable parameters are used, i.e., for
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= 1 andsσ = 0. In such a case, the only input experime
nformation used was the critical temperature, critical p
ure and the molecular weight, which we took from R
12]. From the AAD% values inTable 2, we can conclud
hat compounds such as propane, carbon dioxide, nitr
ndn-butane can be treated, within the temperature and
ure ranges ofTable 2, as LJ fluids having constant effectivε
ndσ parameters set to reproduce the pure compound e

mental critical temperature and critical pressure. For flu
uch as water or hydrogen sulfide, such an approach
cceptable from the quantitative point of view.

Table 2 also shows correlation results in the last f
olumns. For every given compound, we adjusted sim
eously theF and sσ parameters. ParameterF is normally
lose to unity.

The values for the slopesσ corresponded always to valu
f ασ in the order of unity (roughly in the range 0.8–1

t can be seen that the average deviation for all compo
xcept water is now less than or equal to 7%, which is w
he experimental uncertainty for viscosity at high press
hus, Eq.(20) makes possible to considerably reduce
odel errors keeping a narrow enough range of varia

or variableασ while preserving consistency with the pu
ompound critical pressure.

The only regularity thatTable 2shows for theF paramete
f the n-alkanes is that its value is of the order of unity
ll seven compounds. With regard to then-alkanesσ param-
ter, we observe inTable 2a non-regular variation. The

acts may be related to our parameter fitting procedure
tted every pair of parameters independently for every
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compound, giving the same weight to every experimental
data point during the optimization course. For a given pure
compound, a finer procedure would consist of splitting the
temperature–pressure plane into constant area sub-regions
and ascribe the same weight factor to every sub-domain
regardless of the number of data points falling within each of
them. This procedure would result in a more balanced per-
formance of the model and would lead to values forF and
sσ surely different from those we reported inTable 2, which
might follow more regular variations for then-alkanes.

Despite the non-regularsσ variation for then-alkane
homologous series, it can be shown, for any givenn-alkane
listed inTable 2, that the maximum departure of parameter
σ from theσ average value falls in the range from 1 to 5%,
within the temperature range reported inTable 2for the cho-
senn-alkane. Such variability is much less than that of the
original viscosity data. On the other hand, asFig. 5 shows,
the average value ofσ is a monotonically increasing function
of molecular weight forn-alkanes at the temperature ranges
and (non-zero)sσ values whichTable 2reports. Hence, the
average value ofσ roughly follows a regular variation for
n-alkanes. Notice thatσ rather thansσ is the parameter to be
averaged when modeling mixtures.

For the n-alkanes (or any other homologous series) it
would be possible to set, e.g., linear variations with respect
to molecular weight for both, parameterF and parameters .
S ainst
a the
t us-
s , by
c
t ver-
a n the
t

is
m d in
T dro-
g n the

F c-
t r
a
a

relatively large value for, e.g., parametersσ , for both com-
pounds. In our opinion, the Lennard–Jones fluid is anyway a
good reference fluid not only because it qualitatively behaves
as real fluids do, but also because of the availability in the
literature of molecular simulation data (transport and ther-
modynamic properties) at a large number of conditions. The
present model accounts for the non-Lennard–Jones nature of
real fluids through parametersF andSσ an trough the exper-
imental values of theTc andPc.

WhenF �= 1 and/orSσ �= 0, the present model transforms,
for a chosen pure compound, the experimental viscosity data,
together with the experimental critical temperature and crit-
ical pressure, into (always positive) values ofF, ε and σ,
which could be used to represent the viscosity of mixtures of
supercritical fluids through proper mixing rules. Parameters
F andε are both constant, while the temperature-dependent
σ parameter has a variability less than that of viscosity itself.
Basically, the present model makes possible to encapsulate
the observed experimental behavior for viscosity, within a
Lennard–Jones formalism as a step for modeling mixtures.
Because of this, the values we report inTable 2for param-
etersF andsσ should not be regarded as the result of just a
fitting exercise. In other words, if for a given pure compound
listed inTable 2, we simply correlated the viscosity as an, e.g.,
explicit polynomial function of temperature and pressure, we
would require a number of compound-specific fitting param-
e alent
t r
v des
a xing
r

ling
m s for
p

ta
[ .8
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iti-
c pond
t cor-
r s of

F l
n

σ

uch approach would provide four parameters to be fit ag
ll the n-alkane data simultaneously, in comparison to

wo parameters pern-alkane we used here. The homologo
eries-specific four parameter approach would provide
onstruction, regular variations for parametersF and sσ of
he n-alkane family of compounds, with an expected o
ll quantitative model performance intermediate betwee

wo we show in the last six columns ofTable 2.
As it is evident from Eq.(1), the Lennard–Jones fluid

ade of spherical molecules, while none of the fluids liste
able 2does. On top of that, fluids, such as water and hy
en sulfide have a polar nature, which seems to explai

ig. 5. Average value of the temperature-dependentσ parameter as a fun
ion of molecular weight for normal alkanes from methane ton-octane. Fo
givenn-alkane, the averageσ value corresponds to the non-zeroSσ value
nd to the temperature range, whichTable 2reports.
ters larger than two, to achieve a performance equiv
o that in the last two columns ofTable 2. Such paramete
alues most likely would have varying signs and magnitu
nd hence it would not be possible to define proper mi
ules for them when modeling mixtures.

From the previous paragraph it is clear that for mode
ixtures the present approach would require mixing rule
arametersF andε; for parameterσ, but not for the slopesσ .

For supercritical nitrogen theT+ range of the RP LJ da
5] was exceeded reachingT+ a maximum value of about 4
seeAppendix B).

Figs. 6–9show correlation results for four supercr
al pure compounds. In all cases, the markers corres
o experimental data, while the lines are the model
elation results, corresponding to the last four column

ig. 6. Correlation (curves) of viscosity data ((�), (♦), [13]) for supercritica
itrogen.
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Fig. 7. Correlation (curves) of viscosity data ((♦), (�), (�), [13]) for super-
critical carbon dioxide.

Fig. 8. Correlation (curves) of viscosity data ((♦), (�), [13]) for supercritical
propane.

Table 2. Fig. 6shows the viscosity as a function of pressure
for supercritical Nitrogen at two temperatures. The highest
temperature (450 K) corresponds to aT+ value beyond the
maximum value of the LJ viscosity data we used to build Eq.
(6) (Table 1). Evidently the extrapolation schemes embedded
within Eq. (6) (Table 1) worked well for Nitrogen, e.g., the
model correctly describes the occurrence of an intersection
point and properly follows the experimental data.

Figs. 7 and 8show the model viscosity and the experimen-
tal viscosity as a function of pressure for supercritical CO2
and supercritical propane, respectively, at different tempera-
tures.Fig. 9shows correlation results (in this case viscosity
as a function of temperature for different isobars) for super-
critical n-heptane. For all of these cases, the pressure range
is wide. It can be seen that the model reproduces with a good
level of accuracy the observed viscosities both, at qualita-
tive and quantitative level. Notice that the present model
is able to condense within the values of the parametersF

F
[

andsσ the relatively complex topology of the supercritical
viscosity-pressure-temperature surface, of whichFigs. 6–9
are examples. In other words, the present model represents
the viscosity surface of a given pure component as a point in
the (Sσ , F) plane.

9. Remarks and conclusions

In this work, we provide an analytical equation (Eq.(6))
for the relationship among viscosity, temperature and density
for the Lennard–Jones fluid. Such analytical equation has a
better performance than another one developed previously
[4]. Eq.(6) matches a zero-density Chapman–Enskog LJ vis-
cosity expression (Eq.(7)), which has an extremely wide
temperature range of applicability. The LJ VTD relationship,
i.e., Eq.(6), has a functional form which, for positive values
of its parameters (Table 1), guarantees a proper qualitative
behavior for the viscosity at any density and at any tempera-
ture within the wide temperature range of Eq.(7). Thus, Eq.
(6)coupled to the parameters inTable 1properly extrapolates
the LJ molecular simulation data on which it is based. The
trends for the viscosity as a function of density and temper-
ature available to Eq.(6) are less varied than those found for
real fluids. This is acceptable, since we use here Eq.(6) as a
basis for a general model designed to work over a wide range
o
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ig. 9. Correlation (curves) of viscosity data ((+), (×), (�), (©), (�), (♦),
13]) for supercriticaln-heptane.
f conditions.
The equations we presented here clearly show the

esponding states nature of the Lennard–Jones fluid
allmark of a LJ based corresponding states approach i

ts dimensionless variables are defined in terms of param
eaningful at molecular level.
The advantage of corresponding states (CS) appro

s that once the user makes sure that the model quali
rends are acceptable in the space of the reduced vari
he qualitative trends will, in general, also be acceptabl
ny real fluid represented by such CS model.

However, strictly, from the quantitative point of view, r
uids are neither “corresponding fluids” nor do they hav
ennard–Jones nature. On one hand, we partially over

his limitation by representing a given real fluid as a LJ fl
aving a critical temperature and a critical pressure iden
espectively, to the real fluid experimental critical temp
ure and experimental critical pressure. When such pred
eference is not enough to achieve a good quantitative
ormance, we introduce two parameters (Sσ , F), which we
t against viscosity experimental information. The para
ers (Sσ , F) are compound-specific and do not affect Eq.(6),
hich has parameters (Table 1) which are not compound
pecific. In this way, we have shown here that it is possib
epresent with a good level of accuracy the viscosity of
eal supercritical fluids over a wide range of conditions
erms of effective parameters with some meaning at mo
ar level. The present approach requires the knowledge o

olecular weight, the experimental critical temperature
he experimental critical pressure.
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The good qualitative behavior of Eq.(6) is convenient for
an adequate model performance not only when calculating
viscosity values but also when adjusting the parametersF
andsσ for a chosen pure real fluid.

Another distinguishing feature of the present approach
is that the user computes the required density values from
a LJ equation of state, i.e., from Eq.(16). Therefore, the
present approach uses a LJ reference not only for the
viscosity–temperature–density relationship (Eq.(6)) but also
for the pressure–temperature–density relationship (Eq.(16)).
In this regard, the model presented here is somewhat more
consistent than other approaches. In other words, the user
does not have to resort to compound-specific correlations for
calculating the density, which in this work plays the role of
an intermediate variable. The model correlates the pure com-
pound viscosity of real supercritical fluids over a wide range
of conditions with average absolute-value relative deviations
less than or equal to 7 % (excluding water).
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the dense LJ fluid at solid–fluid equilibrium, i.e.,ρ+

fluid,SFE.

Appendix B. Sample viscosity calculation for
supercritical nitrogen

The first step consists of computing the parametersε and
σc. For that, we first combine Eqs.(2), (3), (17) and(18) to
give

T+
c = 1.3396= κTc

ε
(B.1)

P+
c = 0.1405= Pcσ

3
c

ε
(B.2)

Notice that we have added the subscript“c” to σ because
in the present model we madeσ temperature dependent.

In the present model, we force the reproduction of the
experimental pure compound critical temperatureTc and
pressurePc by introducing such experimental information
into Eqs.(B.1) and(B.2), which we then solve forε andσc,
being the result:

ε = κTc

T+
c

= κTc

1.3396
(B.3)
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ppendix A. Generation of Fig. 4

From Eqs.(2) and(3) it can be, respectively, shown th
f the LJ parametersε andσ are regarded as constant, the

+ = TrT
+
c (A.1)

+ = PrP
+
c (A.2)

We generatedFig. 4 applying the following calculatio
rocedure:

Set the value orTr and calculateT+ using Eq.(17) of the
text and Eq.(A.1).
Computeη+

0 from Eq.(7) of the text.
Set the value ofPr and calculateP+ using Eq.(18) of the
text and Eq.(A.2).
From the computed values ofT+ andP+ calculate the den
sity ρ+ using Eq.(16)of the text.
Computeη+ from Eq.(6) (with parameters fromTable 1).

The fourth step can give up to three values ofρ+ being the
iddle one meaningless. The two meaningful values, w

hey exist, lead to two values of viscosity (a liquid-like o
nd a vapor-like one)
c =
(

κTc

Pc

P+
c

T+
c

)1/3

=
(

κTc

Pc

0.1405

1.3396

)1/3

(B.4)

Eq. (16) of the text gives an exact reproduction of
xperimental values ofTc andPc if the user computesε and
c from Eqs.(B.3) and(B.4). Table B.1illustrates the us
f the present model. The sample problem statement

ollowing: Calculate the viscosity of Nitrogen at 450 K a
000 bar. As shown inTable B.1, the result is in this cas
= 442.8�P. In this example, Eq.(16) has only one densi

oot. This is always the case ifT+ ≥ T+
c . Notice that in this

xampleT+ exceeds the range of the supporting molec
imulation data (Ref.[5], 0.8≤ T+ ≤ 4) and hence Eq.(6)
Table 1) acts as an extrapolation prescription. Also obs

able B.1
ample viscosity calculation

nput data Calculated variables

ompound Nitrogen ε/k (K), Eq.(B.3) 94.21

w (g mol−1) [12] 28.0135 σc (Å), Eq. (B.4) 3.774

c (K) [12] 126.2 Pr (=P/Pc) 29.41

c (bar)[12] 34 Tr (=T/Tc) 3.57

σ (Table 2) −0.0243 ασ , Eq.(20) 0.9377
(Table 2) 1.0000 σ (Å), Eq. (20) 3.539
(K) 450 T+, Eq.(2) 4.7767036
(bar) 1000 ρ+

fluid,SFE
Ref. [4] 1.288

η+
0 , Eq.(7) 0.4127344

η0 (�P), Eq.(21) 256.4
P+, Eq.(3) 3.4074754
ρ+, Eq.(16) 0.4369971
η+, Eq.(6) (Table 1) 0.7129746
η (�P), Eq.(21) 442.8
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that we did not need to calculate the (dimensionful) value
of ρ in order to quantify the viscosity. Rather, it sufficed to
compute the value ofρ+, which, as we show inTable B.1,
is roughly equal to one third of the maximum fluid density
(ρ+

fluid,SFE) at which Eq.(16) is applicable.
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