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Abstract

In this work, we propose a model for representing the viscosity of supercritical pure fluids over a wide range of conditions. A given pure
real fluid is represented as a Lennard—Jones (LJ) fluid having effective values of the LJ intermolecular potential parameters. The LJ fluic
is actually a corresponding states fluid where the dimensionless variables have, as a distinguishing feature, a dependency on paramet
meaningful at molecular level. We have paid special attention to the qualitative behavior of the model when used beyond the conditions of
the supporting molecular LJ simulation data. The model is able to correlate the pure compound viscosity of real supercritical fluids over a
wide range of conditions with average absolute-value relative deviations less than or equal to 7% in most cases. The correlation needs tw
adjustable parameters per pure compound.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction beyond their critical values, i.e., at supercritical conditions.
The model is based on the well-known Lennard—Jones inter-
Practical use of supercritical fluids requires reliable mod- molecular potential.
els for their thermophysical properties. Supercritical extrac-  Viscosity is a complex property to model because density
tion and processing typically take place at conditions where strongly influences its temperature dependence. At high den-
a solute (or a number of them), and eventually a co-solvent, sity, viscosity decreases with temperature, while the behavior
are highly diluted in a supercritical solvent. For this reason, is the opposite at low density. At intermediate density values,
models used to represent the thermophysical properties oflocal extrema appear for viscosity as a function of tempera-
such diluted mixtures should match the pure solvent limit or ture. Thisinvolved behaviorimplies crossing viscosity versus
at least approach it with an acceptable level of error, which pressure isotherms.
implies, as a requirement, the availability of accurate models  There are different kinds of models for viscosity available
for pure supercritical fluids. Such models should preferably in the literature. Some of them do not specify an intermolec-
make reference to some adopted form for the intermolecularular potential function (see, e.g., R¢L]) and hence they
potential function. In this work, we concentrate on modeling are regarded as purely empirical correlatigfs On the
the viscosity of pure real fluids at temperatures and pressuresther hand, models that do specify an intermolecular poten-
tial function are often limited to subcritical fluids and/or
require the use of compound-specific correlations for the
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Nomenclature

AAD% average absolute-value percent relative devi

tion= (100/NP)ZII'\‘=Pl|’7(:aIc — Nexpl/Mexp
critical point

corresponding states

equation of state

Boltzmann constant

saturated liquid

Lennard-Jones

mass of one molecule

Max AD% maximum absolute-value percent relativ

= ma){'\fl{loq Ncalc — Nexpl /Nexp}
molecular dynamics

number of molecules
Avogadro’s number

number of data points
absolute pressure

critical pressure

practical reduced pressure

LJ meltingP*
pressure—volume—temperature
intermolecular distance
Rowley and Painter

slope foro as a function offy
solid—fluid equilibrium
absolute temperature

critical temperature

practical reduced temperature
triple point

intermolecular potential energy
system volume

saturated vapor

vapor-liquid equilibrium
viscosity—temperature—density
compressibility factor

Greek letters

depth of the LJ potential well
(Newtonian shear) viscosity
viscosity at zero density
experimental viscosity
calculated viscosity

Priuia.sre dimensionless density of dense LJ fluid i

equilibrium with LJ solid

mole density (e.g., motTt units)

critical mole density (e.g., mott units)
LJ separation distance at zero energy
critical value ofo

is set by analytical functions designed so that recent LJ
molecular simulation results are reproduced over a wide
range of conditions. The use we make in this work of a
pressure—density—temperature LJ equation of state (EOS), on
top of providing a more consistent LJ reference, makes pos-
sible to avoid the use of compound-specific PVT EOSs for
computing densities from the set pressure and temperature.

A key problem we deal with here is the need of setting
up proper interpolation and extrapolation schemes. Zabaloy
et al.[4] raised this issue and proposed criteria to guide the
definition of such schemes, but left the extrapolation prob-
lem unsolved. The problem of extrapolating arises when it is
required to calculate the viscosity of areal fluid attemperature
and density conditions which correspond to LJ dimension-
less temperature and density coordinates beyond the range of
the supporting molecular simulation data. On the other hand,
interpolation between states where the LJ fluid exists as an
homogeneous (one-phase) stable fluid is required when areal
homogeneous fluid is at temperature and density conditions
corresponding to LJ dimensionless coordinates where the LJ
fluid is actually heterogeneous (e.g., when the LJ fluid is in
a state of vapor—liquid equilibrium). According to our expe-
rience, the problem of interpolating—extrapolating molecular
simulation data is by no means trivial. In this work, we pro-
pose a solution to this problem.

The basic methodology in this work is the same than that
of Ref. [4]. One of the fundamental differences between
this work and Ref[4] is the introduction of extrapolation
schemes. On the other hand, adjustable parameters were not
used in Ref[4] due to the exploratory nature of such work. In
contrast, in the present application-oriented work, we intro-
duce a couple of suitable adjustable parameters to improve
the model performance.

2. The Lennard-Jones fluid

The expression for the Lennard—Jones intermolecular
potential is as follows:

o= (-] »

wherer is the intermolecular distance,the intermolecular
potential energys the depth of the LJ potential well ard

is the LJ separation distance at zero energy. The LJ fluid is
simple but realistic: it qualitatively reproduces the viscous
behavior observed for real fluids over a wide range of condi-
tions[4].

The values of the physical properties of the LJ fluid are
accessed through computer experiments. This is also the case
for every model fluid, which, as the LJ fluid, only exists within
a mathematical universe. The phase diagram of the LJ fluid

propose a model for the viscosity of pure supercritical is known[4]. In spite of the relative simplicity of Eq1),
fluids, which makes use of molecular simulation results vapor-liquid, solid—vapor and solid—fluid transitions appear
for the Lennard-Jones (LJ) fluid. The link between the inthe LJ phase diagrafd]. From this, it is clear that Eq1)
dimensionless pressure, temperature, density and viscositycaptures the essential behavior found for real substances.
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The LJ reduced temperatuf®, reduced pressuré*,
reduced density™ and reduced viscosity" are convention-
ally defined as follows:

kT

Tt - )
Pt = PZS 3)
pt = %03 = Napo® (4)
Nt = njmz—s (5)

wherek is the Boltzmann constarif, the absolute tempera-
ture, P the absolute pressur¥,the number of molecule§
the system volumeya Avogadro’s numberp the mole den-
sity in units such as moles per liter,the Newtonian shear
viscosity andn is the mass of one molecule.

3. Lennard—-Jones viscosity

lation data and the VTD qualitative behavior constraints that
Zabaloy et al[4] identified. Such constraints are met by the
functional form + parameter values here reported, within and
beyond the range of the supporting RP LJ molecular simula-
tion data, as shown below.

Zabaloy et al[4] used the same expression for the LJ
viscosity limit at zero densityvﬁ ) than Rowley and Painter
[5]. Such expression cannot be usedfée 4, i.e., beyond
the range of applicability given in R€b], because the trend
for ng versusT* becomes opposite to the correct one for
T >4,

4. New Lennard—Jones analytical viscosity
representation

In this work, we use the following analytical form for the
LJ viscosity—temperature—density relationship.

10 3 (oY
Nt =ng + ;g i yi1 (6)

where nar does not correspond to Ref5]. We rather

Rowley and Painter (RP$] computed LJ shear viscosities  use forn{ the Chapman—Enskog equation coupled to the
at conditions covering wide ranges of density and tempera- Neufeld-Janzen—Aziz expression for the collision integral,
ture (0.8< T* < 4), using the method of molecular dynamics as presented in Egs. (9-3.9) and (9-4.3) of R&J, which
(MD). They built an analytical equation by correlating their are applicable within the wide range G:3™* < 100. In this

MD results. Such analytical equation relates the viscogity

work, we rewrite Eqgs. (9-3.9) of Ref6], in terms of the

to 7" andp™, and it requires calculating the LJ reduced vis- above defined dimensionless variables, as follows:

cosity limit at zero density;é“ which Rowley and Painter

correlated as a function Gf" (see Ref[5] for details).
Zabaloy et al[4] slightly changed the form of the RP

Lennard—Jones analytical” versus {*, p*) function and

re-fitted its parameters so that certain qualitative behavior
constraints, considered appropriate for a model to be used
in wide ranges of temperature and density, would be met
by their LJ analytical viscosity—temperature—density (VTD)

relationship. Zabaloy et a[4] changed the RP analytical

. 0.176288(+)"?
0 2,(T)

where £2,(T") is the collision integral, which is a function
of T*, as its single independent variable, and is given in Egs.
(9-4.3) of Ref.[6].

The form of Eq(6)is different from the (exponential) form
of Eg. (15) in Ref[4]. As it will become clear below, such
difference in form is of much more fundamental importance

(7)

function in anticipation of setting up robust extrapolation
schemes for cases where the real fluid conditions fall outside
the original ranges of applicability of the LJ VTD analyti-
cal relationship. Although Zabaloy et 4#1] identified the
need for extrapolation schemes as a relevant issue, within the
context of molecular-simulation-based engineering-oriented
real-fluid model building, they left the problem of defining

than it may seem at first sight.
4.1. Viscosity constraints

Based on both, LJ molecular simulation viscosity data and
real fluid viscosity data, Zabaloy et #] concluded that the
following constraints on the derivatives of the LJ viscosity

such schemes as an open question. - . .
. ) : were suitable for an analytical model to be used over a wide
Extrapolation recipes may consist of truncated Taylor o
range of conditions:

expansions of the function to be extrapolated. Such approach
generally implies discontinuities in higher order derivatives / an*
at the boundary where the switch between the original func- (W) i o =0
tion and the extrapolating function takes place. P
In this work, we have found a way to avoid discontinuity- dn™
carrying extrapolation recipes for the LJ viscosity— api
temperature—density relationship. We did so by choosing a
functional form and sign restrictions on parameter values (3™ /9p™)
consistent with both, the RP supporting LJ molecular simu- dpT

(8)
>0, for p™ >0 9

>0, for p™ >0 (10)
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a(on™/op™)

oTT <0,

for p* >0 (12)
Eq.(8) corresponds to a flat viscosity versus density*

curve at constant temperatufé when p* approaches zero.

Constraint(9) implies a monotonic increase for viscosity

with density at constant temperature. Restric(ibd) sets a

109

is that constraintg8)—(11)will be met not only within ther™
andp* ranges of the RP molecular simulation data we used
here to compute the values of thgparameters but also at any
arbitrary (positive) values df* andp* as long as the wide
T* range of Eq(7) is not exceeded. Therefore, the simple
extrapolation recipe in this work, to be applied when giie

(or theT*) value exceeds the range of the RP LJ molecular

monotonic increase of the viscosity versus density slope with simulation viscosity data, consists of simply using the very

density at constant temperature. Constrélrif) establishes

same equation resulting from the imposed reproduction of

that, at constant density, the viscosity versus density sloperp data, i.e., Eq(6) [with the (positive)b;; parameters we

decreases with temperature. As Zabaloy efdjldiscussed,
constraintg8)—(11) set a qualitative viscous behavior sim-

report later in this article], coupled to EEY).
Using Eq.(6) for computing the viscosity*, with b;; >0,

pIer than the observed one, both, for the Lennard—Jones ﬂUIdat any values of " andp |mp||es that the V|SCOS|ty and all
and for real fluids. However, they grasp the essential known jts partial derivatives (of any degree) with respecttoand

viscous behavior of fluids, over a wide range of conditions,

thus providing a convenient reference viscosity description

with well-defined qualitative trends (see R§f] for more
details).

Zabaloy et al[4] imposed restrictiori8) by construction
within the analyticah* versus ™, p*) function that they pro-
posed, and restriction®)—(11)during the parameter fitting
process. They verified the fulfillment of restrictiof@—(11)

o" are in this model continuous functions Bf andp*.

4.2. General Lennard—Jones viscosity parameters

We fitted theb;; parameters of E6) so as to reproduce
the 134 Rowley and Paint¢b] LJ viscosity data left after
excluding 37 data points with* andp* values at which the

for more than 12,000 regularly spaced points in the domain ] fluid is unstable, i.e., nothomogeneous. The 37 data points

0.8<T" <4 and 0< p* < 1. Yet, their parameters valupy
do not guarantee meeting the constra{@)s-(11)outside the
tested range.

On the other hand, Ed6) implies the following expres-
sions for the partial derivatives involved in the above pre-
sented constraints:

ii (mi._ ' (12)
8,o+ o e (T+)J*1
Ao /") A (o) ?
o 2;/21 iti - m”W (13)
10 3 i—1
UMEIPES o SRy e (1)
i=2 j=1 (T )

Notice that, since;j)r depends only off™, the derivative
of ng with respect tqo™ is zero. Eq(12) reflects this fact.

It can be shown that E¢L2) meets restrictio(B8). Observe
that all terms in Eq(12)are proportional to some integer non-

we screened out correspond, at infinite time, to conditions
of vapor-liquid equilibrium for the LJ fluid. The 134 RP
molecular simulation LJ viscosity data we used here have an
average uncertainty of 10.3% and a maximum uncertainty of
24.6%[5]. We report the values for thg; parameters that we
computed in this work iTable 1 Notice that all of them are
positive. These values correspond to a bias of 0.005% and to
an average absolute-value percentrelative deviation (AAD%)
of 4.6% with respect to the 134 RP data points we accepted,
being the maximum absolute-value percent relative deviation
equal to 13.9%. Hence, E() (Table J) reproduces the RP
original molecular simulation 134-point-data-set within its
reported uncertainty. These AAD% and bias values imply
that the RP LJ molecular simulation data support the use
of constraintg8)—(11)and/or the use of Eq6) coupled to
restrictiong(15).

The parameters ofable 1 which are general for the LJ
fluid, make possible to connect molecular level parameters to
macroscopic properties through fast calculations performed
using Eq.(6). Due to the use of Eq7) and to the fulfillment
of restrictiong(8)—(11)by Eq.(6) coupled to the parameters
given inTable 1, the viscosity—temperature—density analyti-

zero power of density and hence they all vanish as density cal representation we use in this work for the LJ fluid should

tends to zero. A key point in this work is that E42)—(14)
respectively, meet restriction®)—(11) if we force all bj;
parameters to be positive. Notice that the fact¢dExq. (12)]
and the factorgi—1) [Eq.(13)] are all positive for thérange
of variation within Eqs(12) and(13). On the other hand, the
factorsi(1 — ) are zero or negative for theand; ranges of
variation within Eq.(14). The key feature of Eq6) coupled
to the following restrictions:

0, for all(i, j) pairs

bj,' > (15)

not be regarded as the result of a blind polynomial fit. A
proper qualitative behavior is given by E§) (Table J at any
temperature—density condition: within and beyond the range
of the supporting molecular simulation datg. 1 shows

a set of viscosity versus density isotherms generated using
Eg. (6) (Table 9. The temperature valugs = 0.8 (subcriti-

cal) andT* =4 (supercritical) correspond to the limits of the
temperature range of the original RP LJ data. As expected,
these two isotherms are consistent with restricti@)s(11)

It can be seen that™ at 7" =0.8 increases faster with
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Table 1

Values for the dimensionless parameters of Bjjobtained in this work

j i by j i bji j i by

1 2 1.325875«¢ 10° 1 5 0.510490« 10° 1 8 0.110954 10°
2 2 452970 10~11 2 5 1.477943¢ 10712 2 8 7.92157 104
3 2 4.759355¢ 10~ 11 3 5 3.471516¢ 10711 3 8 3.712390« 102
1 3 0.411250¢ 1P 1 6 0.441143 10° 1 9 8.260164« 1072
2 3 1.598922 102 2 6 1.478254¢ 10712 2 9 1.466775< 10°
3 3 2.34180% 1011 3 6 5.342499%« 10~ 3 9 2.822336¢ 10°
1 4 2.053585 10* 1 7 0.253873 19 1 10 2.28798% 1013
2 4 1.682684« 107 2 7 4.255116¢ 104 2 10 7.24409% 102
3 4 1.428941 10711 3 7 1.003290< 107 3 10 0.309918& 10°

density thany™ at 7" =4, which leads to the appearance of 7" of the RP[5] LJ simulation data. Outside such tem-
of an intersection point. The LJ vapor-liquid equilibrium perature rangehig. 2 shows values of viscosity, which are
density values af*=0.8 are aboubjapVLE = 0.006 and extrapolations, except for the zero density isochor, which Eq.

Pig.vie = 0.8 [7], respectively, while the liquid density at  (7) fully sets. It can be seen that E() (Table ) produce
solid—fluid equilibrium is aboubil, sz = 0.88[8]. Eq.() ~ SMo°th and well-behaved extrapolations of the supporting
(Table 7 hence acts, a* = 0.8 gs an internolation tool in molecular simulation data. The thick solid vertical line corre-
the rangeo™ ) _an'd ’as an extra polation tool for sponds to the LJ critical value &t [9], while the thin vertical

N ?_eOV&FlV'-E’ Plig.VLE e P solid line identified as TP corresponds to the LJ triple point
r* > pig.spe Fulfillment of restriction(9) guarantees the  \gjye of 7+ ([8]). At high-density viscosity decreases with
absence of loops in the viscosity versus density curve, at alliemperature, i.e., the behavior is the opposite to that shown
temperatures. The increase of viscosity with temperature atat |ow density. At intermediate densities the isochors show
zero density is the re_sult+of E7) for ng, which gives @ minima. This rich behavior comes from the fact that, while
monotonically increasing, as a function of™ throughout  tne first term of the right hand side of E@) is a monotoni-
its full applicability range. At =0.5 the LJ fluid is actu-  cajly increasing function df*, the second double summation
ally below its triple point temperatu{8]. Therefore, itexists  term, used with positive;; parameters [restrictior@5)], is
either as a low-density gas or as a high-density solid—it can- 3 monotonically decreasing function Bf. Notice that both
not exist as a dense fluid. Consequently The=0.5 curve terms in Eq.(6) used withTable 1parameters are always
in Fig. 1is thus, for most of its density range, the result of positive. The appearance Big. 2would not have changed
extrapolating fluid-state information available at higher tem- 54 we generated it for much wider ranges7dfand p*.
perature. Noti(_:e that thf.+ =0.5 isothe_rm_ inFig. 1relates This is true as long as the (very widg) range of Eq(7) is
to the7" =0.8 isotherm in a way qualitatively analogous to ot violated. This is a very important feature of the present
that of the7" =0.8 isotherm with thg™ =4 isotherm. The 1 0del.
T :.10 _(supercrit?cal) curve irig. 1 also shows a proper Eq. (6) (Table ) makes it possible on one hand to avoid
qualitative behavior. If instead of E¢7), we had used at  performing a long molecular simulation run every time that a
T" = 10the equation available in R§8] for g, then, thelow- iscosity value for the Lennard—Jones fluid is required. On the

density part of th@* = 10 isotherm would have fallen below other hand it acts as an smoothing equation on the rajsRP
theT" = 0.8 isotherm, which would not have been acceptable.

Fig. 2shows a set of viscosity versus temperature isochors _
generated using EEp) (Table ), in theT* range from 0.3 to 101 oL ~— P =

10. The two vertical dashed lines indicate the extreme values . . z s N N
7 o = ”‘7\_&___(_;———'
1 T —
101 p =05 /
01d o m0s— | i
1 Too :
., Y _— 5 2 )
7 2= & i &~
0.1 0.01 L .
0.1 1 10
T +
0.01 r . . : . s
0 0.2 04 0.6 0.8 1 1.2 Fig. 2. Lennard-Jones (LJ) reduced viscosity as a function of the LJ reduced

+

V4 temperature at varying density values. The dashed vertical lines enclose the
temperature range of the supporting BPmolecular simulation data. The
Fig. 1. Viscosity vs. density isotherms for the Lennard—Jones fluid generated solid vertical lines indicate the range from the LJ triple point temperature

using Eq.(6) (Table J). [8] to the LJ critical point temperatuf8].
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molecular simulation data. Finally, outside the temperature 10 4 \
range of the RP data (both at high and low temperatures), \10
Eq. (6) (Table 3, which depends on the zero-density vis-
cosity values which Eq(7) provides, generates acceptable
extrapolations of the RP data. Notice that (&).(Table J) is

5

(3]

applicable to the Lennard—Jones fluid at any fluid state: gas, Pt
liquid or supercritical fluid. However, later in this work, we
limit the real-fluid LJ-based modeling of viscosity to super- T =134
critical conditions only. o ¥o\‘ r
1 10 100
Ve

5. Lennard—Jones PVT analytical representation
Fig. 3. Pressure as a function of reduced molar volume for the Lennard—

The usual engineering need is to calculate viscosities at ajones fluid at supercritical temperatures and mostly at supercritical pressures.

given temperature and pressure rather than at given temperWe generated the curves using Etg). (@) Critical point.

ature and density. Kolafa and Nezbd@hproposed an ana-

lytical EOS for the Lennard—Jones fluid, i.e., the PVE/hBH

LJ-EOS, which interrelates the temperature, the pressure, angressure ranges where there are two meaningful values of

the density of the LJ fluid. The PVE/hBH LJ-EOS is based density (vapor and liquid) at a given (positive) pressure.

on critically assessed computer simulation data from several ~ Fig. 3shows the pressuf’ as a function of the inverse

sources. We use such equation here in combination with Eq.density for four isotherms corresponding to temperature val-

(6) to calculate viscosities at given temperature and pressure ues greater than or equal to the critical temperature. All curves

The PVE/hBH LJ-EOS is the following: correspond to Eq16). Most of the pressure range fifig. 3
N is supercritical. The variable 47 is a reduced molar volume.
7= P _ fun (o™, T (16) The critical isotherm shows a characteristic flat region where
ptTt the volume is very sensitive to small changes in pressure.

wherez is the compressibility factor anfly is a function of ~ F19- 3|nd|cJ:rates that at a given s_uperc.r|t|d§| value there is
p*and T* available in the original Refl9] and more con-  Only onep™ value compatible with a giveR™ value.

cisely in Ref.[4]. The temperature range of applicability

of Eq. (16) is 0.68<T* <10. The range fop* is from 0

(zero) to the density of the dense LJ fluid in equilibrium 6 Combining LJ viscosity and PVT analytical

with the LJ solid pfiq sep)- Here, we mean by solid—fluid ~ representations

equilibrium situations not corresponding to the equilibrium ) )

between the solid and a low-density vapor which for the L] Fig- 4shows the Lennard—Jones reduced viscositps
fluid happens af* less than about 0.68. Kolafa and Nezbeda & function of the practical reduced temperatlir¢=7/Tc) at
[9] built Eq. (16) without imposing constraints related to  Varying values of the practical reduced pressié=F/Pc).
the location of the critical point. Hence, the PVE/hBH EOS Here,Tc andP; are, respectively, the critical temperature and
is a classical Lennard—Jones EOS. This is not problematicCritical pressure. We generatédg. 4 by combining basi-
due to small critical enhancement for viscosity. The criti- €ally Eqs.(16)and(6) (Table J. We provide more details in
cal coordinates corresponding to Eg6) are the following ~ APPendix A The curve labeledPr = 0" corresponds to zero

[9]: density. Hence, itis adirect result of ). The curve labeled
“Pr=0 (lig)” corresponds to liquid viscosities at the limit of
TS} =1.3396 7 zero pressure. This curve exists because(E@) provides

P+ — 0.1405 (18) liquid-like roots at zero pressure at low enough temperatures.
c - The “P, = 1" curve is the critical isobar which shows a steep
pd =0.3108 (19) portion typical of the critical region and a minimum charac-
teristic of the transition from lower to higher temperatures.
The value off¢ implies that the RIP5] LJ viscosity data  Minima appear also at higher pressures. The behavior, which
correspond to a maximum temperature of roughly 3 times the Fig. 4depicts is in essential agreement with that found in real
critical temperature. Zabaloy et §4] presented a procedure  fluids. Zabaloy et a[4] generated a similar figure, which was
to computep,iq sre IN this work, whichis ultimately limited  however limited to the temperature range indicated with ver-
to temperatures such thAt > 7., the computeg* values tical dashed lines ifrig. 4. Such temperature range is the
were always less thapy iy spe ON the other hand, the* range of the RP supporting molecular simulation dafa
range of Eq(16) was never exceeded. The full temperature range &fig. 4 curves is basically the
It can be shown that Eq16) generates pressure versus same than the applicability range of E@6) which is much
density isotherms at subcritical temperatures, which containwider (maxTy is about 7.5) than that of the RP viscosity data
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10 £ : 5 7. Real-fluid LJ-based viscosity modeling:
E ; i compound-specific parameters

To explore the potential of a LJ-based modeling of the
viscosity of pure fluids, Zabaloy et §#] assumed that a real
fluid behaves as a LJ fluid having a critical temperafrand
a critical pressuré®. exactly matching the real fluid exper-
imental values. Such assumption is equivalent to supposing
that real fluids behave as LJ fluids with effective intermolec-
ular potential parameters consistent with the experimental
P =0 critical coordinates. The viscosity predictions wétgthus
i (vapor) based only on molecular weight; and P [4]. For a given
: 5 pure compound the parameterando are forced to match

the experimental values @ andP; by combining Eqs(2),
: : (3), (17) and(18) with the experimental values @t andP.
001 iy R T For reasons that will become clear below, we defipas the
0.1 1 10 value ofe computed, as described, from the experimefgal
T, andP. (seeAppendix Bfor details).
The LJ-based model of Ref4] has an unknown quali-
Fig. 4. LJ reduced viscosity* as a function of the practical reduced tem-  ~+ive behavior beyond the density and temperature ranges

peraturel, (=7/T¢) for the Lennard—Jones Fluid at varying practical reduced of the supportina molecular simulation data. Besides. it is
pressuré®;(=P/P¢) values. The vertical dashed lines indicate the temperature PP g ’ !

range of the supporting RP LJ molecular simulation @a}d¢seeAppendix purely predictive, i.e., the ViSC_OSity of a given pure fluid at
A for details). set temperature and pressure is computed from the molecular

weight and from the experimental valueslgfandP¢. Such a
limited input information is not enough to quantitatively rep-
resent the viscosity of real fluids whose molecules are polar
[5]. At T; higher than about 3 ifrig. 4; Eq. (6) (Table 1 and/or non-spherical. Ruckenstein and [10] studied the
actually acts, on the supporting molecular simulation data, |_J-based modeling of self-diffusion coefficients. They found
as an extrapolation equation and it gives a proper shape forsuch property to be more sensitivedcthan tos. Follow-
the isobars at such higher temperatures. Notice that the riching Ruckenstein and Li{L0], we here set, in a way, as an
variety of trends for the viscosity as a function of tempera- adjustable parameter set to match experimental viscosities.
ture and pressure depictedFig. 4is basically implied by A constant value fos, different fromoy, giving, in certain
the simple intermolecular potential function defined by Eq. temperature—density region, better numerical values of vis-
(1), i.e., no experimental real fluid viscosity data were used cosity than, would imply a critical pressure different from
at all for generatingrig. 4. the experimental one. To solve this dilemma we decided to set
For known values of, ¢ ando the viscosityn at given 4 as temperature dependent. The use of temperature depen-
temperaturel’ and pressuré is calculated as follows: (a)  dent LJ parameters is valid for engineering purpgsék In

0.1 ¢

calculate™ [Eq. (2)] 3“9P+_[EQ- (3)]; (b) calculateo™ using  this work we set as a linear function of the practical reduced
Eq. (16); (c) calculaten™ using Eq.(6); (d) calculatey from temperature, as follows:
Eq. (5).

Viscosity diverges at the critical point (see, e.g., RET]).
Yet, Eq.(6) does not account for the critical enhancement for o, — 7 — 1 4 Se(Ty — 1) (20)
viscosity that takes place in the neighborhood of the critical Gc

point. In contrast with the case of the thermal conductivity, the

critical enhancementinviscosity is smalland becomesimpor-  From Eq.(20), it is evident that at the critical temper-
tant only within a narrow region around the critical pcit atureo becomes equal to its critical valug, and hence
Therefore, the present model does not account for such crit-consistency with the experimental criticBl P coordinates
ical enhancement effect. This is not noticeably important, in js kept. In this work, we set the (dimensionless) slepas
view of the fact that supercritical extraction and processing an adjustable parameter, which we fit against experimental
is carried out at conditions far enough from the region where yjscosities. On the other hand, we kemtonstant, i.e., equal
the solvent critical enhancement effect takes place (see Refy its critical value, at all temperatures. From E2Q) it is

[4] for more details). Eqg6) and(16), which applytothe L) clear that, unless we introduce another adjustable parame-
fluid, interrelate sets of dimensionless variables. The LI fluid ter, the viscosity along the critical isotherm, whefe= 1,

is therefore a corresponding states fluid where the dimension-hecomes completely set by the experimental valugs afd

less variables have, as a distinguishing feature, a dependency, and by the molecular weight. To gain a degree of free-
on parameters meaningful at molecular level. dom to remove such limitation we introduce now a second
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adjustable parameter defined as follows:

Fnt/me

=——
Notice that atF=1 Egs.(5) and (21) become identi-
cal. F is a dimensionless corrective parameter, which acts
directly on the LJ viscosity (which is equal td /me /o).
From the practical point of view, parametéhas on the LJ
viscosity a role analogous to parametgy on the LJ self
diffusion coefficient in Ref[10]. The parametedp [10] is
the translational-rotational coupling factor, which accounts
for the non-spherical nature of real fluid molecules. To illus-
trate the use of the above equations we provide a calculation
example inAppendix B

n (21)

8. Results and discussion

Table 2shows results for the Lennard—Jones based mod-
eling of the viscosity of supercritical pure fluidgable 2also
shows, for every pure compound, details about the database
we used inthiswork, i.e., the temperature and pressure ranges
and the number of experimental data points. The total num-
ber of experimental data points is 2844. The two “Prediction
Results” columns show the average and maximum percent
deviations when no adjustable parameters are used, i.e., for
F=1ands, =0. In such a case, the only input experimental
information used was the critical temperature, critical pres-
sure and the molecular weight, which we took from Ref.
[12]. From the AAD% values imable 2 we can conclude
that compounds such as propane, carbon dioxide, nitrogen
andn-butane can be treated, within the temperature and pres-
sure ranges dfable 2 as LJ fluids having constant effective
ando parameters set to reproduce the pure compound exper-
imental critical temperature and critical pressure. For fluids,
such as water or hydrogen sulfide, such an approach is not
acceptable from the quantitative point of view.

Table 2also shows correlation results in the last four
columns. For every given compound, we adjusted simulta-
neously theF ands, parameters. Parametgris normally
close to unity.

The values for the slopg corresponded always to values
of «, in the order of unity (roughly in the range 0.8-1.2).

It can be seen that the average deviation for all compounds
except water is now less than or equal to 7%, which is within
the experimental uncertainty for viscosity at high pressure.
Thus, Eg.(20) makes possible to considerably reduce the
model errors keeping a narrow enough range of variation
for variablea, while preserving consistency with the pure
compound critical pressure.

The only regularity thatable 2shows for the” parameter
of the n-alkanes is that its value is of the order of unity for
all seven compounds. With regard to thalkanes, param-

eter, we observe iffable 2a non-regular variation. These

facts may be related to our parameter fitting procedure. We 2
]
|_

fitted every pair of parameters independently for every pure

Prediction and correlation results for the Lennard—Jones based modeling of the viscosity of supercritical pure fluids

Correlation results

Prediction results

Min P, Max P,

Max Ty

Number of experimentalMin T;
data points

Reference

Compound

Max
AD%

AAD%

F (no units) s, (No units)

Max AD% at

=1

AAD% at F

1ands, =0

F=

=0

andsS,
11

—0.0443
—0.0390
—0.0102
—0.1109
—0.0192

1.0356
1.0516
1.0351
0.9321
1.0815
1.1047
1.0680
1.0056
1.1785
1.4040

15
12
10
28

18
14

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.18
1.29

2.73
2.29
2.03
1.88
1.81
1.15
1.18
2.08
1.63
1.02

1.68
1.05
1.08
1.06
1.04
1.02

1.1

176

[13]
[13]
[13]
[13]
[13]
[13]
[13]
[13]
[13]
[14]

Methane
Ethane

3

170
168

Propane

17
11
13
14
23
15

18
18
18
20
13
18
13

191
160

n-Butane

18

n-Pentane
n-Heptane
n-Octane

6

@929
—0.0834
—0.0086
—0.0317
—1.3638

24
19
24

10
10

112

25
254

143

6

1.03
1.02
1.02

iso-Butane

28
33

15
29

iso-Pentane

2-2-Dimethylpropane

(neopentane)

Ethylene

10
31
13

4

—0.0316

1.0600
1.1204
1.0285
1.0349
1.0000
1.8110

15

19
16
18

1.00
1.00
1.00
1.04
1.18
1.12

2.48
1.78
2.96
1.50
3.57
1.11

1.06
1.04
1.02
1.01
2.14
1.04

285
357

[13]
[13]
[13]
[15]
[13]
[16]

0143
—0.0085
—0.4467
—0.0243

39

11

Propylene

4
11
2
6

15

347

Carbon dioxide

Water

22

33

18

184

28

230

Nitrogen

113

27

1616

72

45

33

Hydrogen sulfide



114 M.S. Zabaloy et al. / J. of Supercritical Fluids 36 (2005) 106117

compound, giving the same weight to every experimental relatively large value for, e.g., paramestgr, for both com-
data point during the optimization course. For a given pure pounds. In our opinion, the Lennard—Jones fluid is anyway a
compound, a finer procedure would consist of splitting the good reference fluid not only because it qualitatively behaves
temperature—pressure plane into constant area sub-regionas real fluids do, but also because of the availability in the
and ascribe the same weight factor to every sub-domainliterature of molecular simulation data (transport and ther-
regardless of the number of data points falling within each of modynamic properties) at a large number of conditions. The
them. This procedure would result in a more balanced per- present model accounts for the non-Lennard—Jones nature of
formance of the model and would lead to values Foand real fluids through parameteFsandS, an trough the exper-
ss surely different from those we reportedTable 2 which imental values of th&. andPc.
might follow more regular variations for thealkanes. WhenF # 1 and/orS,, # 0, the present model transforms,
Despite the non-regulas, variation for then-alkane for a chosen pure compound, the experimental viscosity data,
homologous series, it can be shown, for any givealkane together with the experimental critical temperature and crit-
listed in Table 2 that the maximum departure of parameter ical pressure, into (always positive) valuesfafe ando,
o from theo average value falls in the range from 1 to 5%, which could be used to represent the viscosity of mixtures of

within the temperature range reportediable 2for the cho- supercritical fluids through proper mixing rules. Parameters
senn-alkane. Such variability is much less than that of the F ande are both constant, while the temperature-dependent
original viscosity data. On the other hand,Rig. 5 shows, o parameter has a variability less than that of viscosity itself.

the average value ofis a monotonically increasing function  Basically, the present model makes possible to encapsulate
of molecular weight fon-alkanes at the temperature ranges the observed experimental behavior for viscosity, within a
and (non-zeroy, values whichTable 2reports. Hence, the  Lennard—Jones formalism as a step for modeling mixtures.
average value of roughly follows a regular variation for ~ Because of this, the values we reporfTiable 2for param-
n-alkanes. Notice that rather thars, is the parameterto be etersF ands, should not be regarded as the result of just a
averaged when modeling mixtures. fitting exercise. In other words, if for a given pure compound

For the n-alkanes (or any other homologous series) it listed inTable 2 we simply correlated the viscosity asan, e.g.,
would be possible to set, e.g., linear variations with respect explicit polynomial function of temperature and pressure, we
to molecular weight for both, paramet€iand parametey;. would require a number of compound-specific fitting param-
Such approach would provide four parameters to be fit againsteters larger than two, to achieve a performance equivalent
all the n-alkane data simultaneously, in comparison to the to that in the last two columns dfable 2 Such parameter
two parameters peralkane we used here. The homologous- values most likely would have varying signs and magnitudes
series-specific four parameter approach would provide, by and hence it would not be possible to define proper mixing
construction, regular variations for parametérands, of rules for them when modeling mixtures.
the n-alkane family of compounds, with an expected over- From the previous paragraph it is clear that for modeling
all quantitative model performance intermediate between the mixtures the present approach would require mixing rules for
two we show in the last six columns déble 2 parameter# ande; for parametes, but not for the slope,.

As it is evident from Eq(1), the Lennard—Jones fluid is For supercritical nitrogen thE* range of the RP LJ data
made of spherical molecules, while none of the fluids listed in [5] was exceeded reachidg a maximum value of about 4.8
Table 2does. On top of that, fluids, such as water and hydro- (seeAppendix B).
gen sulfide have a polar nature, which seems to explain the Figs. 6-9show correlation results for four supercriti-

cal pure compounds. In all cases, the markers correspond
to experimental data, while the lines are the model cor-

relation results, corresponding to the last four columns of
7 1 *
£ .
2 6 .
Z, 0.07 -
S 5 . M
< 06 4
=~ 4 * 0.06 Nitrogen 270K
© . & 0.05 A
g0
& 3 - ; 450K
g n-alkanes 20.04 4
2 z
z 8 0.03
- 2
~ 0.2
0 T T T T T |
10 30 50 70 90 110 130 0.01
Molecular Weight, g/mole 0 T T T " T !
0 200 400 600 800 1000 1200
Fig. 5. Average value of the temperature-dependguarameter as a func- Pressure / bar
tion of molecular weight for normal alkanes from methane-tactane. For
a givenn-alkane, the averagevalue corresponds to the non-zetpvalue Fig. 6. Correlation (curves) of viscosity data{( (¢), [13]) for supercritical

and to the temperature range, whitdible 2reports. nitrogen.
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310K

©

Carbon
Dioxide

380K

900 K

Viscosity / cp

400 600 800 1000 1200

Pressure / bar

200

Fig. 7. Correlation (curves) of viscosity dat®}( (1), (2), [13]) for super-
critical carbon dioxide.

0.08 -

Propane

0.04

Viscosity / cp

100 200

Pressure / bar

300 400

Fig. 8. Correlation (curves) of viscosity datg§( (A), [13]) for supercritical
propane.

Table 2 Fig. 6 shows the viscosity as a function of pressure
for supercritical Nitrogen at two temperatures. The highest
temperature (450 K) corresponds td avalue beyond the
maximum value of the LJ viscosity data we used to build Eq.
(6) (Table ). Evidently the extrapolation schemes embedded
within Eq. (6) (Table 1) worked well for Nitrogen, e.g., the

model correctly describes the occurrence of an intersection

point and properly follows the experimental data.
Figs. 7 and &how the model viscosity and the experimen-
tal viscosity as a function of pressure for supercritical,CO

and supercritical propane, respectively, at different tempera-

tures.Fig. 9 shows correlation results (in this case viscosity
as a function of temperature for different isobars) for super-

critical n-heptane. For all of these cases, the pressure range, .
is wide. It can be seen that the model reproduces with a good

level of accuracy the observed viscosities both, at qualita-
tive and quantitative level. Notice that the present model
is able to condense within the values of the paramefers

0.14 - N-Heptane
+
+
o 012 T 4,500 bar
S 01 M -
2 0.8 - o B
8 0.06 M 150 bar
B 40 bar \g\a“’\o—\h
> 0.04 A\Q\WSO bar
A
0024 274bare—o o o &
0

520 570 620

T/K

Fig. 9. Correlation (curves) of viscosity data ((+x)( (@), (O), (4), (0),
[13]) for supercriticak-heptane.
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ands, the relatively complex topology of the supercritical
viscosity-pressure-temperature surface, of whtals. 6-9

are examples. In other words, the present model represents
the viscosity surface of a given pure component as a point in
the s, F) plane.

9. Remarks and conclusions

In this work, we provide an analytical equation (E))
for the relationship among viscosity, temperature and density
for the Lennard—Jones fluid. Such analytical equation has a
better performance than another one developed previously
[4]. Eq.(6) matches a zero-density Chapman—Enskog LJ vis-
cosity expression (Eq.7)), which has an extremely wide
temperature range of applicability. The LJ VTD relationship,
i.e., Eq.(6), has a functional form which, for positive values
of its parametersTable 1), guarantees a proper qualitative
behavior for the viscosity at any density and at any tempera-
ture within the wide temperature range of Eg). Thus, Eq.

(6) coupled to the parametersiable 1properly extrapolates
the LJ molecular simulation data on which it is based. The
trends for the viscosity as a function of density and temper-
ature available to E|6) are less varied than those found for
real fluids. This is acceptable, since we use herd®&a@s a
basis for a general model designed to work over a wide range
of conditions.

The equations we presented here clearly show the cor-
responding states nature of the Lennard-Jones fluid. The
hallmark of a LJ based corresponding states approach is that
its dimensionless variables are defined in terms of parameters
meaningful at molecular level.

The advantage of corresponding states (CS) approaches
is that once the user makes sure that the model qualitative
trends are acceptable in the space of the reduced variables,
the qualitative trends will, in general, also be acceptable for
any real fluid represented by such CS model.

However, strictly, from the quantitative point of view, real
ds are neither “corresponding fluids” nor do they have a
Lennard-Jones nature. On one hand, we partially overcome
this limitation by representing a given real fluid as a LJ fluid
having a critical temperature and a critical pressure identical,
respectively, to the real fluid experimental critical tempera-
ture and experimental critical pressure. When such predictive
reference is not enough to achieve a good quantitative per-
formance, we introduce two parametess,(F), which we

fit against viscosity experimental information. The parame-
ters §,, F) are compound-specific and do not affect (g,
which has parameter§dble 1) which are not compound-
specific. In this way, we have shown here that it is possible to
represent with a good level of accuracy the viscosity of pure
real supercritical fluids over a wide range of conditions, in
terms of effective parameters with some meaning at molecu-
lar level. The present approach requires the knowledge of the
molecular weight, the experimental critical temperature and
the experimental critical pressure.
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The good qualitative behavior of E¢) is convenient for When generatingig. 4we never exceeded the density of
an adequate model performance not only when calculatingthe dense LJ fluid at solid—fluid equilibrium, i.@4iq sFe
viscosity values but also when adjusting the paramefters
ands,, for a chosen pure real fluid.

Another distinguishing feature of the present approach Appendix B. Sample viscosity calculation for
is that the user computes the required density values fromsupercritical nitrogen
a LJ equation of state, i.e., from E{L6). Therefore, the
present approach uses a LJ reference not only for the The first step consists of computing the parametensd
viscosity—temperature—density relationship (&) but also o¢. For that, we first combine Eq&), (3), (17) and(18)to

for the pressure—temperature—density relationship((E&)). give

In this regard, the model presented here is somewhat more T

consistent than other approaches. In other words, the user; = 1.3396= —< (B.1)
does not have to resort to compound-specific correlations for €

calculating the density, which in this work plays the role of Pcol

an intermediate variable. The model correlates the pure com-fc = 0.1405= P (B2)

pound viscosity of real supercritical fluids over a wide range

of conditions with average absolute-value relative deviations . Natice that we have added the subscfipt to o because
less than or equabt? % (ecluding water) in the present model we madeemperature dependent.

In the present model, we force the reproduction of the
experimental pure compound critical temperatdteand
pressureP. by introducing such experimental information
into Egs.(B.1) and(B.2), which we then solve fos andog,
being the result:
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Eqg. (16) of the text gives an exact reproduction of the
experimental values dfc andP if the user computes and
oc from Egs.(B.3) and(B.4). Table B.lillustrates the use
of the present model. The sample problem statement is the
following: Calculate the viscosity of Nitrogen at 450K and
1000 bar. As shown ifTable B.1 the result is in this case
n=442.8u.P. In this example, Eq16) has only one density
root. This is always the case®ft > T.*. Notice that in this
exampleT* exceeds the range of the supporting molecular
T+ =TTS (A.1) simulation data (Ref[5], 0.8<T* <4) and hence Eq)
(Table J) acts as an extrapolation prescription. Also observe

Appendix A. Generation of Fig. 4

From Eqgs(2) and(3) it can be, respectively, shown that,
if the LJ parameters ando are regarded as constant, then

Pt =Pp; (A.2)

Table B.1

We generatedFig. 4 applying the following calculation Sample viscosity calculation

procedure:

Input data Calculated variables
e Set the value ofy and calculatd™ using Eq.(17) of the Compound Nitrogen  ¢/k (K), Eq.(B.3) 94.21
text and Eq(A.1). My (@mol1)[12]  28.0135 o (A), Eq.(B.4) 3.774
e Computeng from Eq.(7) of the text. Te (K) [12] 126.2 Py (=PIP;) 2941
e Set the value oP; and calculaté®* using Eq.(18) of the Pe (ban)[12] 34 Ty GT1Te) 3.57
s, (Table 9 —-0.0243  a,, Eq.(20) 0.9377
text and Eq(A.2). o
F (Table 9 1.0000 o (A), Eq.(20) 3.539
e Fromthe computed values 6f andP* calculate theden- () 450 T Eq.(2) 47767036
sity p* using Eq.(16) of the text. P (bar) 1000 Pitvia.sre ReF.[4] 1.288
e Computey* from Eq.(6) (with parameters froriiable J). g, Eq.(7) 0.4127344
. _ 1o (wP), Eq.(21) 2564
The fourth step can give up to three valuepdbeing the P*, Eq.(3) 3.4074754
middle one meaningless. The two meaningful values, when p*, Eq.(16) 0.4369971
they exist, lead to two values of viscosity (a liquid-like one n", Eq.(6) (Table J 0.7129746
1 (wP), Eq.(21) 4428

and a vapor-like one)
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that we did not need to calculate the (dimensionful) value

of p in order to quantify the viscosity. Rather, it sufficed to
compute the value gb*, which, as we show iffable B.]

is roughly equal to one third of the maximum fluid density
(Piiuia.sre) @t which Eq.(16)is applicable.
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