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Abstract

In this work, we confirm the somehow previously expressed but not widespread idea that the limitations of cubic equations of state like
Soave–Redlich–Kwong equation (SRK) or Peng–Robinson equation (PR) are a consequence of their two-parameter density dependence
rather than of their empiric character. Moreover, it is shown that when combined with a simple generalized van der Waals attraction term,
the van der Waals repulsion is more capable than the Carnahan–Starling term to follow thePvT behaviour of real fluids and, in particular,
that the generalized Redlich–Kwong–Peng–Robinson (RK–PR) equation offers the best performance among cubic three-parameter density
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unctionalities. A simple temperature dependence was developed and a straightforward parameterization procedure established
and optimized from pure compound data – three-parameter equation of state (3P-EoS) will allow in a later stage, by systemati

omparison to other types of 3P-EoS, to find out what the actual possibilities and limitations of cubic EoS are in the modelling
quilibria for asymmetric systems.
2005 Elsevier B.V. All rights reserved.
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. Introduction and objectives

As pointed out in our previous article[1], any given two-
arameter equation of state (2P-EoS) will be intrinsically un-
ble to quantitatively describe thePvT properties of differ-
nt fluids and their asymmetric mixtures. These limitations,
lready observed, for example, in[2], are exemplified in Sec-

ion 2 after identifying the general reasons behind them.

Abbreviations: CS, Carnahan–Starling equation; 3P, three-parameter
quation of state or density dependence; PC-SAFT, perturbed chain SAFT
quation; PR, Peng–Robinson equation; RK, Redlich–Kwong equation;
K–PR, generalized Redlich–Kwong–Peng–Robinson equation (this work);
RK, Soave–Redlich–Kwong equation; vdW, van der Waals equation;
dW–RK, generalized van der Waals–Redlich–Kwong equation
∗ Corresponding author. Present address: Planta Piloto de Ingenieria
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The three different classes of three-parameter equ
of state (3P-EoS) were briefly introduced in our prev
article [1]. While one equation from each of the two m
theoretically based classes was already studied in the
article under the critical point constraints, we explore h
the possibilities of cubic equations.

Our ultimate goal is the reproduction and prediction
phase equilibria in mixtures. Since pure compounds
the limiting cases of mixtures, during the developmen
the equation we put emphasis on volumetric propertie
pure fluids for two reasons. First, because the repro
tion of densities itself is an issue of practical importa
in many cases. Secondly, because having a simple
tion that reasonably describes the density behaviour of
small and large molecules (which implies high and
Zc values, respectively) will allow us, by comparisons
2P-EoS like Soave–Redlich–Kwong equation (SRK)[3] or
Peng–Robinson equation (PR)[4], to address the questi
of whether the improvement on volumetric properties ga
from a 3P approach is associated to an improvement o
378-3812/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.fluid.2005.03.020
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correlative and predictive capabilities for phase equilibria cal-
culations in asymmetric systems. This will be studied and
analyzed further in a future publication but some promising
preliminary results are shown in Section6.

Throughout this work, the Span–Wagner equations[5–7]
are used as the main source of reference data and critical con-
stants. In all cases, the conditions of temperature and pres-
sure were within the applicability range of the Span–Wagner
equations. The MBWR equation[8] was used for carbon
dioxide only when the comparisons included data up to
3000 bar.

2. Limitations of two-parameter equations of state

It is a well-known feature of two-parameter cubic equa-
tions of state that the critical compressibility factorZc is a
characteristic constant for each model and we have shown
[1] that this is a general feature also for non-cubic 2P-EoS.
In addition, a 2P-EoS will also predict a unique universal
PvT behaviour for all fluids in terms of reduced variables
(seeAppendix Afor a demonstration), which is not in agree-
ment with the properties of real fluids. Therefore, a given
2P-EoS might be accurate to estimate the properties of some
compounds, while showing large systematic deviations for
others.
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Fig. 1. Ratio of saturated densities atTr = 0.7 predicted by the SRK and PR
equations, compared to experimental values for alkanes. Predictions by the
model proposed in this work are also included (see Section4).

factors of different fluids at 300 K. SRK is better than PR in
predicting the data of methane but the opposite is observed for
octane and ammonia, and something intermediate for carbon
dioxide. Similar results were found for other fluids and those
shown inFig. 2 are just some representative ones in order
to cover the range of differentZc in real fluids. The general
trend is that the density dependence of the SRK is able to rea-
sonably capture the behaviour of simple fluids like methane
and different gases which have a highZc, i.e. between 0.28
and 0.29, while PR is more suitable for larger chains or polar
compounds which exhibit considerable lowerZc values, i.e.
around 0.26. The same can be observed for fugacity coeffi-

F cal-
c ation
p ).
Since the work of Soave[3] correlations for the energe
arameter, based on reduced temperature and the ac

actor, have overcome this limitation of corresponding st
odels for vapour pressure calculations, improving a

ame time the prediction of volumetric properties, but o
artially given that the co-volume is not affected.

Soave[9] observed that for a 2P-EoS with an alpha fu
ion like SRK [3] or PR [4] the ratioα/Tr is a universa
unction of the ratioPr/Tr. Later, Zabaloy and Brignole[10]
ound some other important relations from which it can
educed that the reduced saturated densities – and the
lso the relationρsat

L /ρsat
V – are universal functions of th

atio Psat
r /Tr. These relations depend exclusively on the

ensity dependence of the equation, being absolutely
endent of the alpha function for the energetic paramet
niversal relation of this kind is not in agreement with
ehaviour of real fluids.Fig. 1 shows the relationρsat

L /ρsat
V

tTr = 0.7 for alkanes from methane ton-octane, along wit
he predictions from SRK and PR equations. It is evid
hat these predictions are accurate only for one or two
icular compounds in the homologue series, while a t
arameter that gradually changes the 2P density functi

ty is able to follow the proper trend. This 3P-EoS, labe
s generalized Redlich–Kwong–Peng–Robinson equ
RK–PR), is the model that we propose and discuss in
ections.

At high densities and pressures the disagreement be
redictions from 2P-EoS and the data for certain compon
ecome more appreciable due to the wrong co-volumes
xplains the curves shown inFig. 2 for the compressibilit
ig. 2. Compressibility factors of four different fluids at 300 K and
ulations with the SRK and PR equations. Calculations with the equ
roposed in this work were also included (see Section5 for the discussion
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Fig. 3. Fugacity coefficients of different fluids at the reduced temperatures of 0.8, 1.0 and 1.2. Calculations with the SRK, PR and RK–PR EoSs.

cients inFig. 3, where one subcritical and one supercritical
isotherm were included along with the critical isotherm of
each fluid.

The conclusion of this section is that the intrinsic lim-
itations of 2P-EoS, rather than their empiric character, are
the main reason behind the well-known inaccuracy of equa-
tions like SRK or PR for volumetric and derived properties. It
must be clear that any theoretically based 2P-EoS will have
the same problem and therefore a third compound-specific
parameter in the density dependence of the equation of state
is indispensable to model different types of fluids and their
asymmetric mixtures.

It should be noted that volume translations in equations
of state[11], which have been proposed to overcome the
shortcomings discussed in this section, do not provide dif-
ferent models, i.e. the calculations could be performed with
the original equation and then the reported volumes be shifted
[12]. Therefore, and taking into account that the essential rea-
son for engineering equations of state to exist is calculation
of phase equilibria, volume translated 2P-EoS should not be
regarded as 3P-EoS.

2.1. The necessary degree of freedom given by a third
parameter

To show the qualitative effects of the flexibility gained
from a third parameter we use here the generalized van der
Waals (vdW) attraction term as introduced by Yelash and
Kraska[13]:

Patt,gvdw = − a

v(v + cb)
or

Zgvdw = 1 + Zrep(η) − τ(
1
4η

+ c
) ; τgvdw = a

RTb
,

ηgwdv = b

4v
(1)

Using either the van der Waals repulsion term – which
leads to the generalized vdW–RK EoS since it adopts the den-
sity dependence of the Redlich–Kwong equation forc= 1 –
or the Carnahan–Starling (CS) expression[14] for Zrep in Eq.
(1), and fixing the third parameter in each case, we can solve
the conditions of the critical point forηc andτc (as explained
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Fig. 4. Dimensionless variables of four different 3P density dependences in
the critical point, as functions of the third parameter.

in [1]) and then introduce these values in the corresponding
expression for explicit calculation ofZc. Following this pro-
cedure, we obtained the curves inFig. 4, showing thatZc de-
creases withc. Since for a homologous series of compounds,
decreasing values ofZc correspond to increasing molecular
weights, a largerc parameter corresponds in principle to a
larger molecule.

Using these two 3P-EoSs without any temperature depen-
dence and withc as the changing parameter, we observed
trends for the pure compound critical isotherms, vapour pres-
sures and saturated densities, that agree qualitatively with
those experimentally observed for real fluids. In other words,
the introduction of a third parameter in the way prescribed by
Eq. (1) to the simple vdW or CS EoS provides a reasonable
density dependence which is qualitatively in agreement with
the behaviour of real fluids when going from small to large
molecules. This observation, which we could not find in the
literature, is also valid for other three-parameter density de-
pendences and strongly supports the use of them to construc
equations of state. So far, at least for non-associating com-
pounds, we do not see any reason for using a fourth parameter
in the density dependence.

Notice that a given value ofc can be seen as defining a
particular two-parameter EoS, e.g.c= 0 gives the attraction
term of the vdW EoS whilec= 1 the RK EoS. Thus, making
this parameter compound-specific is equivalent to choose the
2 then
– ting
b r
F ple,
[ ntly
i rties
i tives
f pul-

sive terms for illustration purposes since these two are very
well known.

3. Evaluation of different alternatives and
development of a 3P-EoS

Now, we face the fundamental questions when developing
an equation of state: which repulsive and attractive terms to
use? Which temperature dependences for the parameters?
How to determine the parameters for each compound?

One could arbitrarily choose the van der Waals repulsion
term for the sake of simplicity or the one by Carnahan and
Starling [14] for – debatable – theoretical reasons and the
lowerc value required to match a givenZc value (seeFig. 4).
Then, adopt a particular temperature dependence for thea
parameter, and eventually another one forb, and parameterize
using the critical conditions to matchTc andPc, while leaving
the degree of freedom inc to minimize deviations in vapour
pressures and liquid densities. This is a usual approach when
evaluating a given model or comparing different equations
[16–18].

However, when developing a 3P-EoS the repulsion term
should be chosen from the volumetric performance. This can
be done by examining the calculated critical isotherm, which
is independent of the temperature dependence of the equa-
t en be
d ally,
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P-EoS that best suits the behaviour of each fluid, but
when applying the equation to mixtures – interpola

etween the different 2P-EoSs through a mixing rule foc.
rom some previous results in the literature (see, for exam

15]), it can be deduced that this practice would significa
mprove the reproduction of – at least – volumetric prope
n mixtures. The same conclusions apply to other alterna
or the repulsive part. Here, we used the vdW and CS re
t

ion. The three parameters for each compound could th
etermined from these data – critical isotherm – and fin

he temperature dependences defined, assuring that a g
roduction of vapour pressures, saturated densities an
ensities in the one-phase region is achieved. As will be

n Sections3.3 and 3.4, we found more convenient inste
o parameterize after defining the temperature depende
he equation.

.1. Choosing a repulsive term: comparison between th
eneralized vdW–RK and CS–vdW EoSs for critical
sotherms

With the constraint of matching the experimental crit
emperature and pressure – that we implement in this
xactly as in[1] – there is still one degree of freedom,
he critical volume, to calculate a critical isotherm with a
oS. InFig. 5, the critical isotherms of different fluids a
hown as calculated from both vdW–RK and CS–vdW g
ralized equations, each of them with two differentc values
ne matching the experimentalZc and the other one giving
etter agreement at high densities. From this figure, we
learly see two things. First, that the underestimation o
ritical density is required for a reasonable reproductio
he whole isotherm. Secondly, that the vdW repulsion t
erforms better than the CS due to a steeper curve in the
ensity region which gets closer to the experimental da

This seems to be related to the lower reduced cri
acking fraction of the CS–vdW equation compared to
dW–RK, as shown by Yelash and Kraska[13]. It might be
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Fig. 5. Critical isotherms of different fluids calculated with the generalized vdW–RK and CS EoSs. In all the cases, experimentalTc andPc are matched. The
values ofZc andc are indicated for each curve.

wrong to conclude that the repulsive term of van der Waals is
better than the one of Carnahan–Starling. Nevertheless, it is
clear that when combined with this simple attractive term the
vdW repulsion performs better. Probably, a more complex

density dependence could be found for the attractive term,
such that combined with the CS repulsive term it would lead
to better results. This is likely to be the case of the different
SAFT equations.
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3.2. Choosing an attractive term: a 3P density
dependence connecting the RK and PR EoS

The generalized vdW–RK attractive term is one of the sim-
plest alternatives for the implementation of a 3P-EoS. This
approach had already been followed or studied in different
ways by several authors[13,19–21]. In addition to the van
der Waals and Carnahan Starling terms, we also tested other
different alternatives for the repulsive part and no improve-
ment was achieved over the combination of Eq.(1) with the
vdW repulsion. Other approaches such as multiplying the
attractive term by a density decreasing function or adding
two extra terms with two extra parameters to make zero also
higher derivatives at the critical point and get flatter curves
did not yield significant improvements either.

Nevertheless, two other generalized attractive terms which
lead to 3P-EoS have been proposed and studied in the liter-
ature. The first of them, the so-called Clausius EoS[22,23],
is even simpler:

PClau = RT

v − b
− a

(v + cb)2
or

ZClau = 1

1 − 4η
− 4ητ

(1 + 4cη)2
; τ = a

RTb
,

η = b
(2)
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Fig. 6. The relation betweencand the delta parameters in the RK–PR density
dependence.

As Harmens and Knapp[26], we could use a different way
of expressing the same equation which, using Mollerup’sc
parameter defined in Eq.(4), would be:

PRKPR = RT

v − b
− a(T )

v2 + (c + 1)bv − cb2
(6)

The last expression is used in the Patel–Teja equation[27],
theirc parameter being the productc×b here. Nevertheless,
we will use Eq.(5)because of the simpler expression obtained
through integration for the Helmholtz energy and also for its
derivatives. In addition, it shows in a clearer manner the role
of the delta parameters. In particular, one realizes the presence
of a second pole, i.e. a given density at which the pressure
contribution goes to infinity, whenδ2 is negative (orδ1 > 1).
In Fig. 6, which shows the relation between the alternative
parametersδ1, δ2 andc in this 3P-EoS, we can see that this
attractive pole will always be located at higher densities than
the repulsive one. This is due to the asymptotic approaching
of δ2 to −1 and guarantees that the physical requirement of
an increasing pressure as the co-volume is approached will
always be fulfilled for any value ofδ1 or c.

Fig. 4 shows theZc, ηc and τc curves for both Eqs.
(2) and (5). One distinctive feature of Eq.(5) is the exis-
tence of a minimum value for the third parameter (δ1 min =√

2 − 1 orcmin = 2
√

2 − 3), which leads to a maximumZc
value around 0.3384. The origin of this, which can be seen
i -
t t a
l
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The second one assumes the RK or PR density depen
or particular values of a third parameter in a similar wa
q.(1) connects the vdW and the RK ones. Even though
ttempting to use it for developing a 3P-EoS, Mollerup fo

his relation in the late 1970s[24]. He proposed the followin
eneral expression (see the book by Mollerup and Miche

25], for further details and discussion) in which all of
ell-known cubic EoS are contained for particular pair
alues (δ1, δ2):

= RT

v − b
− a(T )

(v + δ1b)(v + δ2b)
(3)

Some characteristics of this double parameterized a
ion term were studied by Yelash and Kraska[13], also com
ined with the CS repulsion. It is easy to see that for the
arameters (1+ √

2, 1 − √
2) the PR equation is obtaine

s (0, 0) leads to the vdW and (1, 0) to the RK. Then, if
dd the restriction:

δ1δ2 = δ1 + δ2 − 1 = c (4)

e have actually a 3P-EoS which connects the RK (c= 0) and
R (c= 1) density dependences with the following expres

or the compressibility factor:

RKPR = 1

1 − 4η
− 4ητ

(1 + 4δ1η)
(
1 + 41−δ1

1+δ1
η
) ;

τ = a

RTb
, η = b

4v
(5)
n Figs. 4 and 6, is in the constraint (Eq.(4)) and the symme
ry of Eq. (3). Fortunately, as we will see later, this is no
imitation for modelling real fluids.

From the comparison of critical isotherms of CO2 in
ig. 7, we can clearly see the superiority of the general
K–PR (Eq.(5)) over the generalized vdW–RK and Claus
oS—Eqs.(1) and(2), respectively. The same results w
btained for other fluids.

It is important to note that in addition to providing low
eviations than the generalized vdW–RK along the w
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Fig. 7. Critical isotherms of carbon dioxide, calculated from three different
3P density dependences and for two different values ofZc, including the
experimental.

curve, the generalized RK–PR EoS requires a lowerZc to
approach the high density data and therefore lower deviations
in the critical density.

At this point, we can conclude that an attractive pole,
which enlarges the attractive contribution to the pressure at
high densities, is of great importance in the density depen-
dence of the equation. This is valid at least when using the
vdW repulsion, and is in agreement with what we found try-
ing different approaches (these results are not included here):
the attraction term density dependence has to be reinforced
in order to allow for larger co-volumes (remember that, given
the restriction ofTc andPc, b changes withZc through theηc
curve) and consequently steeper curves in the high density
region.

3.3. Defining the temperature dependence of the EOS

We have seen that a three-parameter density functionality
itself gives already the proper qualitative evolution of vapour
pressure and saturation density curves within a given fam-
ily of compounds, e.g.n-alkanes. Nevertheless, as for every
equation of state, a temperature dependence is required in or-
der to achieve also a reasonable quantitative agreement with
experimental data.

From the physical meaning of the repulsive and attractive
p ange
w lated
p
e
m
o me.
S o far
a there
s dered
s ence
f the

Table 1
Five different sets of parameters for CO2, which reasonably approximate the
experimental critical isotherm

Zc ac bc d1 d2

0.310 3.9353 0.0270 2.2800 −0.3902
0.315 3.8847 0.0275 2.0227 −0.3383
0.320 3.8340 0.0281 1.7638 −0.2763
0.325 3.7852 0.0287 1.4977 −0.1993
0.330 3.7363 0.0293 1.2134 −0.0964

performance of the equation while not violating any stability
condition (see the analysis by Salim and Trebble[30]). We
found that, when imposing the exact reproduction of vapour
pressures and saturated liquid densities at subcritical temper-
atures and minimization of the deviations for supercritical
isotherms, there is no unique trend that allows us to develop
a temperature dependence forb.

Therefore, the temperature dependence for our model will
be given by an alpha function like in most cubic EoSs. This
function should correlate the optimuma values at different
temperatures, which can be obtained after a set (δ1, b, ac)
has been chosen from the critical isotherm. The latter is not
a trivial matter. It will be clear that the co-volume in some
curves is too big while it is too small for others. But which
one to choose among all those that cross the experimental
curve at high densities? We could minimize the average de-
viation in pressure, but the result would most likely change
gradually depending on the maximum pressure considered.
Another option is to impose the condition of matching a very
high pressure value (e.g. the recommended pressure limit in
the MBWR or Span–Wagner equation) or to define a gen-
eral expression for the co-volume in terms of some tabulated
property as suggested by Polishuk et al.[31].

Instead of applying one of those possibilities to arbitrarily
fix the parameters, we will consider the five sets inTable 1,
all of them providing a reasonable approximation to the ex-
p ow
t the
e ether
s rent
a g so,
w tion
o f the
t

3 or
d

to
m ns for
s
t the
s uch
a is
u ns
i ture
( um
arameters in every model, one can expect them to ch
ith temperature, except the depth of pair potential or re
arameters in theoretically based models. Since Soave[3] ev-
ry cubic EoS includes a temperature dependence fora and
odels like perturbed chain SAFT equation (PC-SAFT)[28]
r the GC-EOS[29] use a temperature dependent co-volu
ince to our knowledge no 3P-EoS has implemented s
temperature dependence for the third parameter, and

eems to be no reason for that, we did not even consi
uch possibility. In addition, a soft temperature depend
or b should only be adopted in case it really improves
erimental critical isotherm. This will allow us to see h
he selectedZc value affects the reproduction of data in
xtended subcritical and supercritical regions and wh
ome values make it easier or not to correlate the diffe
values with a simple and general expression. By doin
e will merge two steps in one, namely the determina
f parameters at critical temperature and development o

emperature dependence.

.3.1. Optimum a values versus reduced temperature f
ifferent Zc

The optimuma parameters of carbon dioxide required
atch vapour pressures and minimize pressure deviatio

upercritical isotherms are shown inFig. 8. It is interesting
o note that by not imposing the exact reproduction of
aturated liquid density at subcritical temperatures, not m
ccuracy is lost, especially if aZc between 0.315 and 0.320
sed (seeFig. 9). This fact, together with the lower deviatio

n supercritical isotherms just above the critical tempera
also inFig. 9) and a reasonable continuation of optim
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Table 2
Different fluids included in the determination of theZc ratio

Compound Zc,exp Tc (K) Trtp Trmax Zc range 1.16Zc,exp

Nitrogen 0.2894 126.19 0.50 8.51 0.330–0.335 0.3357
Ethylene 0.2812 282.35 0.37 1.68 0.320–0.325 0.3262
Propane 0.2763 369.83 0.24 1.68 0.317–0.322 0.3205
Carbon dioxide 0.2746 304.13 0.71 3.38 0.315–0.320 0.3185
n-Octane 0.2565 569.32 0.38 1.50 0.297–0.302 0.2975
Ammonia 0.2546 405.40 0.49 1.42 0.283–0.286 0.2953

Fig. 8. Optimum values ofa (tuned to match vapour pressures or minimize
deviations in supercritical isotherms), plotted againstTr.

a values between the two regions (Fig. 8) lead us to select
this range ofZc values as the most promising one for carbon
dioxide. A similar procedure was followed for other fluids
listed inTable 2and the approximate ranges obtained in each
case forZc are also given.

A very important observation is that if we take the ratios
of the approximate optimumZc values with respect to the

experimental ones, all of them take values around 1.15 or
1.16, with the only exception of ammonia (NH3) in Table 2,
which requires a ratio of about 1.11 or 1.12 and this can be
explained by the volume contraction effect at high densities.

3.3.2. A simple temperature dependence for the a
parameter

The same type of behaviour already seen inFig. 8for the
optimum values ofa, was found for all fluids. To correlate
these values, we discarded Soave’s quadratic function be-
cause of its behaviour at high temperatures and tried, among
others, the following family of simple expressions, which are
monotonically decreasing from a finite value at 0 K towards
zero at infinite temperature:

α = a

ac

=
(

n + 1

n + Tr

)k

, 0 < k (7)

We found thatn= 2 provides the best equation to correlate
optimuma values. Thek constant for each fluid can be ob-
tained from least-squares regressions. Instead, since the range
of reduced temperatures with available data is different for
each compound, and in order to provide a simple and general
procedure for the implementation of the equation, we decided
to calculate thek constant from thea value required to match
the vapour pressure atTr = 0.7 (Soave[3]). The results, cor-
r
a an

Fig. 9. Deviations in saturated densities of carbon dioxide when tuninga to matc ar for
supercritical isotherms.
esponding in this case to a fixed relationZEOS
c = 1.16Zexp

c ,
re shown inFig. 10. It can be appreciated that due to

h the vapour pressure and minimum AAD in pressures up to 1000 b
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Fig. 10. Eq.(7)withn= 2 and constantskcalculated fromTr = 0.7, compared
to optimum values ofa for different fluids.

excellent correlation at subcritical temperatures, any other
available vapour pressure value will generally lead to essen-
tially the samek. Even though we have not defined yet how
to fix the critical compressibility factor – and therefore the
three parameters – for each compound, it can be deduced from
Fig. 8that if some given temperature dependence works well
once a specific ratio forZc has been specified, it will equally
work for other different ratios. Therefore, from now on we
will use Eq.(7) to calculatea. The value for thek constant
is to be determined such that the vapour pressure atTr = 0.7
is reproduced. Were this information not available, another
vapour pressure can be used.

3.4. Parameterization: optimizing the reproduction of
PvT behaviour through Zc

Having already two constraints (Tc andPc) for the deter-
mination of the three parameters at the critical point, having
decided that bothδ1 andbwill remain as constants and having
also adopted a fixed procedure for determining the tempera-
ture dependence ofa, our only degree of freedom left is the
critical compressibility factor.

Instead of explicitly considering the particular values ofZc
for each fluid, we focus our study on the relationZEOS

c /Z
exp
c ,

given that equivalent results for different fluids were found for
similar values of this ratio. We found that its variation affects
o hich
i -
s sitive
s that
t -
p has
b s for
t

oach
v each

particular isotherm are almost exclusively determined by the
co-volume orb parameter. Given the constraints ofTc and
Pc, this value depends only onZc and this causes an extreme
sensitivity of the deviations in pressure at low subcritical tem-
peratures to theZc ratio. For this reason, we show instead
average deviations of density at given pressures (from 0 to
1000 bar) inFig. 11. The behaviour observed from propane
to higher alkanes could be misinterpreted as suggesting a
temperature dependence for the third parameter, but it must
be remembered that the co-volume also changes with theZc
ratio.

Despite the different kind of curves found for different
fluids in Fig. 11, one can see that the optimumZc ratios are
close to 1.17 for all fluids, with the only exception of associ-
ating fluids – like ammonia in this case – that require lower
values. It can be argued that for largen-alkanes this ratio is
appropriate only at low reduced temperatures, while higher
ratios perform better at near critical and supercritical tem-
peratures. Indeed, the heavier then-alkane, the lower will
be the reduced temperatures of practical interest. And still
for octane, the larger alkane described by the Span–Wagner
equation, the maximum average absolute deviation (AAD) at
high temperatures is only 6%.

Given the restriction of a maximumZc predicted by the
equation as already discussed in Section3.2, and that some
gases exhibit experimental values as high as 0.29, we will
a s.

4
c

ce
d ual
H

P

lcu-
l tives
o c-
t es.

nta-
t tion
f

Z

nly slightly the reproduction of vapour pressures – w
s very good thanks to the adoption of Eq.(7) – while pres
ure deviations in the single-phase regions are more sen
pecially at low temperatures. For this reason, and given
he representation ofPvT properties is what we want to im
rove with this new equation of state, its optimization
een the criterion followed to select approximate value

he optimumZc ratio of each fluid.
In the high density region, where the isotherms appr

ertical lines, the deviations in pressure or density along
,

dopt a universalZc ratio of 1.168 for non-associating fluid

. The final equation and results for selected
ompounds

Inserting Eq.(7) with n= 2 into the density dependen
efined by Eq.(5), we get the final expressions for the resid
elmholtz energy and pressure:

Ares

RT
= −ln

(
1 − b

v

)
− a

RTb
(
δ1 − 1−δ1

1+δ1

) ln

(
v + δ1b

v + 1−δ1
1+δ1

b

)
,

a = ac

(
3

2 + Tr

)k

(8)

= RT

v − b
−

ac

(
3

2+Tr

)k

(v + δ1b)
(
v + 1−δ1

1+δ1
b
) (9)

Fugacity coefficients and all derivatives required for ca
ations are obtained from volume and temperature deriva
f Eq.(8)as described in[25]. Mixture calculations (see Se

ion6) also require mixing rules and composition derivativ
The recommendations for a straightforward impleme

ion of the equation are completed with the following rela
or non-associating fluids:

EOS
c = 1.168Zexp

c (10)



M. Cismondi, J. Mollerup / Fluid Phase Equilibria 232 (2005) 74–89 83

Fig. 11. Influence of theZc ratio on the deviations in density for both subcritical and supercritical isotherms of different fluids.

This condition already determines the third parameterδ1
for each fluid, whileb andac are obtained from solving the
critical conditions and fixingTc andPc to their experimental
values. Thek constant for the temperature dependence of the
attractive parameter is readily determined from the acentric

factor and critical constants. Explicit expressions for calcu-
lation of δ1, b, ac andk are provided inAppendix B. The
corresponding parameters obtained in this way for different
fluids, including ammonia with aZc ratio of 1.115, are given
in Table 3. The average absolute deviations for vapour pres-
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Table 3
Parameters and performance of the proposed RK–PR equation

Compound δ1 ac b k AADPV AADρsat
L AADρsat

V

Methane 0.9253 2.3272 0.0300 1.49345 1.574 5.211 1.609
Ethane 1.4286 5.7597 0.0439 1.78590 1.113 4.447 1.236
Propane 1.6201 9.7810 0.0601 1.97064 0.892 4.243 1.040
n-Butane 1.7644 14.5670 0.0764 2.12852 0.891 4.339 0.960
n-Pentane 2.1026 20.3721 0.0925 2.25130 0.774 3.383 0.821
n-Hexane 2.2708 26.6747 0.1096 2.39294 0.610 3.302 0.754
n-Heptane 2.4173 33.7100 0.1277 2.54658 0.666 3.616 0.782
n-Octane 2.8220 41.8620 0.1425 2.60984 0.861 2.834 0.995
CO2 1.7268 3.8290 0.0282 2.23854 0.501 6.875 0.537
NH3 3.6926 4.8666 0.0208 1.89272 1.056 2.428 2.466

b is given in L/mol andac in bar L2/mol2. AAD in vapour pressures and saturated densities calculated fromTr = 0.5 to critical point, except carbon dioxide
from Tr = 0.71. AADX = 100×∑|Xcal −Xexp|/Xexp. Reference critical constants and experimental data according to Span and Wagner[5–7].

Fig. 12. Deviations in calculated vapour pressures and AAD in density forn-alkanes up to C8, carbon dioxide and ammonia. Generalized RK–PR EoS with
parameters proposed in this work (Table 3).

Fig. 13. P–ρ diagrams of carbon dioxide and ammonia. Parameters for PC-SAFT taken from[1].
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sures and saturated densities are also informed in the same
table. Further details of the performance of the model for es-
timation of vapour pressures and densities in the one-phase
region are shown inFigs. 12 and 13, where it is compared to
the PC-SAFT EoS with optimized rescaled parameters[1].

5. Discussion of the results for pure compounds

5.1. Comparisons with SRK and PR

Calculations with the generalized RK–PR EoS and param-
eters fromTable 3were also included inFigs. 1–3in Section
2. From those comparisons with the SRK and PR equations,
we can see that just by using a third parameter which allows
making interpolations and extrapolations along the general-
ized density dependence defined by these well-known 2P-
EoS the compressibility factors and fugacity coefficients of
real fluids can be very well represented if appropriate values
are chosen.

The curves for octane inFig. 3illustrate the higher inaccu-
racy of our equation for describing the properties of chain-like
molecules at high temperatures (note the accuracy at 300 K
in Fig. 2). The reason for this limitation is in the behaviour
illustrated inFig. 11 and this could probably be improved
if temperature dependences forδ andb were also adopted.
N this
l xity
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i
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o
a retain
t our

pressures. Here, from the results inFig. 12, we see that the
same level of accuracy in vapour pressures is achieved by our
3P-EoS and proposed parameters.

On the other hand, we do not pay the price of large sys-
tematic errors in predicted densities as it is seen fromFig. 13.
One must be aware that this is possible thanks to a proper ad-
justable temperature dependence in the attractive term, which
guarantees the representation of vapour pressures. Only in
this case can the predictedZc be tuned to optimize the rep-
resentation of volumetric properties, while for models with
fixed temperature dependence it must be sacrificed for vapour
pressures. In principle, although theoretically questionable,
the same approach could be followed for PC-SAFT. Alter-
natively, a simple volume translation[11,12] can be imple-
mented to get an acceptable description of densities. But so
far, given the good results obtained for pure compounds with
the very simple equation of state defined by Eq.(9), the dis-
proportionate complexity of a model like PC-SAFT could
only be justified for polymer systems or when high accuracy
in densities is required and only conditions far away from
the critical region are of interest, which permits the use of its
original regressed parameters.

5.3. Comparison with the Patel–Teja EoS

As already mentioned in Section3.2, other cubic 3P-EoS
h con-
n best
k com-
m ssary.
T ird
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n
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t

F xide as sed
i

1
evertheless, the insignificant practical importance of

imitation does not justify such increment in the comple
f the equation, which might even lead to thermodyna

nconsistencies.

.2. Comparison with PC-SAFT

In a previous publication[1], we studied the possibilitie
f PC-SAFT under the constraint of reproducingTc andPc
nd presented optimized rescaled parameters, which

he accuracy of original parameters for calculation of vap

ig. 14. Some isotherms in theP–ρ diagrams of methane and carbon dio
n this work.
ad already implemented the density dependence, which
ects RK and PR. The Patel–Teja EoS is probably the
nown and most used among them and therefore some
ents on the differences with our new equation are nece
he first noticeable difference is in the definition of the th
arameter, which in principle could have some effect w
linear mixing rule is applied for mixtures, but this will

egligible given the high linearity observed betweenδ1 and
in Fig. 6. Nevertheless, there are two important differen
hich do have an effect on pure compound properties

herefore also on mixtures.

calculated by the Patel–Teja EoS[27] and the equation and parameters propo
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First, Patel and Teja[27] used the same quadratic func-
tion proposed by Soave and implemented also by Peng and
Robinson for the temperature dependence of the attractive pa-
rameter. This function is capable of accurate correlations of
vapour pressures, but some problems of thermodynamic con-
sistency and unphysical results like multiple critical points
[32,33] have been found for this type of functions. Instead,
Eq. (7) results in an asymptotic vanishing of alpha at high
temperatures, which prevents non-physical behaviour, and
allows for a reasonable correlation of densities for supercriti-
cal isotherms – within the possibilities of the RK–PR density
dependence with constantδ1 andb – while the accuracy in
vapour pressures is retained. One may notice fromFig. 10
that the optimuma values for supercritical temperatures up
to Tr = 1.5 are higher than the ones predicted by Eq.(7) for
most of the fluids. Nevertheless, some of those values are
even higher than the critical value, which indicates that this
is a limitation of the EoS in the critical region that cannot
be overcome by any reasonable and consistent temperature
dependence.

Secondly, the parameterization procedure adopted by Pa-
tel and Teja, and in consequence also their generalized cor-
relations with the acentric factor, are based on the minimiza-
tion of saturated liquid densities. This together withFig. 9
explains why, for example, they choose aZc of 0.309 for
carbon dioxide. But we have found that a small underesti-
m r an
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( in
g nd as
a
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Fig. 15. Critical locus of the system carbon dioxide +n-decane, calculated
by the SRK, PR and RK–PR equations. Experimental data from Reamer and
Sage[35].

Although Fig. 15 shows the superiority of the proposed
RK–PR equation in correlating the vapour–liquid critical line
using only akij parameter, the correct modelling of phase
equilibria should take into account both the LLE and LVE re-
gions, using also alij interaction parameter for the co-volume.
For this system,Fig. 16shows that the upper critical end point
(UCEP) can be reproduced and an even better prediction of
the vapour–liquid critical locus obtained by using appropriate
values ofkij andlij . A detailed analysis of the effect of each
interaction parameter and the strategy for their estimation
will be provided in a future publication.

F diox-
i n pa-
r
d

ation of saturated liquid densities is usually required fo
ptimum representation of densities in the one-phase r
seeFig. 13). Therefore, both ourZc and co-volumes are
eneral higher than the ones given by Patel and Teja a
consequence our equation is better for prediction ofPvT

roperties of fluids, as it can be seen inFig. 14. This last poin
iscussed, namely the difference in co-volumes, is the
eason behind the systematic overestimation of densiti
he Patel–Teja EoS.

. Preliminary results for mixtures: critical lines of
arbon dioxide +n-decane

A systematic investigation of the performance of
odel for calculation of phase equilibria in mixtures is
bject of further work. Nevertheless, we show inFig. 15these

nteresting preliminary results, which are analogous to t
n pure compounds properties: the SRK equation desc
etter than the PR the region closer to pure carbon dio
nd the opposite is observed as we approach puren-decane
hile our three-parameter equation provides an optimum

elation in the whole range. Moreover, this correlation
btained withkij = 0. Quadratic mixing rules were used, alo
ith the classical van der Waals combining rules fora and
. A linear mixing rule was implemented for the third p
ameterδ1. It is also important to note that the correlatio
btained with PC-SAFT, although not showed in the fig
re of inferior quality, no matter whether original or resca
arameters are used.
ig. 16. Reproduction of global phase equilibria for the system carbon
de +n-decane with the RK–PR EoS and using both binary interactio
ameters. Experimental critical points from Reamer and Sage[35] and LLVE
ata from Kulkarni et al.[36].
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7. Conclusions

It was shown that in combination with a simple attrac-
tive term, the basic van der Waals repulsion is more accu-
rate than the Carnahan–Starling equation to describe criti-
cal isotherms of real fluids. In particular, the RK–PR equa-
tion was found to be the best among the different cubic 3P
density dependences found in the literature. The possibili-
ties of this equation, connecting the density dependences of
the SRK and PR EoS, have been explored in greater detail
than previous studies for the modelling ofPvT properties of
pure fluids. The parametersδ1 andb are constants for each
compound, while a simple temperature dependence for the
attractive parametera is adjusted to reproduce the acentric
factor.

The relationZEOS
c = 1.168Zexp

c was adopted for all non-
associating fluids. With the example of ammonia it was shown
that very good results are also obtained for associating com-
pounds, but the optimumZc ratio will be lower and need to
be determined for each fluid.

The simple model thus obtained compares very favourable
to the PC-SAFT equation when critical temperature and pres-
sure are reproduced. At the same time, given that our 3P-EoS
is essentially an extension of the SRK and PR equations, it
was demonstrated that their limitations for prediction of den-
sities are explained by their two-parameter nature rather than
b heir
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v molar volume
Z compressibility factor

Greek letters
δ1 third parameter in the RK–PR EoS
δ2 non-adjustable parameter defined in terms ofδ1
η dimensionless variable relating the size parameter

and the molar volume
ρ molar density
τ dimensionless variable relating the energetic param-

eter and the temperature
ω acentric factor

Subscripts
c critical property
L liquid
r reduced property
sat saturated property
V vapour
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ppendix A. Demonstration of the uniqueness of the
vT behaviour predicted by a 2P-EoS

Mollerup [25,34]showed that every cubic two-parame
quation of state is a corresponding states model. Her
rovide a more general demonstration to the fact that

wo-parameter equation of state shall predict a uniquePvT

ehaviour in reduced variables and is therefore a corres
ng states model.

In order to provide a reasonable qualitative behaviou
ry 2P-EoS must have a size parameter and an energe
ameter, which serve to reduce the absolute volume and
erature, respectively.1 Each of these equations can there
e written in the dimensionless variablesη andτ, defined in

erms of those relations for the volume and temperature

= P(b, v, a, T )v

RT
= F (η, τ) (A.1)

Sinceηc andτc are characteristic constants of a 2P-EoS[1]
andawill be directly proportional tovc andTc, respectively
ccordingly,η andτ turn out to be functions ofvr andTr,

1 This includes, to the best of our knowledge, all published 2P-E
he literature with the only and particular exception of the Virial equ
runcated after the third term, which nevertheless constitutes also a
ponding states model (seeAppendix A.1).
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respectively, and this implies that these two variables alone
will determine the value ofF in Eq.(A.1). Finally, we get:

Pr = Tr

Zcvr
F (vr, Tr) (A.2)

which means uniquePvT behaviour in reduced variables.
In order to apply this demonstration to some particular

equations, and due to the way they are usually written, some
transformations of parameters might be necessary in order
to make things clearer. Taking the simple case of the van der
Waals equation as an example, one may usea = avdW

Rb
to have

the dimensionless variables

η = b

v
= ηc

vr
and τ = a

T
= τc

Tr
(A.3)

and the following expression for the compressibility factor

ZvdW = 1

1 − η
− ητ = FvdW(vr, Tr) (A.4)

It is important to note that the transformation of parameters
is just an arbitrary matter, which does not affect the nature of
the model or its predictions. It can also be useful, for example,
for SAFT equations where the size parameter is a diameter
and not a volume.

Finally, it should be pointed out that critical constants in
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Appendix B. Estimation of parameters for
implementation of the generalized RK–PR EoS from
Zc, Tc, Pc and the acentric factorω

The general case of estimation of parameters for a 3P-
EoS implies, after fixing the critical compressibility factor,
to solve the critical point conditions for the third parameter
and the two dimensionless variables that relate the size and
energetic parameters to the critical constants[1]. Neverthe-
less, cubic equations of state allow for the explicit calculation
of ac andb once the third parameter is obtained from a di-
rect relation withZc. Most of the expressions given in this
appendix are based on the second section of Chapter 3 in the
book[25], where the reader is referred for further details and
derivations.

In the RK–PR equation, the predictedZc is related toδ1
by the following equation:

Zc = y

3y + d1 − 1
(B.1)

wherey andd1 are intermediate variables:

d1 = 1 + δ2
1

1 + δ1
(B.2)

(
4

)1/3

st
r-
-
or

or-
-
r are
his appendix – and therefore also reduced variables –
o the values as predicted or estimated by the model. Ac
ngly, the conclusions apply to the models, independent
ow their parameters are estimated.

.1. The case when a size parameter and an energetic
arameter cannot be identified

A good example of this situation is the Virial equat
runcated after the third term:

= RT

v

(
1 + B

v
+ C

v2

)
(A.5)

hich can also be expressed as

= 1 + η1 + η2
2 (A.6)

ith η1 = B
v

andη2 =
√

C
v

.
It is easy to see that for this equation of state, an equiv

esult to Eq.(A.2), even simpler, is obtained:

r = Tr

Zcvr
F (vr) (A.7)

nd therefore, Eq.(A.5) is also a corresponding states mo
Summarizing, every two-parameter equation of state

hich the compressibility factor can be expressed in te
f two dimensionless variables that are direct or inver
roportional to the molar volume and/or the temperatur
corresponding states model.
y = 1 + [2(1 + δ1)]1/3 +
1 + δ1

(B.3)

For non-associating fluids, we suggest to useZc =
1.168Zexp

c . Those fluids withZ
exp
c = 0.29 or higher mu

useδ1 = √
2 − 1, which corresponds toZc = 0.3384. Unfo

tunately, Eq.(B.1) cannot be solved analytically forδ1. Nev
ertheless, the following correlation can be safely used fZc
in the range 0.20–0.3384:

δ1 = d1 + d2(d3 − Zc)
d4 + d5(d3 − Zc)

d6 (B.4)

The coefficients for Eq.(B.4) as well as those for the c
relation ofk in Eq. (B.10) are given inTable B.1. The co
volume and the critical value of the attractive paramete
calculable from the following expressions:

b = Ωb

RTc

Pc
(B.5)

ac = Ωa

(RTc)2

Pc
(B.6)

Table B.1
Coefficients for estimation ofδ1 andk

Eq.(B.4) Eq.(B.10)

d1 0.428363 A1 −2.4407
d2 18.496215 A0 0.0017
d3 0.338426 B1 7.4513
d4 0.660000 B0 1.9681
d5 789.723105 C1 12.504
d6 2.512392 C0 −2.7238
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Ωa andΩb are functions of the third parameterδ1:

Ωa = 3y2 + 3yd1 + d2
1 + d1 − 1

(3y + d1 − 1)2
(B.7)

Ωb = 1

3y + d1 − 1
(B.8)

Thek constant for the temperature dependence of the at-
tractive parameter is obtained from the relation

k = ln(a0.7/ac)

ln(3/2.7)
(B.9)

wherea0.7 is the value required to match the experimental
vapour pressure atTr = 0.7.

To avoid the iterative calculation of that value one can use
the following correlation in terms of the acentric factor and
the predictedZc:

k = (A1Zc + A0)ω2 + (B1Zc + B0)ω + (C1Zc + C0)(B.10)

A simple recommendation for associating fluids is to esti-
mateδ1 andk simultaneously by reproducing the experimen-
tal vapour pressure and saturated liquid density at a reduced
temperature of 0.7 or lower.ac andbare given byδ1 through
Eqs.(B.5) and(B.6).
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