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Abstract

In this work, we confirm the somehow previously expressed but not widespread idea that the limitations of cubic equations of state like
Soave—Redlich—-Kwong equation (SRK) or Peng—Robinson equation (PR) are a consequence of their two-parameter density dependen
rather than of their empiric character. Moreover, it is shown that when combined with a simple generalized van der Waals attraction term,
the van der Waals repulsion is more capable than the Carnahan—Starling term to follBuf'tbehaviour of real fluids and, in particular,
that the generalized Redlich—-Kwong—Peng—Robinson (RK-PR) equation offers the best performance among cubic three-parameter densi
functionalities. A simple temperature dependence was developed and a straightforward parameterization procedure established. This simy
— and optimized from pure compound data — three-parameter equation of state (3P-EoS) will allow in a later stage, by systematic study an
comparison to other types of 3P-EoS, to find out what the actual possibilities and limitations of cubic EoS are in the modelling of phase
equilibria for asymmetric systems.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and objectives The three different classes of three-parameter equation
of state (3P-E0S) were briefly introduced in our previous
As pointed out in our previous artic[&], any given two- article [1]. While one equation from each of the two more

arameter equation of state (2P-EoS) will be intrinsically un- theoretica ased classes was already studied in the same
t t f state (2P-EoS) will be int I th tically based cl Iready studied in th
able to quantitatively describe th& T properties of differ- article under the critical point constraints, we explore here
ent fluids and their asymmetric mixtures. These limitations, the possibilities of cubic equations.
already observed, for example [#], are exemplified in Sec- Our ultimate goal is the reproduction and prediction of
tion 2 after identifying the general reasons behind them. phase equilibria in mixtures. Since pure compounds are
the limiting cases of mixtures, during the development of
- the equation we put emphasis on volumetric properties of
Apbreviations: Cs, Carnahan—StarIing equation; 3P, three-pargmeter pure fluids for two reasons. First, because the reproduc-
equation of state or density dependence; PC-SAFT, perturbed chain SAFTiqon of densities itself is an issue of practical importance
equation; PR, Peng—Robinson equation; RK, Redlich—-Kwong equation; in manv cases. Secondlv. because havina a simple equa-
RK-PR, generalized Redlich—-Kwong—Peng—Robinson equation (this work); *. h y ) | y_’ h . g havi P f q h
SRK, Soave-Redlich—Kwong equation; vdW, van der Waals equation; tiON that reasonably describes t € de.n3|t.y be aviour o bot
vdW-RK, generalized van der Waals—Redlich—-Kwong equation small and large molecules (which implies high and low
* Corresponding author. Present address: Planta Piloto de IngenieriaZ. values, respectively) will allow us, by comparisons to
Quimica, PLAPIQUI-UNS-CONICET, Camino La Carrindanga Km. 7, 2P-EoS like Soave—RedIich—Kwong equation (SFRlﬂ)or
8000 Bahia Blanca, Argentina. Tel.: +54 291 4861700x233; Peng—Robinson equation (PRY, to address the question
fax: +54 291 4861600. : ' ) X X
E-mail addressesanc@kt.dtu.dk, mcismondi@plapiqui.edu.ar of whether the |mproyement on V0|Umet”f3 properties gained
(M. Cismondi), jm@kt.dtu.dk (J. Mollerup). from a 3P approach is associated to an improvement on the
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correlative and predictive capabilities for phase equilibria cal- 180
culations in asymmetric systems. This will be studied and
analyzed further in a future publication but some promising 160

® Span-Wagner

preliminary results are shown in Sectién 1 o RK-PR

Throughout this work, the Span-Wagner equati&rs’] 140 -0 SRK
are used as the main source of reference data and critical con-5 1 2 PR
stants. In all cases, the conditions of temperature and pres- 11 120~

sure were within the applicability range of the Span—Wagner %

equations. The MBWR equatioj8] was used for carbon g 100+
dioxide only when the comparisons included data up to < 1
3000 bar. o 804
60 -
2. Limitations of two-parameter equations of state
40 T T T T T T T T

1 2 3 4 5 6 7 8

It is a well-known feature of two-parameter cubic equa-
Alkane carbon number

tions of state that the critical compressibility faciy is a
CharaCten_Stl,C constant for each model and we have Shc’WnFig. 1. Ratio of saturated densitiesTat= 0.7 predicted by the SRK and PR
[1] that this is a general feature also for non-cubic 2P-E0S. equations, compared to experimental values for alkanes. Predictions by the
In addition, a 2P-EoS will also predict a unique universal model proposed in this work are also included (see Sedjion
PvT behaviour for all fluids in terms of reduced variables
(seeAppendix Afor a demonstration), which is not in agree-
ment with the properties of real fluids. Therefore, a given factors of different fluids at 300 K. SRK is better than PR in
2P-E0S might be accurate to estimate the properties of somepredicting the data of methane but the opposite is observed for
compounds, while showing large systematic deviations for octane and ammonia, and something intermediate for carbon
others. dioxide. Similar results were found for other fluids and those
Since the work of Soavi8] correlations for the energetic  shown inFig. 2 are just some representative ones in order
parameter, based on reduced temperature and the acentrito cover the range of differeid; in real fluids. The general
factor, have overcome this limitation of corresponding states trend is that the density dependence of the SRK is able to rea-
models for vapour pressure calculations, improving at the sonably capture the behaviour of simple fluids like methane
same time the prediction of volumetric properties, but only and different gases which have a high i.e. between 0.28
partially given that the co-volume is not affected. and 0.29, while PR is more suitable for larger chains or polar
Soave9] observed that for a 2P-EoS with an alpha func- compounds which exhibit considerable lovwrvalues, i.e.
tion like SRK [3] or PR [4] the ratioa/T; is a universal around 0.26. The same can be observed for fugacity coeffi-
function of the ratid?,/T,. Later, Zabaloy and Brignold.0]
found some other important relations from which it can be
deduced that the reduced saturated densities — and therefor- 2
also the relationof®/ o3 — are universal functions of the
ratio P53y T;. These relations depend exclusively on the 2P
density dependence of the equation, being absolutely inde- 16
pendent of the alpha function for the energetic parameter. AN 4 4
universal relation of this kind is not in agreement with the
behaviour of real fluidsFig. 1 shows the relatiopf2Y o3
atT, =0.7 for alkanes from methane meoctane, along with
the predictions from SRK and PR equations. It is evident
that these predictions are accurate only for one or two par-
ticular compounds in the homologue series, while a third
parameter that gradually changes the 2P density functional-~ ¢4
ity is able to follow the proper trend. This 3P-EoS, labelled
as generalized Redlich—-Kwong—Peng—Robinson equation e
(RK-PR), is the model that we propose and discuss in later 00#*~—F——F——F——F—T T
. 0 100 200 300 400 500 600 700 800 900 1000
sections.
At high densities and pressures the disagreement betweer Pressure (bar)
predictions from ZP'E_OS and the data for certain Componen'FSFig. 2. Compressibility factors of four different fluids at 300K and cal-
become more appreciable due to the wrong co-volumes. ThiScyjations with the SRK and PR equations. Calculations with the equation
explains the curves shown Fig. 2 for the compressibility proposed in this work were also included (see Sedditor the discussion).
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Fig. 3. Fugacity coefficients of different fluids at the reduced temperatures of 0.8, 1.0 and 1.2. Calculations with the SRK, PR and RK-PR Eo0Ss.

cients inFig. 3, where one subcritical and one supercritical 2.1. The necessary degree of freedom given by a third
isotherm were included along with the critical isotherm of parameter
each fluid.

The conclusion of this section is that the intrinsic lim- ~ To show the qualitative effects of the flexibility gained
itations of 2P-E0S, rather than their empiric character, are from a third parameter we use here the generalized van der
the main reason behind the well-known inaccuracy of equa- Waals (vdW) attraction term as introduced by Yelash and
tions like SRK or PR for volumetric and derived properties. It Kraska[13]:

must be clear that any theoretically based 2P-EoS will have a

the same problem and therefore a third compound-specific * 29V = ™, ¢b) or

parameter in the density dependence of the equation of state T a
is indispensable to model different types of fluids and their Zgvdw = 1+ Zrep(n) — 1—; Tgvaw = RTb’
asymmetric mixtures. (ﬁ + C)

It should be noted that volume translations in equations b
of state[11], which have been proposed to overcome the ngwdv = ™ 1)
shortcomings discussed in this section, do not provide dif-
ferent models, i.e. the calculations could be performed with  Using either the van der Waals repulsion term — which
the original equation and then the reported volumes be shiftedleads to the generalized vdW-RK EoS since it adopts the den-
[12]. Therefore, and taking into account that the essential rea-sity dependence of the Redlich—-Kwong equationderl —
son for engineering equations of state to exist is calculation or the Carnahan-Starling (CS) expresgibf for Zepin Eq.
of phase equilibria, volume translated 2P-EoS should not be (1), and fixing the third parameter in each case, we can solve
regarded as 3P-EoS. the conditions of the critical point foj. andz. (as explained
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sive terms for illustration purposes since these two are very

0.35-1, 1 —— GenRK-PR well known.
1 N S e Clausius
0304 N A e Gan VAW RiC

— Gen CS-vdW
3. Evaluation of different alternatives and

development of a 3P-E0S

0.254

0.204 . .
Now, we face the fundamental questions when developing

an equation of state: which repulsive and attractive terms to
use? Which temperature dependences for the parameters?
How to determine the parameters for each compound?

One could arbitrarily choose the van der Waals repulsion
term for the sake of simplicity or the one by Carnahan and
Starling [14] for — debatable — theoretical reasons and the
oo | | | . S lower c value required to match a gively value (sed-ig. 4).

0 3 6 9 12 15 Then, adopt a particular temperature dependence foa the
cord, parameter, and eventually another ondsf@nd parameterize
using the critical conditions to matdly andP¢, while leaving
Fig. 4. Dimensionless variables of four different 3P density dependences in the degree of freedom imto minimize deviations in vapour

0.154

\
0.104

0.05-

the critical point, as functions of the third parameter. pressures and liquid densities. This is a usual approach when
evaluating a given model or comparing different equations
[16-18]

in [1]) and then introduce these values in the corresponding  However, when developing a 3P-EoS the repulsion term

expression for explicit calculation @;. Following this pro- should be chosen from the volumetric performance. This can

cedure, we obtained the curvediy. 4, showing thaZ. de- be done by examining the calculated critical isotherm, which

creases witle. Since for a homologous series of compounds, is independent of the temperature dependence of the equa-
decreasing values &f; correspond to increasing molecular tion. The three parameters for each compound could then be
weights, a largec parameter corresponds in principle to a determined from these data — critical isotherm — and finally,
larger molecule. the temperature dependences defined, assuring thata good re-
Using these two 3P-E0Ss without any temperature depen-production of vapour pressures, saturated densities and also
dence and witkc as the changing parameter, we observed densities in the one-phase region is achieved. As will be seen
trends for the pure compound critical isotherms, vapour pres-in Sections3.3 and 3.4we found more convenient instead
sures and saturated densities, that agree qualitatively withto parameterize after defining the temperature dependence of
those experimentally observed for real fluids. In other words, the equation.
the introduction of a third parameter in the way prescribed by
Eq. (1) to the simple vdW or CS EoS provides a reasonable 3.1. Choosing a repulsive term: comparison between the
density dependence which is qualitatively in agreement with generalized vdW-RK and CS—vdW EoSs for critical
the behaviour of real fluids when going from small to large isotherms
molecules. This observation, which we could not find in the
literature, is also valid for other three-parameter density de-  With the constraint of matching the experimental critical
pendences and strongly supports the use of them to constructemperature and pressure — that we implement in this work
equations of state. So far, at least for non-associating com-exactly as in[1] — there is still one degree of freedom, i.e.
pounds, we do not see any reason for using a fourth parametethe critical volume, to calculate a critical isotherm with a 3P-
in the density dependence. EoS. InFig. 5, the critical isotherms of different fluids are
Notice that a given value af can be seen as defining a shown as calculated from both vdW—-RK and CS-vdW gen-
particular two-parameter EoS, e 0 gives the attraction  eralized equations, each of them with two differentilues:
term of the vdW EoS while=1 the RK EoS. Thus, making  one matching the experiment& and the other one giving a
this parameter compound-specific is equivalent to choose thebetter agreement at high densities. From this figure, we can
2P-Eo0S that best suits the behaviour of each fluid, but thenclearly see two things. First, that the underestimation of the
— when applying the equation to mixtures — interpolating critical density is required for a reasonable reproduction of
between the different 2P-E0Ss through a mixing rulecfor  the whole isotherm. Secondly, that the vdW repulsion term
From some previous results in the literature (see, for example,performs better than the CS due to a steeper curve in the high
[15]), it can be deduced that this practice would significantly density region which gets closer to the experimental data.
improve the reproduction of — at least — volumetric properties ~ This seems to be related to the lower reduced critical
in mixtures. The same conclusions apply to other alternativespacking fraction of the CS—vdW equation compared to the
for the repulsive part. Here, we used the vdW and CS repul- vdW-RK, as shown by Yelash and Krag)a]. It might be
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Fig. 5. Critical isotherms of different fluids calculated with the generalized vdW—-RK and CS EoSs. In all the cases, expfiirardf are matched. The
values ofZ; andc are indicated for each curve.

wrong to conclude that the repulsive term of van der Waals is density dependence could be found for the attractive term,
better than the one of Carnahan-Starling. Nevertheless, it issuch that combined with the CS repulsive term it would lead
clear that when combined with this simple attractive term the to better results. This is likely to be the case of the different
vdW repulsion performs better. Probably, a more complex SAFT equations.
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3.2. Choosing an attractive term: a 3P density
dependence connecting the RK and PR EoS

The generalized vdW-RK attractive termis one of the sim-
plest alternatives for the implementation of a 3P-E0S. This
approach had already been followed or studied in different
ways by several authof43,19-21] In addition to the van

der Waals and Carnahan Starling terms, we also tested other

different alternatives for the repulsive part and no improve-
ment was achieved over the combination of Eq.with the

vdW repulsion. Other approaches such as multiplying the °

attractive term by a density decreasing function or adding
two extra terms with two extra parameters to make zero also
higher derivatives at the critical point and get flatter curves
did not yield significant improvements either.

Nevertheless, two other generalized attractive terms which

lead to 3P-E0S have been proposed and studied in the liter-

ature. The first of them, the so-called Clausius F2%523],
is even simpler:

Poau= T a or
Clau = o —b (U I cb)z
Zewa — dnt a
b
- 2
n=, (2)

The second one assumes the RK or PR density dependenc

for particular values of a third parameter in a similar way as
Eq. (1) connects the vdW and the RK ones. Even though not
attempting to use it for developing a 3P-EoS, Mollerup found
this relation in the late 197(24]. He proposed the following
general expression (see the book by Mollerup and Michelsen
[25], for further details and discussion) in which all of the
well-known cubic EoS are contained for particular pairs of
values §1, §2):

RT a(T)
v—b  (v+816)(v + 82b)

®3)

Some characteristics of this double parameterized attrac-

tion term were studied by Yelash and Kra$ka], also com-
bined with the CS repulsion. It is easy to see that for the delta
parameters (¥ +/2, 1 — +/2) the PR equation is obtained,
as (0, 0) leads to the vdW and (1, 0) to the RK. Then, if we
add the restriction:

—8180=81+8—-1=c 4)

we have actually a 3P-EoS which connects the BRK({) and
PR (c=1) density dependences with the following expression
for the compressibility factor:

4nt

ZRKPR =

L=4n (L4 o) (14 ak520)
a b
= —, = — 5
t RTbH 7 4u ©®)

79

Harmens (1977)

Peng-Robinson

Redlich-Kwong

Fig. 6. Therelation betwearand the delta parameters in the RK—-PR density
dependence.

As Harmens and Knafg6], we could use a different way
of expressing the same equation which, using Mollerap’s
parameter defined in E{4), would be:

RT a(T)
—b V24 (c+ Lbv—ch?

The last expression is used in the Patel-Teja equiidn
Eheirc parameter being the produck b here. Nevertheless,
we willuse Eq(5) because of the simpler expression obtained
through integration for the Helmholtz energy and also for its
derivatives. In addition, it shows in a clearer manner the role
ofthe delta parameters. In particular, one realizes the presence
of a second pole, i.e. a given density at which the pressure
contribution goes to infinity, wheép is negative (061 > 1).

In Fig. 6, which shows the relation between the alternative
parameters;, §2 andc in this 3P-Eo0S, we can see that this
attractive pole will always be located at higher densities than
the repulsive one. This is due to the asymptotic approaching
of 82 to —1 and guarantees that the physical requirement of
an increasing pressure as the co-volume is approached will
always be fulfilled for any value d¥; or c.

Fig. 4 shows theZ;, nc. and t; curves for both Egs.

(2) and (5). One distinctive feature of E(5) is the exis-
tence of a minimum value for the third paramet&r fin =

V2 — 10remin = 24/2 — 3), which leads to a maximurf.
value around 0.3384. The origin of this, which can be seen
in Figs. 4 and 6is in the constraint (Eq4)) and the symme-
try of Eq. (3). Fortunately, as we will see later, this is not a
limitation for modelling real fluids.

From the comparison of critical isotherms of €@

Fig. 7, we can clearly see the superiority of the generalized
RK—-PR (Eq(5)) over the generalized vdW-RK and Clausius
EoS—Eqgs(1) and(2), respectively. The same results were
obtained for other fluids.

It is important to note that in addition to providing lower
deviations than the generalized vdW-RK along the whole

(6)

Prkpr =
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3000~ gt Table 1
i Five different sets of parameters for g@vhich reasonably approximate the
experimental critical isotherm

2500+ || jz=0.3200
i Z ac be d d2
2000 0.310 3.9353 0.0270 2.2800 —0.3902
= 0.315 3.8847 0.0275 2.0227 —0.3383
S MBWR 0.320 3.8340 0.0281 1.7638 —0.2763
® 1500 i 0.325 3.7852 0.0287 1.4977 —0.1993
2 y
2 e ClAUISILS 0.330 3.7363 0.0293 1.2134 —0.0964
& 1000
Z=0.2744 performance of the equation while not violating any stability
5004 condition (see the analysis by Salim and TrelBIg]). We
found that, when imposing the exact reproduction of vapour
0 e — i pressures and saturated liquid densities at subcritical temper-
¢ 5 W0 % L RO B atures and minimization of the deviations for supercritical
Density (mol/L.) isotherms, there is no unique trend that allows us to develop

. - o _ a temperature dependence ffor
Fig. 7. Critical isotherms of carbon dioxide, calculated from three different Th P f th ? t d d f del will
3P density dependences and for two different valueg.pincluding the erelore, the temperature dependence 1or our modei wi

experimental. be given by an alpha function like in most cubic EoSs. This
function should correlate the optimuawalues at different
curve, the generalized RK—PR Eo0S requires a lodgeto temperatures, which can be obtained after a &eth| ac)
approach the high density data and therefore lower deviationshas been chosen from the critical isotherm. The latter is not
in the critical density. a trivial matter. It will be clear that the co-volume in some
At this point, we can conclude that an attractive pole, curves is too big while it is too small for others. But which
which enlarges the attractive contribution to the pressure atone to choose among all those that cross the experimental
high densities, is of great importance in the density depen- curve at high densities? We could minimize the average de-
dence of the equation. This is valid at least when using the viation in pressure, but the result would most likely change
vdW repulsion, and is in agreement with what we found try- gradually depending on the maximum pressure considered.
ing different approaches (these results are not included here)Another option is to impose the condition of matching a very
the attraction term density dependence has to be reinforcechigh pressure value (e.g. the recommended pressure limit in
in order to allow for larger co-volumes (remember that, given the MBWR or Span—\Wagner equation) or to define a gen-

the restriction ofl andP¢, b changes wittzZ; through the eral expression for the co-volume in terms of some tabulated

curve) and consequently steeper curves in the high densityproperty as suggested by Polishuk ef3dl].

region. Instead of applying one of those possibilities to arbitrarily
fix the parameters, we will consider the five set§able 1

3.3. Defining the temperature dependence of the EOS all of them providing a reasonable approximation to the ex-

perimental critical isotherm. This will allow us to see how

We have seen that a three-parameter density functionalitythe selected. value affects the reproduction of data in the
itself gives already the proper qualitative evolution of vapour €xtended subcritical and supercritical regions and whether
pressure and saturation density curves within a given fam- some values make it easier or not to correlate the different
ily of compounds, e.gr-alkanes. Nevertheless, as for every @ values with a simple and general expression. By doing so,
equation of state, a temperature dependence is required in orve Will merge two steps in one, namely the determination
der to achieve also a reasonable quantitative agreement wittPf parameters at critical temperature and development of the
experimental data. temperature dependence.

From the physical meaning of the repulsive and attractive
parameters in every model, one can expect them to change3.3.1. Optimum a values versus reduced temperature for
with temperature, except the depth of pair potential or related different Z

parameters in theoretically based models. Since J8hes- The optimuma parameters of carbon dioxide required to
ery cubic EoS includes a temperature dependence émd match vapour pressures and minimize pressure deviations for
models like perturbed chain SAFT equation (PC-SAEZB) supercritical isotherms are shownhig. 8. It is interesting

or the GC-EO0$29] use atemperature dependent co-volume. to note that by not imposing the exact reproduction of the
Since to our knowledge no 3P-EoS has implemented so farsaturated liquid density at subcritical temperatures, not much
a temperature dependence for the third parameter, and ther@accuracy is lost, especially if& between 0.315 and 0.320 is
seems to be no reason for that, we did not even consideredused (se€ig. 9). This fact, together with the lower deviations
such possibility. In addition, a soft temperature dependencein supercritical isotherms just above the critical temperature
for b should only be adopted in case it really improves the (also inFig. 9) and a reasonable continuation of optimum
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Table 2
Different fluids included in the determination of tAg ratio
Compound Zcexp Te (K) Trp Trmax Z; range L1&cexp
Nitrogen 0.2894 126.19 0.50 8.51 0.330-0.335 0.3357
Ethylene 0.2812 282.35 0.37 1.68 0.320-0.325 0.3262
Propane 0.2763 369.83 0.24 1.68 0.317-0.322 0.3205
Carbon dioxide 0.2746 304.13 0.71 3.38 0.315-0.320 0.3185
n-Octane 0.2565 569.32 0.38 1.50 0.297-0.302 0.2975
Ammonia 0.2546 405.40 0.49 1.42 0.283-0.286 0.2953
5.0 experimental ones, all of them take values around 1.15 or
1.16, with the only exception of ammonia (MHn Table 2
45 which requires a ratio of about 1.11 or 1.12 and this can be
z, explained by the volume contraction effect at high densities.
——0.310
4.0 ——0.315
o : ——0.320 3.3.2. A simple temperature dependence for the a
g el o parameter _ )
- The same type of behaviour already seeRig 8for the
3 optimum values of, was found for all fluids. To correlate
= 3.04 these values, we discarded Soave’s quadratic function be-
cause of its behaviour at high temperatures and tried, among
ae ] others, the following family of simple expressions, which are
monotonically decreasing from a finite value at 0 K towards
5 = zero at infinite temperature:
. OI.S ' ‘iIAO ' 1!2 ’ 1!4 ‘ 1?6 I 1?8 2?0 1 k
T a=i=<n+ ), 0<k @)
ac n—+ Ty

Fig._8._ Opt_imum valu_e_s ai (tuned to match vapour pressures or minimize We found thah = 2 provides the best equation to correlate
deviations in supercritical isotherms), plotted agafst optimuma values. Thek constant for each fluid can be ob-
tained from least-squares regressions. Instead, since the range

a values between the two regiorSig. 8) lead us to select  of reduced temperatures with available data is different for
this range o values as the most promising one for carbon each compound, and in order to provide a simple and general
dioxide. A similar procedure was followed for other fluids procedure for the implementation of the equation, we decided
listed inTable 2and the approximate ranges obtained in each to calculate thé& constant from tha value required to match
case forZ; are also given. the vapour pressure @t =0.7 (Soavd3]). The results, cor-

A very important observation is that if we take the ratios responding in this case to a fixed relatiﬁﬁoS =116z,
of the approximate optimuré; values with respect to the  are shown inFig. 1Q It can be appreciated that due to an
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Fig. 9. Deviations in saturated densities of carbon dioxide when tusmtegmatch the vapour pressure and minimum AAD in pressures up to 1000 bar for
supercritical isotherms.
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1.8 particular isotherm are almost exclusively determined by the
co-volume orb parameter. Given the constraints of and

P¢, this value depends only afy and this causes an extreme
sensitivity of the deviations in pressure at low subcritical tem-
peratures to th& ratio. For this reason, we show instead

1.6
1 Subcritical Region
1.4 =

1.24

average deviations of density at given pressures (from 0 to
& ] N, 1000 bar) inFig. 11 The behaviour observed from propane
® 1.0+ Supercritical 4 Ethylene to higher alkanes could be misinterpreted as suggesting a
3 Region g% i temperature dependence for the third parameter, but it must
0.8 ¥ o=[3/(2+TN]k © €O, » L
] «  Pentane be remembered that the co-volume also changes witAthe
064 Hexane ratio.
| gg’;ﬁ’e‘e Despite the different kind of curves found for different
0.4 NH fluids in Fig. 11, one can see that the optimufg ratios are
/ ’ close to 1.17 for all fluids, with the only exception of associ-
™ P P e TR TR A PRI TR P ating fluids — like ammonia in this case — that require lower

values. It can be argued that for lang@lkanes this ratio is
appropriate only at low reduced temperatures, while higher
Fig. 10. Eq(7)withn=2 and constantecalculated fronT, = 0.7, compared ratios perform better at near critical and supercritical ltem—
to optimum values o for different fluids. peratures. Indeed, the heavier thalkane, the lower will

be the reduced temperatures of practical interest. And still
excellent correlation at subcritical temperatures, any other for octane, the larger alkane described by the Span—Wagner
available vapour pressure value will generally lead to essen-equation, the maximum average absolute deviation (AAD) at
tially the samek. Even though we have not defined yet how high temperatures is only 6%.
to fix the critical compressibility factor — and therefore the Given the restriction of a maximuizi; predicted by the
three parameters —for each compound, it can be deduced fromequation as already discussed in Sec8d) and that some
Fig. 8that if some given temperature dependence works well gases exhibit experimental values as high as 0.29, we will
once a specific ratio fof; has been specified, it will equally  adopt a universa, ratio of 1.168 for non-associating fluids.
work for other different ratios. Therefore, from now on we
will use Eq.(7) to calculatea. The value for th&k constant
is to be determined such that the vapour pressufe=a0.7 4. The final equation and results for selected
is reproduced. Were this information not available, another compounds
vapour pressure can be used.
Inserting Eq.(7) with n=2 into the density dependence

3.4. Parameterization: optimizing the reproduction of defined by Eq(5), we get the final expressions for the residual
PvT behaviour through ¢ Helmholtz energy and pressure:

Having already two constraint3{ andPc) for the deter- ies - _n _é B a n (-2 +81b
mination of the three parameters at the critical point, having RT ~— v RTH (51 _ ﬂ) v+ %b ’
decided that botby, andb will remain as constants and having o !
also adopted a fixed procedure for determining the tempera- 3 \f
ture dependence @t our only degree of freedom left is the a= ac<2 T ) (8)
critical compressibility factor. '

Instead of explicitly considering the particular valueZof
for each fluid, we focus our study on the relatiof®S/ ze®, (i)k
giventhatequivalentresults for different fluids were found for p _ RT e\ 217y (9)
similar values of this ratio. We found that its variation affects v=b  (y 4 51b) (v + %b)
only slightly the reproduction of vapour pressures — which !
is very good thanks to the adoption of @) — while pres- Fugacity coefficients and all derivatives required for calcu-

sure deviations in the single-phase regions are more sensitivelations are obtained from volume and temperature derivatives
specially at low temperatures. For this reason, and given thatof Eq.(8) as described if25]. Mixture calculations (see Sec-
the representation dtvT properties is what we want to im-  tion 6) also require mixing rules and composition derivatives.
prove with this new equation of state, its optimization has  The recommendations for a straightforward implementa-
been the criterion followed to select approximate values for tion of the equation are completed with the following relation
the optimumZ; ratio of each fluid. for non-associating fluids:

In the high density region, where the isotherms approach EOS exp
vertical lines, the deviations in pressure or density along eachZc = 1.168Z¢ (10)
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Fig. 11. Influence of th&; ratio on the deviations in density for both subcritical and supercritical isotherms of different fluids.

This condition already determines the third paraméter  factor and critical constants. Explicit expressions for calcu-
for each fluid, whileb anda, are obtained from solving the lation of 81, b, a; andk are provided inAppendix B The
critical conditions and fixing; andP. to their experimental  corresponding parameters obtained in this way for different
values. The constant for the temperature dependence of the fluids, including ammonia with Z. ratio of 1.115, are given
attractive parameter is readily determined from the acentric in Table 3 The average absolute deviations for vapour pres-
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Table 3

Parameters and performance of the proposed RK-PR equation

Compound 51 ac b k AAD Py AAD pfat AAD pSt
Methane 0.9253 3272 0.0300 1.49345 1.574 5.211 1.609
Ethane 1.4286 3597 0.0439 1.78590 1.113 4.447 1.236
Propane 1.6201 .8810 0.0601 1.97064 0.892 4.243 1.040
n-Butane 1.7644 15670 0.0764 2.12852 0.891 4.339 0.960
n-Pentane 2.1026 28721 0.0925 2.25130 0.774 3.383 0.821
n-Hexane 2.2708 26747 0.1096 2.39294 0.610 3.302 0.754
n-Heptane 2.4173 33100 0.1277 2.54658 0.666 3.616 0.782
n-Octane 2.8220 48620 0.1425 2.60984 0.861 2.834 0.995
CO, 1.7268 38290 0.0282 2.23854 0.501 6.875 0.537
NH3 3.6926 48666 0.0208 1.89272 1.056 2.428 2.466

b is given in L/mol anda. in bar L2/mol?. AAD in vapour pressures and saturated densities calculatedTrerd.5 to critical point, except carbon dioxide
from T; =0.71. AADX = 100x Y| Xcal — Xexpl/Xexp. Reference critical constants and experimental data according to Span and Y8agher
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Fig. 12. Deviations in calculated vapour pressures and AAD in density-&kanes up to C8, carbon dioxide and ammonia. Generalized RK—PR EoS with
parameters proposed in this workaple 3.
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Fig. 13. P—p diagrams of carbon dioxide and ammonia. Parameters for PC-SAFT takeffilfrom
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sures and saturated densities are also informed in the sam@ressures. Here, from the resultsHig. 12, we see that the
table. Further details of the performance of the model for es- same level of accuracy in vapour pressures is achieved by our
timation of vapour pressures and densities in the one-phase3P-EoS and proposed parameters.
region are shown ifrigs. 12 and 13where it is compared to On the other hand, we do not pay the price of large sys-
the PC-SAFT EoS with optimized rescaled paramdtdrs tematic errors in predicted densities as itis seen fragn13
One must be aware that this is possible thanks to a proper ad-
justable temperature dependence in the attractive term, which

5. Discussion of the results for pure compounds guarantees the representation of vapour pressures. Only in
this case can the predicte&g be tuned to optimize the rep-
5.1. Comparisons with SRK and PR resentation of volumetric properties, while for models with

fixed temperature dependence it must be sacrificed for vapour
Calculations with the generalized RK—PR EoS and param- pressures. In principle, although theoretically questionable,
eters fromTable 3were also included ifrigs. 1-3n Section the same approach could be followed for PC-SAFT. Alter-
2. From those comparisons with the SRK and PR equations, natively, a simple volume translatigfil,12] can be imple-
we can see that just by using a third parameter which allows mented to get an acceptable description of densities. But so
making interpolations and extrapolations along the general-far, given the good results obtained for pure compounds with
ized density dependence defined by these well-known 2P-the very simple equation of state defined by £, the dis-
EoS the compressibility factors and fugacity coefficients of proportionate complexity of a model like PC-SAFT could
real fluids can be very well represented if appropriate values only be justified for polymer systems or when high accuracy
are chosen. in densities is required and only conditions far away from
The curves for octane irig. 3illustrate the higherinaccu-  the critical region are of interest, which permits the use of its
racy of our equation for describing the properties of chain-like original regressed parameters.
molecules at high temperatures (note the accuracy at 300K
in Fig. 2). The reason for this limitation is in the behaviour 5.3. Comparison with the Patel-Teja EoS
illustrated inFig. 11 and this could probably be improved
if temperature dependences farandb were also adopted. As already mentioned in Secti@2, other cubic 3P-EoS
Nevertheless, the insignificant practical importance of this had already implemented the density dependence, which con-
limitation does not justify such increment in the complexity nects RK and PR. The Patel-Teja EoS is probably the best
of the equation, which might even lead to thermodynamic known and most used among them and therefore some com-

inconsistencies. ments on the differences with our new equation are necessary.
The first noticeable difference is in the definition of the third
5.2. Comparison with PC-SAFT parameter, which in principle could have some effect when

a linear mixing rule is applied for mixtures, but this will be
In a previous publicatiofil], we studied the possibilities  negligible given the high linearity observed betwégrand
of PC-SAFT under the constraint of reproducifigand P¢ cin Fig. 6. Nevertheless, there are two important differences
and presented optimized rescaled parameters, which retairwhich do have an effect on pure compound properties and
the accuracy of original parameters for calculation of vapour therefore also on mixtures.

1400~ 14001
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~ 1000+ __ 1000+
g 5
o 8004 o 8007
2 =) ]
@ &
@ 600 o 600
o o ]
400 4004
2004 200 —— RK-PR (this work)
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0 T ‘ T T ‘ 0 T T T i ———
0 5 10 15 20 25 0 5 10 15 20 25 30

Density (L / mol) Density (L / mol)

Fig. 14. Some isotherms in te-p diagrams of methane and carbon dioxide as calculated by the Patel-Td@/agd the equation and parameters proposed
in this work.



86 M. Cismondi, J. Mollerup / Fluid Phase Equilibria 232 (2005) 74-89

First, Patel and Tejf27] used the same quadratic func- 200
tion proposed by Soave and implemented also by Peng and
Robinson for the temperature dependence of the attractive pa-
rameter. This function is capable of accurate correlations of 160+
vapour pressures, but some problems of thermodynamic con-
sistency and unphysical results like multiple critical points

1804

1404

[32,33] have been found for this type of functions. Instead, § 120+

Eq. (7) results in an asymptotic vanishing of alpha.at high o .. CO, + n-Decane critical locus
temperatures, which prevents non-physical behaviour, and§ ]

allows for a reasonable correlation of densities for supercriti- £ 807

cal isotherms — within the possibilities of the RK—PR density i

dependence with constadit andb — while the accuracy in ] i?ﬁ;{’“ fﬁ-ig'g?
vapour pressures is retained. One may notice ffag 10 40'_ i PR l(lijj;d.OS

that the optimuna values for supercritical temperatures up 20

to T, = 1.5 are higher than the ones predicted by &gjfor

most o_f the fluids. Nev_e_rtheless, some o_f th_ose values are 0300 350 | 400 450 500 550 600
even higher than the critical value, which indicates that this Temperature (K)

is a limitation of the EoS in the critical region that cannot

be overcome by any reasonable and consistent temperaturé&ig. 15. Critical locus of the system carbon dioxide-#ecane, calculated
dependence by the SRK, PR and RK-PR equations. Experimental data from Reamer and

Secondly, the parameterization procedure adopted by pa-Sa0e435-

tel and Teja, and in consequence also their generalized cor-

relations with the acentric factor, are based on the minimiza-  Although Fig. 15 shows the superiority of the proposed
tion of saturated liquid densities. This together whig. 9 RK—PR equation in correlating the vapour—liquid critical line
explains why, for example, they chooseZaof 0.309 for  using only akj parameter, the correct modelling of phase
carbon dioxide. But we have found that a small underesti- equilibria should take into account both the LLE and LVE re-
mation of saturated liquid densities is usually required for an gions, using alsoly interaction parameter for the co-volume.
optimum representation of densities in the one-phase regionFor this systentig. 16shows that the upper critical end point
(seeFig. 13. Therefore, both ouZ; and co-volumes are in  (UCEP) can be reproduced and an even better prediction of
general higher than the ones given by Patel and Teja and ashe vapour-liquid critical locus obtained by using appropriate
a consequence our equation is better for predictiofhudf values ofk; andlj;. A detailed analysis of the effect of each
properties of fluids, as it can be seeifrig. 14 This lastpoint  interaction parameter and the strategy for their estimation
discussed, namely the difference in co-volumes, is the mainwill be provided in a future publication.

reason behind the systematic overestimation of densities by

the Patel-Teja EoS.

200

180
6. Preliminary results for mixtures: critical lines of 1
carbon dioxide +n-decane 160

140

A systematic investigation of the performance of the CO, + n-Decane

model for calculation of phase equilibria in mixtures is the
object of further work. Nevertheless, we showFig. 15these
interesting preliminary results, which are analogous to those
in pure compounds properties: the SRK equation describes &
better than the PR the region closer to pure carbon dioxide 1
and the opposite is observed as we approach ipalecane, 40
while our three-parameter equation provides an optimum cor-
relation in the whole range. Moreover, this correlation was ~—— UCEP
obtained witrk; = 0. Quadratic mixing rules were used, along Oy
with the classical van der Waals combining rules dcand < 20 el W oW S0 B W
b. A linear mixing rule was implemented for the third pa- Tempesalies ()

rameterss. It is also important to note that the correlations _ , - .

. . . . Fig. 16. Reproduction of global phase equilibria for the system carbon diox-
Obtam_ed W_'th PC'_SAFT' although not ShO\_N_ed in the figure, ide +n-decane with the RK—PR EoS and using both binary interaction pa-
are of inferior quality, no matter whether original or rescaled rameters. Experimental critical points from Reamer and §&fj@nd LLVE
parameters are used. data from Kulkarni et al[36].
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7. Conclusions v molar volume
Z compressibility factor
It was shown that in combination with a simple attrac-
tive term, the basic van der Waals repulsion is more accu- Greek letters

rate than the Carnahan-Starling equation to describe criti-§; third parameter in the RK-PR Eo0S

cal isotherms of real fluids. In particular, the RK—PR equa- §» non-adjustable parameter defined in terms;of

tion was found to be the best among the different cubic 3P p dimensionless variable relating the size parameter
density dependences found in the literature. The possibili- and the molar volume

ties of this equation, connecting the density dependences ofp molar density

the SRK and PR E0S, have been explored in greater detailt dimensionless variable relating the energetic param-
than previous studies for the modelling ®fT properties of eter and the temperature

pure fluids. The parameteds andb are constants for each acentric factor

compound, while a simple temperature dependence for the
attractive parametea is adjusted to reproduce the acentric Subscripts

factor. c critical property
The relationZE°S = 1.1687¢® was adopted for all non- L liquid

associating fluids. With the example of ammonia it was shown r reduced property

that very good results are also obtained for associating com-sat saturated property

pounds, but the optimur®; ratio will be lower and needto VvV vapour

be determined for each fluid.

The simple model thus obtained compares very favourable
to the PC-SAFT equation when critical temperature and pres- Acknowledgements
sure are reproduced. At the same time, given that our 3P-EoS
is essentially an extension of the SRK and PR equations, it  Martin Cismondi gratefully acknowledges the National
was demonstrated that their limitations for prediction of den- Research Council of Argentina (CONICET) for the fellow-
sities are explained by their two-parameter nature rather thanship, which made possible his stay in Denmark and also the
by their empiric character. Moreover, by comparison of their support received from IVC-SEP. We would also like to thank
capabilities to correlate and predict phase equilibria of asym- Marcelo Zabaloy for helpful discussions and critics.
metric systems, we will be able to identify the improvements
due to the evolution from a corresponding states model to a
one-parameter characterization of the length and/or polarity, Appendix A. Demonstration of the uniqueness of the
which define the behaviour of a fluid in reduced variables. PyT behaviour predicted by a 2P-EoS
This will really be a test of cubic equations: to discriminate
between the limitations of SRK or PR which are due to their ~ Mollerup[25,34] showed that every cubic two-parameter
2P nature and those rooted in the empiricism of the vdW equation of state is a corresponding states model. Here, we
repulsions. provide a more general demonstration to the fact that every

Although the proposed parameterization procedure re- two-parameter equation of state shall predict a unigug
quiresTg, P¢, Zc andw for each fluid, a group contribution  behaviour in reduced variables and is therefore a correspond-
approach is expected to provide good results for the heaviering states model.
homologues of a given series, for which these constants are In order to provide a reasonable qualitative behaviour, ev-
not known or cannot be measured. This is based on the trencery 2P-EoS must have a size parameter and an energetic pa-
observed for the relatiom,/b? which is analogous to the ratio  rameter, which serve to reduce the absolute volume and tem-

(¢/K)/(mo®) in SAFT models. perature, respectivelyEach of these equations can therefore
be written in the dimensionless variablgandz, defined in
List of symbols terms of those relations for the volume and temperature:
a cohesive or energy parameter in an equation of state
. . . P(b,v,a, T)v
b general notation for the size-related parameterinan z = ——= """ — F(y, 1) (A.1)
equation of state; co-volume RT
c general notation for the dimensionless third param-  Sincenc andz¢ are characteristic constants of a 2P-EHS
eter in an equation of state bandawill be directly proportional ta; andT, respectively.
k parameter defining the temperature dependence ofAccordingly,» andt turn out to be functions of, andT;,
the attractive term in an EoS
P pressure

. 1 This includes, to the best of our knowledge, all published 2P-E0S in
R universal gas constant R(: 0.08314472 bar the literature with the only and particular exception of the Virial equation

L m0|_1 K_l) truncated after the third term, which nevertheless constitutes also a corre-
T temperature sponding states model (sAgpendix A.J).
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respectively, and this implies that these two variables alone Appendix B. Estimation of parameters for
will determine the value oF in Eq. (A.1). Finally, we get: implementation of the generalized RK-PR EoS from
Zc, T¢, Pc and the acentric factor @

T,
L F(o, T7) (A.2) o
Zcur The general case of estimation of parameters for a 3P-
which means uniqu@uT behaviour in reduced variables. ~ E0S implies, after fixing the critical compressibility factor,
to solve the critical point conditions for the third parameter

In order to apply this demonstration to some particular i : X ,
equations, and due to the way they are usually written Someand the two dimensionless variables that relate the size and
i i energetic parameters to the critical constdhjs Neverthe-

transformations of parameters might be necessary in order . ; " )
to make things clearer. Taking the simple case of the van derl€ss, cubic equations of state allow for the explicit calculation
; : of a; andb once the third parameter is obtained from a di-
Waals equation as an example, one mayause“}% to have 8 : ' P X ) . ;
rect relation withZ;. Most of the expressions given in this

the dimensionless variables _ ) .
appendix are based on the second section of Chapter 3 in the
b . .
n=-= T and r=2_% (A.3) boqk[2.5], where the reader is referred for further details and
v U T T derivations.
In the RK—PR equation, the predict&d is related tos;
by the following equation:

Pr=

and the following expression for the compressibility factor

1
Zyaw = —— — nt = Fyaw(vr, Tr) (A.4) Zc = —r (B.1)
1-7p 3y+di—1
Itis important to note that the transformation of pal’ameters Wherey anddl are intermediate Variab'es:
is just an arbitrary matter, which does not affect the nature of
the model orits predictions. It can also be useful, for example, 1+ 5%

for SAFT equations where the size parameter is a diameter®? = 7 +6 (B2)
and not a volume. 13

Finally, it should be pointed out that critical constants in 1/3 4
this appendix — and therefore also reduced variables — refer’ = 1+120+ 817 + 1+ 81 (B-3)

to the values as predicted or estimated by the model. Accord-

ingly, the conclusions apply to the models, independently of ~ FOr non-associating fluids, we suggest to uge=

used; = +/2 — 1, which corresponds ta. = 0.3384. Unfor-
tunately, Eq(B.1) cannot be solved analytically fég. Nev-
ertheless, the following correlation can be safely use@§or
in the range 0.20-0.3384:

A.1l. The case when a size parameter and an energetic
parameter cannot be identified

A good example of this situation is the Virial equation 5, — g, + do(d3 — Z)%™ + ds(d3 — Zc)% (B.4)
truncated after the third term:
B C The coefficients for EqB.4) as well as those for the cor-
(1 4+ -+ _2) (A.5) relation ofk in Eq. (B.10) are given inTable B.1 The co-
vov volume and the critical value of the attractive parameter are
calculable from the following expressions:

_RT
_U

P

which can also be expressed as

RT;
Z=1+m+n (A.6) b= Q”TC (B.5)
C
with 1 = £ andp, = €. (RT)?
Itis easy to see that for this equation of state, an equivalentac = £2, P (B.6)
result to Eq(A.2), even simpler, is obtained: ¢
Ty Table B.1
Pr= Zevr F(vr) (A.7) Coefficients for estimation df; andk
) ) Eq.(B.4) Eq.(B.10)
and therefore, EA.5) is also a corresponding states model.

Summarizing, every two-parameter equation of state for gl lgjgggig 2(1) ’g'gg%
which the compressibility factor can be expressed in terms dz 0.338426 B, 74513
of two dimensionless variables that are direct or inversely g, 0.660000 Bo 1.9681
proportional to the molar volume and/or the temperature, is ds 789723105 Cy 12504

a corresponding states model. de 2512392 Co —27238
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25 and 2y are functions of the third paramet&r.

_ 3y? + 3yd1 +d? +d1 — 1

) (B.7)
By +d1 — 1)?
1
2p= ——— B.8
Al | (B.8)

Thek constant for the temperature dependence of the at-

tractive parameter is obtained from the relation

_In(ao7/ac)

"~ In(3/2.7)
whereay 7 is the value required to match the experimental
vapour pressure & =0.7.

(B.9)

To avoid the iterative calculation of that value one can use

the following correlation in terms of the acentric factor and
the predicted,:

k = (A1Zc + Ao)w® + (B1Zc + Bo)w + (C1Z¢ + Co)(B.10)

A simple recommendation for associating fluids is to esti-
mated; andk simultaneously by reproducing the experimen-

tal vapour pressure and saturated liquid density at a reduced

temperature of 0.7 or lowegi; andb are given bys; through
Egs.(B.5) and(B.6).
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