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We consider string inspired models in D = 10 spacetime dimensions, which include couplings
with 1- and 3-form fields as well as R4 higher curvature corrections to the gravitational action. For
such models, we explicitly construct a family of black hole solutions with both electric and magnetic
charges, and with different horizon topologies. The solutions exhibit some features similar to those of
self-gravitating monopoles in Einstein-Yang-Mills theory, which we discuss. When higher-curvature
corrections are switched off, our solutions reduce to charged p-brane solutions previously studied in
the literature. Novel qualitative features appear due to the R4 terms, though. Such is the case of
the emergence of branch singularities for charged solutions that, nonetheless, can be shielded by the
event horizon.

I. INTRODUCTION

String theory induces modifications to Einstein gravity
which are represented by the presence of higher-curvature
terms in the low energy effective action. Type II string
theories, for example, contain quartic (R4) terms which
appear at cubic order in the α′ expansion. The theory
also contains additional fields ; in the case of type IIA
strings, apart from the fields that are already present
in the bosonic sector, the theory contains 1- and 3-form
fields, together with their magnetic duals.

The quartic modification to Einstein-Hilbert action in
the Type II theories at tree-level has the form∫ (

c1 t8t8 + c2 ε10 · ε10
)
R4 , (1)

where c1 = 8c2 is a positive coupling, ε10 is the Levi-
Civita pseudo-tensor in dimension 10, which here appears
with two of its indices contracted with those of a second
copy of itself, and t8 is a rank-8 tensor introduced in [1] ;
see also [2]. R4 represents in (1) for the tensor product
of four Riemann tensors. This yields

12

∫ √
−g
(

(c1 − 8c2)(RµνρσR
µνρσ)2 + ...

)
, (2)

where the ellipsis stand for other contractions of four Rie-
mann tensors. There are, in addition, a dilaton envelope
factor and couplings between the curvature and the Kalb-
Ramond field, which we are omitting here. Notice that
for c1 = 8c2 the squared Ktretschmann scalar disappears
from the action, which facilitates Einstein spaces to per-
sist as solutions.

The condition c1 ≥ 0 is crucial for a theory like (1)
to avoid superluminal behavior [3]. For simplicity, we
will focus on the case c1 = 0 6= c2. Remarkably, for
such particular choice of R4 terms we will be able to
write down black hole solutions charged under different
p-form fluxes analytically. The simplification with respect
to the case c1 6= 0 comes from the fact that the terms
ε10 · ε10R4 correspond to the dimensional extension of
the Pfaffian whose integral, in dimension 8, computes the

Euler characteristic in virtue of the Chern-Weil-Gauss-
Bonnet theorem. The topological origin of this term is
what makes the field equations to be of second order and,
thus, tractable analytically. Being of second order, the
theory is, in addition, free of Ostrogradsky instabilities ;
the perturbative theory results free of ghosts around flat
space [4]. Besides, the theory with such R4 terms, provi-
ded neither quadratic nor cubic terms are present, does
not exhibit the causality problems of the type discussed
in [5]. All this makes the case c1 = 0 an excellent arena
to investigate the qualitative features that the presence
of R4 terms may introduce.

In D = 10 dimensions we thus consider the action

I =
1

16π`8p

∫ (
R−F(2)∧∗F(2)−F(4)∧∗F(4)+

α3

24
ε8ε8R

4
)

(3)
where `P is the Planck length. F(2) and F(4) are the field
strengths associated to the 1-form A(1) and the 3-form
A(3), respectively (F(p+1) = dA(p)). Conventions are such
that

∫
F(p) ∧ ∗F(p) = (1/p)

∫
d10x
√
−gFµ1..µp

Fµ1..µp .
One can also add a cosmological constant term
−1/(8π`8p)

∫
d10x
√
−gΛ. The coupling constant α has

mass dimension −2. The tensor structure in the quar-
tic terms is given by ε8ε8 = (1/2)ε10 · ε10, which can be
conveniently written as

ε8ε8R
4 = δµ1µ2...µ8

ν1ν2...ν8 R
ν1ν2

µ1µ2
Rν3ν4µ3µ4

Rν5ν6µ5µ6
Rν7ν8µ7µ8

,
(4)

where δ is the totally anti-symmetric Kronecker symbol
[6]. The sign α3 > 0 is the one that yields a consistent
model ; see [3].

For the theory above, we will write down analytic dyo-
nic black hole solutions charged under both the 1- and
3-form fields, and with different horizon topologies. The
local geometry of the base manifolds (i.e. of the constant-
time sections of the horizons) of these solutions will
be the direct product of 2m copies (23−m)-dimensional
constant-curvature manifolds, with m = {0, 1, 2, 3}. For
example, in the case of such constant-curvature mani-
folds being (23−m)-spheres, the case m = 0 would cor-
respond to the 10-dimensional Reissner-Nordström black
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hole, whose base manifold is a 8-sphere. The other ex-
treme of the list, the case m = 3, would correspond to a
topological black hole with flat horizon ; namely a black
brane. Higher-genus topological black holes with com-
pact horizons require to consider as base manifold the
product of Fuchsian quotients of hyperbolic spaces. The
two most interesting and less simple examples are black
hole solutions whose horizons are either products of four
2-spheres or of two 4-spheres. These solutions are sup-
ported by magnetic fluxes on the spheres and admit net
electric charges. The latter are the cases we will study in
this paper.

II. BLACK HOLE SOLUTIONS

A. The solution with S2 × S2 × S2 × S2

Let us start with the case m = 2 ; that is, solu-
tions whose base manifolds are direct product of four
constant-curvature 2-manifolds. We begin by considering
2-spheres. The configuration of the 3-form for such a so-
lution is given by

F(4) =
Q2

r4
dt∧ dr ∧

4∑
i=1

vol(S2
i ) +P2

4∑
i<j

vol(S2
i )∧ vol(S2

j )

(5)
where vol(S2

i ) stands for the volume form of the ith 2-
sphere S2

i , i = {1, 2, 3, 4}. Q2 and P2 are two integration
constants associated to the electric and magnetic charges
under the 3-form field A(3). Similarly, the configuration
of the 1-form is given by

F(2) =
Q0

r8
dt ∧ dr (6)

which correspond to the Coulombian potential A(1) =

Q0/(7r
7)dt.

The metric takes the form

ds2 = −H(r) dt2 +
dr2

H(r)
+ r2

4∑
i=1

dzidz̄i
(1 + σ

4 ziz̄i)
2

(7)

where (zi, z̄i) are complex projective variables on the ith
2-(pseudo)sphere. σ = 1 corresponds to the metric of the
base manifold to be that of a product of four unit 2-
spheres. The cases σ = 0,−1 correspond to the locally
flat spaces and locally hyperbolic spaces, respectively. H
is a function of the radial coordinate r, which is given by
the fourth-order polynomial equation

α3r8(g0H
4 − g1σH3 + g2|σ|H2 − g3σH + g4|σ|)−

g5r
14H = T (8)

with the matter content given by

T = −t1Q2
0 − t2Q2

2r
4 + t3`

8
PMr7 + t4P

2
2 r

8 − t5σr14

where the coefficients gi and ti in their prime factoriza-
tion forms are

g0 = 27 · 34 · 52 · 72, g1 = 29 · 34 · 52 · 7,
g2 = 28 · 35 · 5 · 7, g3 = 29 · 33 · 5 · 7,
g4 = 27 · 33 · 5 · 7, g5 = 23 · 32 · 5 · 7.

and

t1 = 32 · 5, t2 = 23 · 32 · 5 · 7,
t3 = 25 · 32 · 5 · 7 π, t4 = 22 · 34 · 5 · 7,
t5 = 23 · 32 · 5.

If (λ̂α/64π`8P )
∫
d10x
√
−gδµ1µ2µ3µ4

ν1ν2ν3ν4 R
ν1ν2

µ1µ2
Rν3ν4µ3µ4

is also included in the action, then the left hand side
of (8) receives a piece λ̂αr12(g6H

2 − g7σH + g8|σ|) with
g6 = 24 · 33 · 5 · 72, g7 = 25 · 33 · 5 · 7, g8 = 24 · 33 · 7.

In the case of non-vanishing cosmological constant
(Λ 6= 0), the matter content T receives an additional
term 70Λr16. The general relativity (GR) limit (or, equi-
valently, the large r2/α limit) of the solution yields

H ' −r
2Λ

36
+
σ

7
− 4π`8PM

r7
− 9P 2

2

2r6
+
Q2

2

r10
+

Q2
0

56r14
+ ... (9)

where the ellipsis stand for subleading terms in orders
of α/r2. This is consistent with the results for char-
ged p-brane solutions with non-spherical horizons in Ein-
stein theory1. Solutions with base manifolds that are not
constant-curvature manifolds where studied, for instance,
in references [9, 10] ; see also references thereof.

Notice that, in (9), the term with the charge P2 pre-
sents a damping-off weaker than the Newtonian poten-
tial in 10 dimensions, what typically leads to a divergent
gravitational energy. This is reminiscent of what hap-
pens with self-gravitating monopoles in Einstein-Yang-
Mills theory [11]. In addition, the sign of such energy
contribution to the gravitational potential seems to in-
troduce instabilities.

The electrically charged solution for finite α also pre-
sents curious features. In particular, there exist a branch
singularity that occurs at a finite distance that, in prin-
ciple, can be smaller that the horizon location r+. Such
branch singularity happens when radicands in the solu-
tion to a polynomial equation such as (8) take negative
values. This happens because of the relative signs bet-
ween the Newtonian term and the terms with the charges
Q0,2, what makes radicands to vanish for finite r. This
results in non-real components of the metric and diver-
gences in the curvature invariants, what are typical fea-
tures of charged solutions in Lovelock theory.

It is worth mentioning that, if we add to the action a
term (λα/64π`8P )

∫
d10x
√
−g(Fµ1µ2µ3µ4

Fµ1µ2µ3µ4)2 and

1. We thank Marcello Ortaggio for calling our attention to refe-
rences [7, 8] which contains black hole solutions to which ours tend
in the limit α3 → 0.
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Approximate location of the branch singularity

(both inside the event horizon)
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Figure 1: Lapse functions for the (S2)4 charged under a Max-
well field and uncharged under F(4). We have used M = 10−3

and the doublets (Q0, α) equal to (0, 0)-blue, (0, 8 × 10−2)-
green, (10−2, 8×10−2)-red and (1.55×10−2, 8×10−2)-purple.

Approximate location of the branch singularity

(inside the respective event horizons)
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Figure 2: Lapse functions for the (S2)4 dyonic-F(4) black
holes and uncharged under Maxwell. We have used α = 0.08,
Q0 = 0 and M = 10−3 as well as the doublets (Q2, P2)
with (1.45 × 10−2, 2 × 10−2)-purple, (10−2, 2 × 10−2)-green
and (10−2, 8× 10−2)-red.

consider the case P2 = Q0 = 0, then equation (8) receives
the following contribution on the right hand side

23 · 33 · 5 · 7 r7
∫ r

r0

dr X2(r)(2532αλ+ r4λ) (10)

where X(r) is solution to the equation

X(r)r4 + 263αλX3(r) = Q2. (11)

The ultraviolet cut-off r0 above contributes to the mass.

B. The solution with S4 × S4

Solutions of a similar type exist for base manifolds
that are the direct product of two constant-curvature 4-
manifolds. This corresponds to m = 1. In this case, the
magnetic configuration of the 3-form is given by

F(4) = P̂2

2∑
i=1

vol(S4
i ) , vol(S4

i ) =
dzi ∧ dz̄i ∧ dwi ∧ dw̄i
(1 + 1

4ziz̄i + 1
4wiw̄i)

4

(12)
where vol(S4

i ) stands for the volume form of the 4-sphere
S4
i , i = {1, 2}. Again, the integration constant P̂2 is as-

sociated to the magnetic charge. The metric for this so-
lution (with σ = 1) takes the form

ds2 = −Ĥ(r) dt2 +
dr2

Ĥ(r)
+ r2

2∑
i=1

dzidz̄i + dwidw̄i

(1 + 1
4ziz̄i + 1

4wiw̄i)
2
.

(13)
We have that the local geometry of the base manifold is
now given by a product of two unit 4-spheres (or, more
generally, of a pair of identical 4-manifolds of constant-
curvature σ = {0,±1}). For this case, Ĥ is given by the
following fourth-order polynomial equation

α3r(ĝ0Ĥ
4 − ĝ1σĤ3 + ĝ2|σ|Ĥ2 − ĝ3σĤ + ĝ4|σ|) +

(−ĝ5Ĥ + ĝ6σ)r7 = T (14)

with the matter contribution

T = t̂1`
8
PM + t̂2P̂

2
2 r + t̂3Λr9, (15)

where the coefficients ĝi are given by

ĝ0 = 26 · 34 · 52 · 72, ĝ1 = 28 · 35 · 52 · 7,
ĝ2 = 27 · 35 · 5 · 72, ĝ3 = 28 · 35 · 5 · 7
ĝ4 = 26 · 35 · 5 · 7, ĝ5 = 22 · 32 · 5 · 7
ĝ6 = 22 · 33 · 5,

and the coefficients t̂i are given by

t̂1 = 24 · 32 · 5 · 7 π, t̂2 = 2 · 33 · 5 · 7, t̂3 = 5 · 7

The GR limit of this solution yields

Ĥ ' −Λr2

36
+

3σ

7
− 3P̂ 2

2

2r6
− 4π`8PM

r7
+ ... (16)

where the ellipsis stand for subleading terms in orders of
α/r2. Again, we observe the weakened damping-off of the
term with charge P̂2. The fact that GR solution (16) is re-
covered when α = 0 shows that we are considering a per-
turbative solution of the higher-curvature theory. These
theories typically present up to four different branches
of static solutions, some of them non-existent (for di-
vergent) in the α→ 0 limit.
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If (λ̂α/64π`8P )
∫
d10x
√
−gδµ1µ2µ3µ4

ν1ν2ν3ν4 R
ν1ν2

µ1µ2
Rν3ν4µ3µ4

is included in the action, then the left hand side of
(14) receives a piece λ̂αr5(ĝ7|σ| − ĝ8σĤ + ĝ9Ĥ

2) with
ĝ7 = 23 · 33 · 72, ĝ8 = 24 · 34 · 5 · 7, ĝ9 = 23 · 33 · 5 · 72, and
it also leads to a solvable equation.

C. Thermodynamics

The qualitative new features introduced by the higher-
curvature terms in the action can also be analyzed by
taking a glance at the thermodynamics of the solution.
For instance, consider the black hole solution with m = 1
and P2 = 0 = Λ, whose Hawking temperature, including
both R2 and R4 terms, is given by

TH =
8σr14+ + 48αλ̂|σ|r12+ + 384α3|σ|r8+ − 24Q2

2r
4
+ −Q2

0

32πr9+(192α3σ + 12αλ̂σr4+ + r6+)
.

(17)
We see from this the short-distance modifications to the
GR behavior. At large r2+/α, (17) clearly reproduces the
thermodynamical behavior of asymptotically flat black
hole solutions to Einstein equations. In contrast, provided
α 6= 0, the small r+ behavior deviates from that of GR.

Short distance contributions are also seen in the black
hole entropy formula ; namely

SBH =
(4π)4r8+

4`8P
+

4σλ̂αr6+
`8P

+
192(4π)4α3σr2+

`8P
, (18)

from which we observe that the Bekenstein-Hawking
area-law term gets supplemented by contributions of
higher-curvature terms that vanish in the limit α → 0.
Such terms scale with lower powers of the volume, as ex-
pected both from dimensional analysis. Unlike the term
proportional to the horizon area, the sign of the other two
terms is sensitive to the curvature of the base manifold
(σ) as well as to the sign of the coupling constant of the
higher-curvature terms (α). Different choices of those si-
gns lead to different qualitative behaviors, including some

pathological ones. Such a dependence on the signs of the
couplings is also observed in the expression for the tem-
perature, although, as expected, becomes relevant only
at short distances.

III. CONCLUSIONS

For string inspired models that include R4 terms toge-
ther with F(2) and F(4) fluxes, we have derived analytic
dyonic black hole solutions, with different horizon topo-
logies. We focus our attention to those 10-dimensional
solutions whose base manifolds were given by the tensor
product of constant-curvature manifolds. We have shown
that magnetically charged solutions of this type exhibit
weakened asymptotics that are reminiscent of those of
self-gravitating monopoles in Einstein-Yang-Mills theory.
We have also shown that the higher-curvature terms
make the electrically charged solutions to develop a
branch singularity at a finite distance, which can well
be shielded by the event horizon. It is remarkable that,
even in the case in which both R2 and F 4

(4) terms are
included in the action, the particular Lovelock-type R4

tensor structure we considered here allowed us to write
down dyonic black hole solutions in a closed form. This
provides a tractable model to study the physics of higher-
curvature effects analytically.
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