

Journal of Organometallic Chemistry 650 (2002) 173-180



www.elsevier.com/locate/jorganchem

# Stereoselective hydrostannation of substituted alkynes with trineophyltin hydride

Verónica I. Dodero, Liliana C. Koll<sup>1</sup>, Sandra D. Mandolesi, Julio C. Podestá<sup>\*,1</sup>

Departamento de Química, Instituto de Investigaciones en Química Orgánica, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina

Received 2 August 2001; accepted 9 January 2002

### Abstract

Hydrostannation of mono- and disubstituted alkynes with trineophyltin hydride (1) leads to vinylstannanes in good to excellent yields, the configuration of the products depending on the reaction conditions. Thus, whereas hydrostannation under radical conditions leads stereoselectively to only one of the two possible products corresponding to an *anti* addition in 60–99% yield, the additions catalyzed by bis(triphenylphosphine)palladium dichloride gave mixtures of the *syn* adducts (60–79% yield). Full <sup>1</sup>H-, <sup>13</sup>C-, and <sup>119</sup>Sn-NMR as well as mass spectra data of the organotin adducts are given. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Hydrostannation; Vinylstannanes; Radical; Palladium catalysis; Stereoselectivity

# 1. Introduction

Vinylstannanes are very useful intermediates in organic synthesis, especially when they have a well defined stereochemistry [1]. Among other important applications, they are used as vinyl anion equivalents, as precursors of vinyllithiums, and in cross-coupling reactions (the Stille reaction). Hydrostannation of alkynes is still the more simple and economical method for the preparation of vinylstannanes. However, in recent publications it has been stated that the main problems of radical hydrostannation are the low yields [2a,2] and that the regio- and stereoselectivities are low [2b,2c]. It has also been stated that, depending on the structure of the alkynes, regio- and stereoselectivities could not be predicted under radical conditions [2c].

We are interested in the synthesis of organotin hydrides with bulky organic ligands and in their chemical properties, especially with regard to the effect of the volume of these ligands on the stereochemistry of re-

E-mail address: jpodesta@criba.edu.ar (J.C. Podestá).

ductions and additions [3]. In this paper, we report the results obtained in the addition of trineophyltin hydride (1) [3a] to mono- and disubstituted alkynes under radical and palladium catalyzed conditions.

#### 2. Results and discussion

According to previous reports on the addition of organotin hydrides to acetylenes, we expected that whereas the hydrostannation under radical conditions would lead to a mixture of mainly the two regioisomers resulting from an *anti* attack (A-1 and A-2), the palladium catalyzed reactions would yield mainly two regioisomers corresponding to a *syn* addition (S-1 and S-2), as shown in Scheme 1.



Scheme 1. Possible adducts resulting from the hydrostannation of substituted alkynes with trineophyltin hydride (1).

<sup>\*</sup> Corresponding author. Tel.: + 54-91-26420/280345; fax: + 54-291-4595187.

<sup>&</sup>lt;sup>1</sup> Member of the National Research Council (CONICET), Argentina.

We first carried out the addition of trineophyltin hydride (1) under free radical conditions: nitrogen atmosphere, 0.01 equivalents of azobisisobutyronitrile (AIBN), without solvent at 90 °C (Section 3.1.1) or in toluene at the same temperature (Section 3.1.2), and UV irradiation in toluene (Section 3.1.3) to a series of eight substituted alkynes. The results obtained are summarized in Table 1.

This table shows that, according to the reaction conditions, the addition of 1 to propargyl alcohol, methyl propiolate, diphenylethyne, 3-phenyl-2-propyn-1-ol, 2-butyn-1-ol, and methyl 3-phenylpropiolate leads almost exclusively to the Z-vinylstannanes resulting from an *anti* attack. In Table 1, it could also be seen that in the additions to phenylethyne and dimethyl acetylenedicarboxylate under the three radical condi-

tions studied, and methyl propiolate under appropriate conditions, *E*-adducts were de soles products. The formation of the *E*-adducts 2, 5 and 11, could be explained taking into account that the known isomerization of the initially formed kinetic *Z*-products by further addition/elimination of the stannyl radical would lead to the thermodynamically more stable *E*-vinylstannanes [2c,4].

The geometry assigned to compounds **3**, **4**, and **6**–**10** follows from the large  ${}^{3}J(\text{Sn},\text{H})$  coupling constants, mostly well over 110 Hz, that indicate the existence of *trans* H–C–C–Sn linkages in these compounds. The observed  ${}^{3}J(\text{Sn},\text{H})$  coupling constants for compounds **2**, **5** and **11** —between 23 and 75 Hz (Table 2)—clearly indicate the existence of a *cis* H–C–C–Sn linkage in these compounds. These structures were confirmed by other <sup>1</sup>H- and <sup>13</sup>C-NMR data.

Table 1

Trienophyltin hydride radical addition to substituted alkynes



| Compound number | Method <sup>a</sup> | Time (h) | $\mathbb{R}^1$     | $\mathbb{R}^2$     | A-1 (%) | A-2 (%)         | S-1 (%)          | Yield <sup>b</sup> (%) | <sup>119</sup> Sn <sup>c</sup> (ppm) |
|-----------------|---------------------|----------|--------------------|--------------------|---------|-----------------|------------------|------------------------|--------------------------------------|
| 2               | А                   | 1        | Н                  | Ph                 |         |                 | 100 <sup>d</sup> | 99                     | -93.7                                |
| 2               | В                   | 5        | Н                  | Ph                 |         |                 | 100 <sup>d</sup> | 99                     |                                      |
| 2               | С                   | 0.5      | Н                  | Ph                 |         |                 | 100 <sup>d</sup> | 100                    |                                      |
| 3               | А                   | 6        | Н                  | CH <sub>2</sub> OH |         | 100             |                  | 69                     | -97.5                                |
| 3               | В                   | 10       | Н                  | $CH_2OH$           |         | 100             |                  | 55                     |                                      |
| 3               | С                   | 26       | Н                  | $CH_2OH$           |         | 100             |                  | 49                     |                                      |
| 4 and 5         | А                   | 1        | Н                  | COOMe              |         | 34 (4)          | 66 <sup>e</sup>  | 87                     | <b>4</b> : -92.4                     |
|                 |                     |          |                    |                    |         |                 | (5)              |                        |                                      |
|                 |                     |          |                    |                    |         |                 |                  |                        | <b>5</b> : -83.5                     |
| 4 and 5         | В                   | 1        | Н                  | COOMe              |         | 91 ( <b>4</b> ) | 9 °              | 65                     |                                      |
|                 |                     |          |                    |                    |         |                 | (5)              |                        |                                      |
| 5               | С                   | 0.75     | Н                  | COOMe              |         |                 | 100 e            | 100                    |                                      |
| 6               | А                   | 5        | Ph                 | Ph                 |         | 100             |                  | 70                     | -89.0                                |
| 6               | В                   | 14       | Ph                 | Ph                 |         | 100             |                  | 41                     |                                      |
| 6               | С                   | 72       | Ph                 | Ph                 |         |                 |                  |                        | f                                    |
| 7               | А                   | 5        | $CH_2OH$           | Ph                 |         | 100             |                  | 61                     | -88.8                                |
| 7               | В                   | 6        | CH <sub>2</sub> OH | Ph                 |         | 100             |                  | 75                     |                                      |
| 7               | С                   | 10       | $CH_2OH$           | Ph                 |         | 100             |                  | 22                     |                                      |
| 8 and 9         | А                   | 9        | $CH_2OH$           | Me                 | 12 (8)  | 88 ( <b>9</b> ) |                  | 60                     | <b>8</b> : -93.2                     |
|                 |                     |          |                    |                    |         |                 |                  |                        | <b>9</b> : -94.4                     |
| 9               | В                   | 24       | $CH_2OH$           | Me                 |         | 100             |                  | 55                     |                                      |
| 9               | С                   | 19       | CH <sub>2</sub> OH | Me                 |         |                 |                  |                        | f                                    |
| 10              | А                   | 2        | Ph                 | COOMe              |         | 100             |                  | 80                     | -81.7                                |
| 10              | В                   | 2        | Ph                 | COOMe              |         | 100             |                  | 68                     |                                      |
| 10              | С                   | 1        | Ph                 | COOMe              |         | 100             |                  | 100                    |                                      |
| 11              | А                   | 2        | COOMe              | COOMe              |         |                 | 100              | 80                     | -80.7                                |
| 11              | В                   | 3        | COOMe              | COOMe              |         |                 | 100              | 88                     |                                      |
| 11              | С                   | 1        | COOMe              | COOMe              |         |                 | 100              | 100                    |                                      |

<sup>a</sup> The reaction were carried out under a nitrogen atmosphere; ratio hydride/alkyne = 1. Method A, AIBN 0.01 equivalents, heating at 90 °C without solvent. Method B, AIBN 0.01 equivalents, heating at 90 °C in Toluene. Method C, UV irradiation in toluene.

<sup>b</sup> Yields of products isolated from the column chromatography.

<sup>c</sup> In CDCl<sub>3</sub>; in ppm with respect to Me<sub>4</sub>Sn.

<sup>d</sup> The product isolated was (E)-1-trineophylstannyl-2-phenylethylene (2), see text.

<sup>e</sup> See text.

<sup>f</sup> No adduct formation observed.

Table 2 Trineophyltin hydride palladium-catalized additions to substituted alkynes <sup>a</sup>

| $R^1 \longrightarrow R^2 + R_3 SnH \longrightarrow R^1 \longrightarrow R^2 + R^2 + R^1 \longrightarrow R^2$ |                                      |                    |                             |                             |             |                                      |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------|-----------------------------|-----------------------------|-------------|--------------------------------------|
| R = Neophyl = PhN                                                                                           | Me <sub>2</sub> CCH <sub>2</sub> S-1 | I S-2              |                             |                             |             |                                      |
| Compound no.                                                                                                | $\mathbb{R}^1$                       | R <sup>2</sup>     | <b>S-1</b> (%) <sup>b</sup> | <b>S-2</b> (%) <sup>b</sup> | Yield ° (%) | <sup>119</sup> Sn <sup>d</sup> (ppm) |
| 12                                                                                                          | Ph                                   | Н                  | 100                         |                             | 99          | -79.8                                |
| 13 and 14                                                                                                   | Н                                    | CH <sub>2</sub> OH | 30 (13)                     | 70 (14)                     | 67          | <b>13:</b> -84.7<br><b>14:</b> -85.6 |
| 15                                                                                                          | Ph                                   | Ph                 | 100                         |                             | 79          | -72.3                                |
| 16 and 17                                                                                                   | CH <sub>2</sub> OH                   | Ph                 | 67 ( <b>16</b> )            | 33 (17)                     | 60          | <b>16:</b> -77.2<br><b>17:</b> -77.6 |
| 18 and 19                                                                                                   | CH <sub>2</sub> OH                   | Me                 | 53 (18)                     | 47 (19)                     | 70          | <b>18:</b> -82.5<br><b>19:</b> -76.4 |
| 5 and 20                                                                                                    | Н                                    | COOMe              | 31 (5)                      | 69 ( <b>20</b> )            | 82          | <b>9:</b> -83.5<br><b>20:</b> -76.8  |
| 21 and 22                                                                                                   | Ph                                   | COOMe              | 33 (21)                     | 67 ( <b>22</b> )            | 70          | <b>21:</b> -55.6<br><b>22:</b> -68.1 |
| 11                                                                                                          | COOMe                                | COOMe              | 100                         |                             | 94          | -80.7                                |

<sup>a</sup> The reaction were carried out under a nitrogen atmosphere in THF; ratio hydride/alkyne = 1; PdCl<sub>2</sub>(Ph<sub>3</sub>P)<sub>2</sub>: 2%; reaction time: 30 min.

<sup>b</sup> By integration of the <sup>119</sup>Sn-NMR spectrum.

<sup>c</sup> Yields of products isolated from the column chromatography.

<sup>d</sup> In CDCl<sub>3</sub>.

The addition of trineophyltin hydride (1) to the same eight alkynes at r.t. in THF containing 2% of bis(t-riphenylphosphine)palladium(II) chloride led, after 30 min of reaction, in most cases to mixtures of adducts. The results obtained are summarized in Table 2. This Table shows that all the regioisomers formed are those resulting from a *syn* attack (Scheme 1, S-1 and S-2).

The stereochemistry of compounds 11-22 was assigned taking into account that the observed  ${}^{3}J(Sn,H)$  coupling constants were in the range 65–85 Hz, clearly indicating a *cis* arrangement of the proton attached to vinyl carbon 2 and the trineophyltin moiety attached to vinyl carbon 1 of these adducts. Other  ${}^{1}H$ - and  ${}^{13}C$ -NMR data confirmed also the assigned structures (Tables 3 and 4).

These results clearly demonstrate that, contrary to what has previously been stated [2a,2b,2c], it is possible using organotin hydrides with bulky organic ligands such as **1** to carry out radical hydrostannation of mono- and disubstituted alkynes with very good to excellent stereoselectivities. The *anti*-addition products were mainly obtained in satisfactory to excellent yields (55–100%), and in only one case a mixture of the two possible regioisomers in a ratio 9/8 = 7.33 was observed.

It should be noted that in a recent publication it has been reported that the radical addition of tri-*n*-butyltin hydride to the 3-phenyl-2-propyne-1-ol leads to a mixture of (*E*)- and (*Z*)-3-phenyl-2-propen-1-ol (ratio E/Z = 61:39) in 72% yield [5].

On the other hand, the addition of 1 catalyzed by bis(triphenylphosphine) palladium(II) chloride to the

same alkynes, also takes place stereoselectively but leads in all cases to the products of a *syn* attack, mainly as a mixture of the two possible regioisomers in good to excellent yields (60-99%).

The chemical reactivity of the new vinyltrineophylstannanes is similar to that of other vinyltriorganostannanes. Thus, the iododestannylation of (E)-1-trineophylstannyl-2-phenylethene (**2**) leads to (E)- $\beta$ iodostyrene [6] in 82% yield and the Stille reaction of **2** with bromobenzene gives *trans*-stilbene in 86% yield.

Further investigations in order to study the effect of changes of catalyst, alkyne, and the size of the ligands of the organotin hydrides on the stereochemistry of these additions are in progress.

# 3. Experimental

The NMR spectra were determined partly at Dortmund University (Germany) (<sup>1</sup>H, <sup>13</sup>C and <sup>119</sup>Sn) using a Bruker AM 300 instrument, and partly at IQUIOS (Rosario, Argentina) with a Bruker AC 200 instrument. Mass spectra were obtained using a Finnigan MAT Model 8230 at Dortmund University. Irradiations were conducted in a reactor equipped with four 250-W lamps with peak emission at 350 nm (Philips Model HPT) water cooled. All the solvents and reagents used were analytical reagent grade. Trineophyltin hydride (1) was prepared as described [7]. Phenylacetylene, diphenylacetylene, propiolic acid, phenylpropiolic acid, acetylenedicarboxylic acid, propargyl alcohol, 2-butyn-1-ol, and bis(triphenylphosphine) palladium(II) chloride procedures before using. The methyl esters of the acids were obtained following known techniques [8]. Phenylpropargyl alcohol was obtained by reduction of methyl phenylpropiolate with lithiumaluminium hydride [9].

All the reactions were carried out following the same procedure. One experiment is described in detail in order to illustrate the methods used.

# Table 3

<sup>13</sup>C-NMR data of vinyltin adducts 2-22 a

|                       | R1<br>S | R²<br>ઽ |    |
|-----------------------|---------|---------|----|
| Neph <sub>3</sub> Sn∿ | ∿č=     | =ç∽     | ٢H |
|                       | 1       | 2       |    |

3.1. Addition of trineophyltin hydride (1) to substituted alkynes under radical conditions

#### 3.1.1. Method A

Methyl propiolate (0.15 g, 1.78 mmol) was treated for 1 h with hydride 1 (0.924 g, 1.78 mmol) under nitrogen at 90 °C and with AIBN as a catalyst (this

| Compound no. | R <sup>1</sup>     | R <sup>2</sup>     | C(1)           | C(2)           | R <sup>1 b</sup> | R <sup>2 b</sup> | *            |
|--------------|--------------------|--------------------|----------------|----------------|------------------|------------------|--------------|
| 2            | Н                  | Ph                 | 134.89 (447.0) | 145.24 (35.0)  |                  | 140.95 (10.7)    | с            |
| 3            | Н                  | CH <sub>2</sub> OH | 134.09 (366.0) | 144.63 (25.2)  |                  | 65.41 (37.9)     | d            |
| 4            | Н                  | COOMe              | 158.26 (320.7) | 133.48 (13.7)  |                  | 167.88 (13.7)    | e            |
| 5            | Н                  | COOMe              | 159.94 (315.7) | 133.25 (15.6)  |                  | 164.0 (35.4)     | f            |
| 6            | Ph                 | Ph                 | 151.89 (311.7) | 143.77 (20.4)  | 140.11 (19.4)    | 149.09 (29.1)    | g            |
| 7            | CH <sub>2</sub> OH | Ph                 | 148.32 (332.7) | 138.74 (16.2)  | 69.55 (52.5)     | 140.20 (22.3)    | h            |
| 8            | Me                 | CH <sub>2</sub> OH | 144.73 (367.6) | 139.14 (26.3)  | 20.6 (46.5)      | 64.68 (37.0)     | i            |
| 9            | CH <sub>2</sub> OH | Me                 | 144.95 (371.0) | 136.11 (24.3)  | 70.18 (48.6)     | 20.65 (36.9)     | j            |
| 10           | COOMe              | Ph                 | 141.01 (314.8) | 152.84 (21.2)  | 172.26 (12.7)    | 138.47 (16.3)    | k            |
| 11           | COOMe              | COOMe              | 161.88 (416.9) | 128.28 (16.5)  | 172.69 (no)      | 163.58 (no)      | 1            |
| 12           | Ph                 | Н                  | 150.87 (375.1) | 128.07 (11.7)  | 151.29 (11.7)    |                  | m            |
| 13           | Н                  | CH <sub>2</sub> OH | 130.29 (425.4) | 144.39 (24.2)  |                  | 66.04 (68.0)     | n            |
| 14           | CH <sub>2</sub> OH | Н                  | 155.53 (336.3) | 122.53 (21.4)  | 68.49 (58.3)     |                  | 0            |
| 15           | COOMe              | Н                  | 139.25 (24.0)  | 148.29 (324.0) | 171.61 (14.3)    |                  | u            |
| 16           | Ph                 | Ph                 | 145.49 (320.6) | 138.91 (31.1)  | 152.16 (35.2)    | 137.64 (60.2)    | р            |
| 17           | CH <sub>2</sub> OH | Ph                 | 150.62 (346.3) | 140.46 (24.1)  | 143.86 (26.9)    | 60.69 (52.5)     | q            |
| 18           | Ph                 | CH <sub>2</sub> OH | 137.89 (nd)    | (138.46 (27.2) | 63.80 (29.2)     | 152.49 (19.5)    | r            |
| 19           | Me                 | CH <sub>2</sub> OH | 143.45 (381.0) | 139.28 (27.2)  | 18.62 (42.8)     | 59.04 (62.2)     | s            |
| 20           | CH <sub>2</sub> OH | Me                 | 146.70 (410.1) | 135.63 (25.3)  | 62.40 (31.1)     | 14.99 (58.3)     | t            |
| 21           | Ph -               | COOMe              | 141.85 (256.3) | 141.18 (14.2)  | 137.11 (46.8)    | 173.71 (38.4)    | $\mathbf{v}$ |
| 22           | COOMe              | Ph                 | 164.14 (nd)    | 124.19 (13.5)  | 172.71 (17.9)    | 144.62 (16.3)    | w            |

<sup>a</sup> In CDCl<sub>3</sub>; chemical shifts,  $\delta$ , in ppm with respect to IMS; "J(Sn,C) coupling constants, in Hz On brackets); nd, not determined.

<sup>b</sup> When  $R^1$  and  $R^2 = pH$  = chemical shift of the *ipso* carbon.

\* Other signals:

° 32.07 (335.3); 32.85 (35,0); 38.11 (18.4); 125.35; 125.42; 127.04; 127.84; 127.97; 128.04; 151.69 (27.2).

- <sup>d</sup> 32.36 (336.3); 32.98 (35.9); 38.06 (19.4); 125.32; 125.38; 127.92; 151.06 (20.4).
- ° 32.5 (349.8); 32.9 (36.9); 38.0 (19.4); 125.8; 125.9; 143.0; 152.0.
- f 30.5 (339.2); 32.9 (37.0); 36.9 (19.2); 124.1; 124.6; 132.5; 150.0.
- <sup>g</sup> 32.34 (321.0); 32.44 (33.0); 37.82 (18.5); 125.25; 125.35; 125.44; 127.05; 127.26; 127.87; 127.92; 128.10; 128.54; 151.69 (27.2).
- <sup>h</sup> 31.94 (344.6); 32.70 (35.0); 37.94 (19.4); 125.34; 125.37; 126.79; 127.88; 128.00; 128.43; 151.38 (24.3).
- <sup>i</sup> 32.00 (307.9); 32.93 (36.2); 38.08 (19.2); 125.15; 125.44; 128.30; 151.29.
- <sup>j</sup> 31.64 (323.4); 32.80 (35.0); 38.02 (18.5); 125.34; 125.42; 127.87; 151.38 (22.4).
- <sup>k</sup> 32.33 (34.0); 33.16 (327.2); 37.86 (18.5); 51.57; 125.24; 125.29; 127.81; 128.00; 128.27; 132.83; 151,58 (32.1).
- 131.13 (332.7); 32.9 (42.8); 37.55 (19.2); 51.02; 50.12; 125.12; 125.6; 128.09; 150.04.
- <sup>m</sup> 31.23 (330.5); 33.10 (36.9); 38.01 (17.5); 125.20; 125.24; 125.43; 125.44; 125.92; 126.68 (15.6); 128.01; 128.32; 128.41 (27.2); 150.49 (21.4).
- <sup>n</sup> 31.18 (340.2); 33.11 (36.9); 38.04 (19.4); 125.36; 125.42; 127.97; 151.27 (19.4).
- ° 30.70 (330.4); 33.22 (38.9); 37.96 (19.4); 125.45; 127.96; 151,04 (17.5).
- <sup>p</sup> 31.4 (334.5); 32.9 (36.7); 38.3 (19.0); 125.2; 125.3; 127.8; 151.6.
- <sup>4</sup> 30.75 (322.7); 33.21 (38.9); 37.89 (19.4); 125.04; 15.42; 125.46; 126.43; 126.50; 127.80; 128.04; 128.53; 129.04; 151.27 (17.5).
- <sup>r</sup> 30.84 (325.8); 33.15 (36.9); 37.85 (18.5); 125.13; 125.29; 126.53 (14.9); 127.90; 127.92; 151.13 (18.5).
- <sup>s</sup> 32.07 (314.9); 33.26 (36.9); 38.24 (19.4); 125.50; 125.62; 126.61; 127.99; 128.77; 130.86; 151.38 (19.5).
- <sup>t</sup> 30.68 (322.7); 33.27 (36.9); 37.95 (17.5); 125.36; 125.45; 127.96; 151.27 (17.5).
- <sup>u</sup> 31.39 (326.6); 33.20 (36.9); 38.10 (19.4); 125.36; 125.55; 127.88; 151.38 (17.5).
- <sup>v</sup> 31.36 (340.2); 33.14 (40.5); 37.70 (18.5); 51.09; 125.32; 125.47; 127.48; 127.78; 127.89; 128.03; 128.23; 128.45; 130.56; 132.86; 150.85 (19.2).
- <sup>w</sup> 30.56 (333.0); 33.14 (38.3); 37.69 (18.5); 50.78; 125.27; 125.48; 128.03; 128.15; 150.72 (17.7).

optimal time of reaction was indicated by earlier experiments in which the reaction was monitored by taking samples at intervals and observing the disappearance of the Sn-H absorption by IR). The <sup>119</sup>Sn-NMR spectrum of the crude product showed that it consisted of a mixture of two compounds: methyl (Z)-3-(trineophylstannyl)propenoate (4), peak at -92.4 ppm, (34%), and (E)-3-(trineophylstannyl)propenoate (5), peak at -83.5 ppm, (66%). Flash chromatography (silica gel 60) of the mixture afforded **4** (0.31 g, 0.52 mmol, 29.6%) and **5** (0.62 g, 1.02 mmol, 57.4%), in the fractions eluted with hexane/diethyl ether (97:3).

# 3.1.2. Method B

To a solution of methyl propiolate (0.15 g, 1.78 mmol) and AIBN (0.0023 g) in dry toluene (15 ml) under nitrogen was added 1 (0.924 g, 1.78 mmol) and the mixture was heated at 90 °C during 1 h. The

| Table 4            |         |    |           |      |
|--------------------|---------|----|-----------|------|
| <sup>1</sup> H-NMR | spectra | of | compounds | 2–22 |

solvent was distilled off under reduced pressure. The <sup>119</sup>Sn-NMR spectrum showed that under these conditions a mixture of two compounds was formed: methyl (*Z*)-3-(trineophylstannyl)propenoate (**4**) (91%) and methyl (*E*)-3-(trineophylstannyl)propenoate (**5**) (9%). Flash chromatography (silica gel 60) of the mixture afforded **4** (0.65 g, 1.08 mmol, 59.2%) and **5** (0.04 g, 0.067 mmol, 5,8%), in the fractions eluted with hexane/ diethyl ether (97:3).

# 3.1.3. Method C

A solution of methyl propiolate (0.15 g, 1.78 mmol) and 1 (0.924 g, 1.78 mmol) in dry toluene (15 ml) under nitrogen was irradiated at room temperature (r.t.) during 45 min. The solvent was distilled off under reduced pressure. The <sup>119</sup>Sn-NMR spectrum showed that under these conditions only methyl (*E*)-3-(trineophylstan-nyl)propenoate (**5**) in quantitative yield was obtained.

| Number | Chemical shifts ( $\delta$ , in ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2      | $\begin{array}{c} 0.85 \text{ (s, 3H, } {}^{2}J(\text{Sn,H}) \ 48.7); \ 0.87 \text{ (s, 3H, } {}^{2}J(\text{Sn,H}) \ 50.7); \ 1.09 \text{ (s, 9H)}; \ 1.10 \text{ (s, 9H)}; \ 5.55 \text{ (d, 1H, } {}^{3}J(\text{H,H}) \ 14.1; \ {}^{2}J(\text{Sn,H}) \ 63.0); \\ 5.55 \text{ (d, 1H, } {}^{3}J(\text{H,H}) \ 14.1; \ {}^{2}J(\text{Sn,H}) \ 63.0); \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ,      | $ \begin{array}{l} 5.50 \ (d, 1H, -7(H,H) \ 14.1; \ 7(SH,H) \ 04.0; \ 0.85 - 1.42 \ (H, 20H) \\ 0.07 \ (e, H, 20H) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3      | $^{3}I(\text{H H})$ 12 8 $^{3}I(\text{Sn H})$ 142 1): 7.05–7.25 (m 15H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1      | $(10 (s 2H) \cdot 115 (s 6H) \cdot 361 (s 3H) \cdot 617 (d 1H) \frac{3}{4}(H H) \frac{13}{3} \cdot \frac{2}{4}(Sn H) \frac{119}{4} \cdot 624 (d 1H) \frac{3}{4}(H H) \frac{13}{3} \cdot \frac{3}{4}(Sn H) \frac{169}{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •      | 7.03-7.22 (m, 5H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5      | (.91 (s. 2H); 1.10 (s. 6H); 3.65 (s. 3H); 5.80 (d. 1H, 3J(H,H) 19.3; 2J(Sn,H) 56.7); 5.82 (d. 1H, 3J(H,H) 19.3; 3J(Sn,H) 74.9);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | 6.83–7.30 (m, 5H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6      | $0.88$ (s, 6H, ${}^{2}J(Sn,H)$ 50.4); 0.98 (s, 18H); 6.97–7.26 (m, 26H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7      | 0.99 (s, 6H, <sup>2</sup> <i>J</i> (Sn,H) 50.7); 1.03 (s, 18H); 3.87 (bs, 2H, <sup>3</sup> <i>J</i> (Sn,H) 26.8); 5.17 (s, 1H, <sup>3</sup> <i>J</i> (Sn,H) 177.2); 7.00–7.30 (m, 20H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8      | 1.15 (s, 6H, <sup>2</sup> <i>J</i> (Sn,H) 48.8); 1.20 (s, 18H); 1.80 (d, 3H, <sup>4</sup> <i>J</i> (H,H) 1.1; <sup>3</sup> <i>J</i> (Sn,H) 42.3); 3.70 (m, 2H); 5.96 (tq, 1H, <sup>4</sup> <i>J</i> (H,H) 1.1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | ${}^{3}J(\text{H},\text{H})$ 6.7, ${}^{3}J(\text{Sn},\text{H})$ 143.3); 6.84–7.36 (m, 15H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9      | 1.12 (s, 6H, ${}^{2}J(Sn,H)$ 50.4); 1.14 (s, 18H); 1.48 (d, 3H, ${}^{3}J(H,H)$ 6.8); 3.85 (bs, 2H, ${}^{3}J(Sn,H)$ 38.1); 6.00 (qt, 1H, ${}^{4}J(H,H)$ 1.5;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | <sup>3</sup> <i>J</i> (H,H) 6.8; <sup>3</sup> <i>J</i> (Sn,H) 127.5); 7.05–7.21 (m, 15H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | 1.02 (s, 18H); 1.05 (s, 6H, ${}^{2}J(Sn,H)$ 49.9); 3.63 (s, 3H); 6.70–7.62 (m, 20H); 8.16 (s, 1H ${}^{3}J(Sn,H)$ 107.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11     | 0.95 (s, 2H); 1.08 (s, 6H); 3.65 (s, 3H); 3.75 (s, 3H); 5.58 (s, 1H, <sup>3</sup> /(Sn,H) 23.2); 6.95–7.25 (m, 5H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12     | $0.93$ (s, $3H$ , ${}^{2}J(Sn,H)$ 48.7); $0.95$ (s, $3H$ , ${}^{2}J(Sn,H)$ 49.7); $1.14$ (s, $9H$ ); $1.16$ (s, $9H$ ); $5.20$ (d, $1H$ , ${}^{2}J(H,H)$ 2.5, ${}^{3}J(Sn,H)$ 65.3); 5.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12     | (d, 1H, -2/(H, H), 2.5, -2/(Sn, H), 135.5); 6.80-7.28 (m, 20H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13     | 0.95 (s, $0H$ , $-J(Sn,H)$ $50.7$ ); 1.14 (s, $18H$ ); 3.78 (m, $2H$ ); 5.25 (dt, $1H$ , $-J(H,H)$ 1.70, $-J(H,H)$ 18.8, $-J(Sn,H)$ /0.0); 5.58 (dt, $1H$ , $-J(H,H)$ 1.70, $-J(H,H)$ 18.8, $-J(Sn,H)$ /0.0); 5.58 (dt, $1H$ , $-J(H,H)$ 1.70, $-J(H,H)$ 18.8, $-J(Sn,H)$ /0.0); 5.58 (dt, $1H$ , $-J(H,H)$ 1.70, $-J(H,H)$ 18.8, $-J(Sn,H)$ /0.0); 5.58 (dt, $1H$ , $-J(H,H)$ 1.70, $-J(H,H)$ 18.8, $-J(Sn,H)$ /0.0); 5.58 (dt, $1H$ , $-J(Sn,H)$ /0.0); 5.58 (dt, $1H$ , $-J(H,H)$ 1.70, $-J(H,H)$ 18.8, $-J(Sn,H)$ /0.0); 5.58 (dt, $1H$ , $-J(H,H)$ 1.70, $-J(H,H)$ 18.8, $-J(Sn,H)$ /0.0); 5.58 (dt, $1H$ , $-J(H,H)$ 1.70, $-J(H,H)$ 18.8, $-J(Sn,H)$ /0.0); 5.58 (dt, $1H$ , $-J(H,H)$ 1.70, $-J(H,H)$ 18.8, $-J(Sn,H)$ /0.0); 5.58 (dt, $1H$ , $-J(S$ |
| 14     | $J(\mathbf{n},\mathbf{n})$ 4.5, $J(\mathbf{n},\mathbf{n})$ 16.6, $J(3\mathbf{n},\mathbf{n})$ 6.7), 0.91–0.56 (iii, 13.1)<br>0.09 (6.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11) 2/(10.11               |
| 14     | 0.96 (s, $0n$ , $J(51,n)$ $30.2$ ), $1.14$ (s, $16n$ ), $5.06$ (iii, $2n$ , $J(51,n)$ $25.1$ ), $5.01$ (ut, $1n$ , $J(n,n)$ $1.6$ , $J(n,n)$ $1.6$ , $J(51,n)$ $70.2$ ),<br>$5.63$ (dt $1H$ $^{4}I(HH)$ $2.0$ $^{2}I(HH)$ $1.8$ $^{3}I(SnH)$ $137.5$ ); $6.04.7.26$ (m. 15H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 15     | 5.05 (di, 111, $5(1,11)$ 2.0, $5(1,11)$ 1.0, $5(5(1,11)$ 15.3, $0.54+7.20$ (iii, 1511)<br>1.0 (c) (1) (2) (c) (1) (3.58 (c) (1) (3.55 (c) (11 (3.10 (1) (3.10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (10 (1) (1) (1) (10 (1) (10 (1) (1) (10 (1) (1) (10 (1) (1) (10 (1) (1) (1) (1) (1) (10                                                      |
| 15     | 1.00 (5, 211), 1.07 (5, 511), 5.55 (5, 511), 5.55 (6, 111, 5(111)) 2.4, 5(511) 50.57, 5.52 (6, 111, 5(111)) 2.4, 5(511) 20.7),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16     | $0.87$ (s. 6H, $^{2}/(\text{Sn-H})$ 48.2); 1.02 (s. 18H); 6.35 (s. 1H, $^{3}/(\text{Sn-H})$ 69.3); 6.66–7.27 (m. 25H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17     | 0.88 (s. 18H): 1.11 (s. 6H. <sup>2</sup> /(Sn.H) 64.4): 3.76 (d. 2H. <sup>3</sup> /(H.H) 6.1), 5.49 (t. 1H. <sup>3</sup> /(H.H) 6.1, <sup>3</sup> /(Sn.H) 77.4): 6.57–6.69 (m. 5H):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 6.85–7.32 (m, 15H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18     | 1.13 (s, 6H, <sup>2</sup> <i>J</i> (Sn,H) 54.2); 1.18 (s, 18H); 3.90 (m, 2H, <sup>3</sup> <i>J</i> (Sn,H) 42.7); 5.20 (s, 1H); 6.39 (bs, 1H, <sup>3</sup> <i>J</i> (Sn,H) 85.3); 7.20–7.54 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 20H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 19     | 0.95 (s, 6H, <sup>2</sup> <i>J</i> (Sn,H) 49.2); 1.11 (s, 18H); 1.40 (s, 3H, <sup>3</sup> <i>J</i> (Sn,H) 47.7); 3.95 (d, 2H, <sup>3</sup> <i>J</i> (H,H) 5.8); 5.33 (t, 1H, <sup>3</sup> <i>J</i> (H,H) 5.8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | <sup>3</sup> <i>J</i> (Sn,H) 85.3); 6.97–7.25 (m, 15H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20     | 1.02 (s, 18H); 1.13 (s, 6H, ${}^{2}J(Sn,H)$ 40.6); 1.44 (d, 3H, ${}^{3}J(H,H)$ 6.5), 3.72 (d, 2H, ${}^{4}J(H,H)$ 4.8, ${}^{3}J(Sn,H)$ 49.4); 5.34 (m, 1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | <sup>3</sup> J(Sn,H) 70.3); 6.93–7.36 (m, 15H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21     | 0.99 (s, 6H, <sup>2</sup> J(Sn,H) 56.2); 1.11 (s, 18H); 3.62 (s, 3H); 6.27 (s, 1H, <sup>3</sup> J(Sn,H) 59.2); 6.63–7.34 (m, 20H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22     | 0.84 (s, 6H, $^{2}J(Sn,H)$ 49.7); 1.36 (s, 18H); 3.46 (s, 3H); 5.84 (s, 1H, $^{3}J(Sn,H)$ 56.2); 6.63–7.34 (m, 20H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

In CDCl<sub>3</sub>; multiplicity and J values in parentheses; coupling constants in Hz; bs, broad singlet.

# 3.2. Addition of trineophyltin hydride (1) to substituted alkynes catalyzed by bis(triphenylphosphine) palladium(II) chloride

To a solution of methyl propiolate (0.15 g, 1.78 mmol) and bis(triphenylphosphine) palladium(II) chloride (0.025 g, 0.0358 mmol) in dry THF (5 ml) under nitrogen was added **1** (0.924 g, 1.78 mmol), and the mixture was stirred at r.t. during 30 min. The solvent was distilled off under reduced pressure. The <sup>119</sup>Sn-NMR spectrum showed that under these conditions a mixture of two compounds was formed: methyl (*E*)-3-(trineophylstan-nyl)propenoate (**5**) (31%) and methyl 2-(trineophylstan-nyl)propenoate (**20**) (69%). Flash chromatography (silica gel 60) of the mixture afforded **5** (0.22 g, 0.37 mmol, 26%) and **20** (0.49 g, 0.83 mmol, 56%), in the fractions eluted with hexane/diethyl ether (85:15).

# 3.2.1. Mass spectra of the new vinyltin compounds

3.2.1.1. (*E*)-trineophyltinphenylethylene (2). MS (*m*/*z*, relative intensity): 622 (M<sup>+</sup>, Sn-pattern); 519 (4%, [SnNeof<sub>3</sub>]<sup>+</sup>); 489 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 464 (8%, Sn-pattern); 431 (4%, Sn-pattern); 423 (2%, Sn-pattern); 385 (1%, [SnNeof<sub>2</sub>]<sup>+</sup>); 375 (5%, Sn-pattern); 355 (2%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 253 (4%, [SnNeof]<sup>+</sup>); 223 (10%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 197 (12%, Sn-pattern); 105 (9%, [M – SnNeof<sub>3</sub>]<sup>+</sup>); 118 (6%, [Sn]<sup>+</sup>).

3.2.1.2. (Z)-3-trineophyltin-2-propenol (3). MS (m/z, relative intensity): 576 (M<sup>+</sup>; Sn-pattern); 519 (13%, [SnNeof<sub>3</sub>]<sup>+</sup>); 443 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 403 (20%, Sn-pattern); 385 (17%, [SnNeof<sub>2</sub>]<sup>+</sup>); 253 (15%, [SnNeof]<sup>+</sup>); 197 (30%, Sn-pattern); 177 (5%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 133 (10%, [Neof]<sup>+</sup>); 118 (3%, [Sn]<sup>+</sup>); 57 (3%, [M – SnNeof<sub>3</sub>]<sup>+</sup>).

3.2.1.3. (Z)-3-trineophyltin-2-propenoic acid methyl ester (4). MS (m/z, relative intensity): 604 (M<sup>+</sup>; Sn-pattern); 519 (10%, [SnNeof<sub>3</sub>]<sup>+</sup>); 471 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 385 (3%, [SnNeof<sub>2</sub>]<sup>+</sup>); 338 (4%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 253 (14%, [SnNeof]<sup>+</sup>); 205 (9%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 133 (7%, [Neof]<sup>+</sup>); 118 (5%, [Sn]<sup>+</sup>).

3.2.1.4. (*E*)-3-trineophyltin-2-propenoic acid methyl ester (5). MS (*m*/*z*, relative intensity): 604 (M<sup>+</sup>; Sn-pattern); 519 (11%, [SnNeof<sub>3</sub>]<sup>+</sup>); 471 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 385 (5%, [SnNeof<sub>2</sub>]<sup>+</sup>); 338 (3%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 253 (15%, [SnNeof]<sup>+</sup>); 205 (10%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 133 (7%, [Neof]<sup>+</sup>); 118 (4%, [Sn]<sup>+</sup>).

3.2.1.5. (*Z*)-trineophyltin-1,2-diphenylethylene (6). MS (m/z, relative intensity): 696 (M<sup>+</sup>; Sn-pattern); 565 (100%, [M-Neof]<sup>+</sup>, Sn-pattern); 519 (35%, [SnNeof<sub>3</sub>]<sup>+</sup>); 431 (2%, [M-Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 385 (2%,

 $[SnNeof_2]^+$ ; 297 (13%,  $[M - Neof_3]^+$ , Sn-pattern); 253 (10%,  $[SnNeof]^+$ ); 197 (38%, Sn-pattern); 177 (10%,  $[M - SnNeof_3]^+$ ); 133 (6%,  $[Neof]^+$ ); 118 (5%,  $[Sn]^+$ ).

3.2.1.6. (Z)-2-trineophyltin-3-phenyl-2-propenol (7). MS (m/z, relative intensity): 652 (M<sup>+</sup>; Sn-pattern); 519 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 402 (17%, Sn-pattern); 384 (13%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 253 (11%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 197 (19%, Sn-pattern); 133 (10%, [M – SnNeof<sub>3</sub>]<sup>+</sup>); 118 (3%, [Sn]<sup>+</sup>); 55 (11%, [C<sub>3</sub>H<sub>3</sub>O]<sup>+</sup>).

3.2.1.7. (Z)-3-trineophyltin-2-butenol (8). MS (m/z, relative intensity): 590 (M<sup>+</sup>; Sn-pattern); 519 (6%, [SnNeof<sub>3</sub>]<sup>+</sup>); 457 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 443 (14%, Sn-pattern); 385 (11%, [SnNeof<sub>2</sub>]<sup>+</sup>); 324 (3%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 253 (20%, [SnNeof]<sup>+</sup>) 197 (25%, Sn-pattern); 191 (10%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 133 (5%, [Neof]<sup>+</sup>); 118 (2%, [Sn]<sup>+</sup>); 105 (10%, [C<sub>8</sub>H<sub>9</sub>]<sup>+</sup>); 55 (26%, [C<sub>3</sub>H<sub>3</sub>O]<sup>+</sup>).

3.2.1.8. (Z)-2-trineophyltin-2-butenol (9). MS (m/z, relative intensity): 590 (M<sup>+</sup>; Sn-pattern); 519 (7%, [SnNeof<sub>3</sub>]<sup>+</sup>); 457 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 443 (13%, Sn-pattern); 385 (11%, [SnNeof<sub>2</sub>]<sup>+</sup>); 324 (2%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 253 (15%, [SnNeof]<sup>+</sup>); 197 (27%, Sn-pattern); 191 (9%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 133 (6%, [Neof]<sup>+</sup>); 118 (4%, [Sn]<sup>+</sup>); 105 (11%, [C<sub>8</sub>H<sub>9</sub>]<sup>+</sup>); 55 (31%, [C<sub>3</sub>H<sub>3</sub>O]<sup>+</sup>).

3.2.1.9. (Z)-3-trineophyltin-3-phenyl-2-propenoic acid methyl ester (10). MS (m/z, relative intensity): 680 (M<sup>+</sup>; Sn-pattern); 547 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 519 (71%, [SnNeof<sub>3</sub>]<sup>+</sup>); 415 (3%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 385 (5%, [SnNeof<sub>2</sub>]<sup>+</sup>); 281 (18%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 253 (10%, [SnNeof]<sup>+</sup>); 197 (30%, Sn-pattern); 149 (7%, Sn-pattern); 133 (8%, [Neof]<sup>+</sup>); 118 (3%, [Sn]<sup>+</sup>); 105 (8%, [C<sub>8</sub>H<sub>9</sub>]<sup>+</sup>).

3.2.1.10. (E)-2-trineophyltin-maleic acid dimethyl ester (11). MS (m/z, relative intensity): 662 (M<sup>+</sup>; Sn-pattern); 529 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 519 (40%, [SnNeof<sub>3</sub>]<sup>+</sup>); 396 (4%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 385 (2%, [SnNeof<sub>2</sub>]<sup>+</sup>); 277 (6%, [M – SnNeof<sub>2</sub>]<sup>+</sup>); 263 (20%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 197 (20%, Sn-pattern); 143 (20%, [M – SnNeof<sub>3</sub>]<sup>+</sup>); 133 (10%, [Neof]<sup>+</sup>); 118 (3%, [Sn]<sup>+</sup>).

3.2.1.11. 1-Trineophyltin-1-phenylethylene (12). MS (m/ z, relative intensity): 622 (M<sup>+</sup>; Sn-pattern); 519 (2%, [SnNeof<sub>3</sub>]<sup>+</sup>); 489 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 464 (9%, Sn-pattern); 433 (3%, Sn-pattern); 421 (1%, Sn-pattern); 385 (1%, [SnNeof<sub>2</sub>]<sup>+</sup>); 377 (3%, Sn-pattern); 355 (1%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 253 (4%, [SnNeof]<sup>+</sup>); 223 (14%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 197 (15%, Sn-pattern); 118 (5%, [Sn]<sup>+</sup>); 103 (9%, [M – SnNeof<sub>3</sub>]<sup>+</sup>). 3.2.1.12. (E)-3-trineophyltin-2-propenol (13). MS (m/z, relative intensity): 576 (M<sup>+</sup>; Sn-pattern); 519 (7%, [SnNeof<sub>3</sub>]<sup>+</sup>); 443 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 403 (22%, Sn-pattern); 385 (19%, [SnNeof<sub>2</sub>]<sup>+</sup>); 253 (15%, [SnNeof]<sup>+</sup>); 197 (31%, Sn-pattern); 177 (5%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 133 (13%, [Neof]<sup>+</sup>); 117 (5%, [Sn]<sup>+</sup>); 57 (1%, [M – SnNeof<sub>3</sub>]).

3.2.1.13. 2-Trineophyltin–2-propenol (14). MS (m/z, relative intensity): 576 (M<sup>+</sup>; Sn-pattern); 519 (11%, [SnNeof<sub>3</sub>]<sup>+</sup>); 443 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 403 (20%, Sn-pattern); 385 (17%, [SnNeof<sub>2</sub>]<sup>+</sup>); 253 (13%, [SnNeof]<sup>+</sup>); 197 (34%, Sn-pattern); 177 (7%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 133 (12%, [Neof]<sup>+</sup>); 118 (4%, [Sn]<sup>+</sup>); 57 (2%, [M – SnNeof<sub>3</sub>]<sup>+</sup>).

3.2.1.14. (*E*)-trineophyltin-1,2-diphenylethylene (**15**). MS (m/z, relative intensity): 696 (M<sup>+</sup>; Sn-pattern); 565 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 519 (38%, [SnNeof<sub>3</sub>]<sup>+</sup>); 431 (1%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 385 (1%, [SnNeof<sub>2</sub>]<sup>+</sup>); 297 (15%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 253 (9%, [SnNeof]<sup>+</sup>); 197 (41%, Sn-pattern); 177 (13%, [M – SnNeof<sub>3</sub>]<sup>+</sup>); 133 (7%, [Neof]<sup>+</sup>); 118 (4%, [Sn]<sup>+</sup>).

3.2.1.15. (E)-2-trineophyltin-3-phenyl-2-propenol (16). MS (m/z, relative intensity): 652 (M<sup>+</sup>; Sn-pattern); 519 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 463 (9%, Sn-pattern); 421 (5%, Sn-pattern); 405 (1%, Sn-pattern); 387 (2%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 351 (1%, Sn-pattern); 329 (1%, Sn-pattern); 275 (3%, Sn-pattern); 253 (11%, [SnNeof<sub>3</sub>]<sup>+</sup>); 235 (6%, Sn-pattern); 197 (25%, Sn-pattern); 133 (24%, [M – SnNeof<sub>3</sub>]<sup>+</sup>); 119 (5%, [Sn]<sup>+</sup>); 55 (29%, [C<sub>3</sub>H<sub>3</sub>O]<sup>+</sup>).

3.2.1.16. (*E*)-3-trineophyltin-3-phenyl-2-propenol (17). MS (m/z, relative intensity): 652 (M<sup>+</sup>; Sn-pattern); 519 (52%, [M – Neof]<sup>+</sup>, Sn-pattern); 403 (34%, Sn-pattern); 385 (15%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 253 (13%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 197 (25%, Sn-pattern); 133 (14%, [M – SnNeof<sub>3</sub>]<sup>+</sup>); 117 (7%, [Sn]<sup>+</sup>); 55 (20%, [C<sub>3</sub>H<sub>3</sub>O]<sup>+</sup>).

3.2.1.17. (E)-2-trineophyltin-2-butenol (18). MS (m/z, relative intensity): 590 (M<sup>+</sup>; Sn-pattern); 519 (6%, [SnNeof<sub>3</sub>]<sup>+</sup>); 457 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 443 (14%, Sn-pattern); 324 (4%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 253 (23%, [SnNeof]<sup>+</sup>); 197 (25%, Sn-pattern); 191 (12%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 133 (7%, [Neof]<sup>+</sup>); 118 (4%, [Sn]<sup>+</sup>); 105 (9%, [C<sub>8</sub>H<sub>9</sub>]<sup>+</sup>); 55 (15%, [C<sub>3</sub>H<sub>3</sub>O]<sup>+</sup>).

*3.2.1.18.* (*E*)-3-trineophyltin-2-butenol (**19**). MS (*m*/*z*, relative intensity): 590 (M<sup>+</sup>; Sn-pattern); 519 (7%, [SnNeof<sub>3</sub>]<sup>+</sup>); 457 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 401 (3%, Sn-pattern); 385 (2%, [SnNeof<sub>2</sub>]<sup>+</sup>); 345 (3%, Sn-pattern); 253 (4%, [SnNeof]<sup>+</sup>); 197 (14%, Sn-pattern); 133 (5%, [Neof]<sup>+</sup>); 118 (2%, [Sn]<sup>+</sup>); 55 (8%, [C<sub>3</sub>H<sub>3</sub>O]<sup>+</sup>).

3.2.1.19. 2-Trineophyltin-2-propenoic acid methyl ester (20). MS (m/z, relative intensity): 604 (M<sup>+</sup>; Sn-pattern);519 (62%, [SnNeof<sub>3</sub>]<sup>+</sup>); 471 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 385 (3%, [SnNeof<sub>2</sub>]<sup>+</sup>); 338 (3%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 253 (12%, [SnNeof]<sup>+</sup>); 205 (2%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 133 (8%, [Neof]<sup>+</sup>); 118 (4%, [Sn]<sup>+</sup>).

3.2.1.20. (*E*)-3-trineophyltin-3-phenyl-2-propenoic acid methyl ester (**21**). MS (m/z, relative intensity): 680 (M<sup>+</sup>; Sn-pattern); 547 (62%, [M – Neof]<sup>+</sup>, Sn-pattern); 519 (5%, [SnNeof<sub>3</sub>]<sup>+</sup>); 415 (11%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 385 (29%, [SnNeof<sub>2</sub>]<sup>+</sup>); 281 (6%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 253 (10%, [SnNeof]<sup>+</sup>); 197 (21%, Sn-pattern); 149 (13%, Sn-pattern); 133 (14%, [Neof]<sup>+</sup>); 118 (6%, [Sn]<sup>+</sup>); 105 (11%, [C<sub>8</sub>H<sub>9</sub>]<sup>+</sup>).

3.2.1.21. (E)-2-trineophyltin-3-phenyl-2-propenoic acid methyl ester (22). MS (m/z, relative intensity): 680 (M<sup>+</sup>; Sn-pattern); 547 (100%, [M – Neof]<sup>+</sup>, Sn-pattern); 519 (73%, [SnNeof<sub>3</sub>]<sup>+</sup>); 415 (2%, [M – Neof<sub>2</sub>]<sup>+</sup>, Sn-pattern); 385 (4%, [SnNeof<sub>2</sub>]<sup>+</sup>); 281 (17%, [M – Neof<sub>3</sub>]<sup>+</sup>, Sn-pattern); 253 (11%, [SnNeof]<sup>+</sup>); 197 (29%, Sn-pattern); 149 (9%, Sn-pattern); 133 (9%, [Neof]<sup>+</sup>); 118 (3%, [Sn]<sup>+</sup>); 105 (9%, [C<sub>8</sub>H<sub>9</sub>]<sup>+</sup>).

# Acknowledgements

This work was supported by grants from CONICET (Capital Federal, Argentina) and Universidad Nacional del Sur (Bahía Blanca, Argentina). The generous help of Professor M. González Sierra (IQUIOS, Rosario, Argentina) and Professor T.N. Mitchell and P. Urschel (Dortmund University, Dortmund, Germany) in obtaining the NMR spectra and Mass spectra is acknowledged. A travel grant to one of us (JCP) from the Alexander von Humboldt Foundation, and a fellowship from CONICET and at present from DAAD (Germany) to VID are also gratefully acknowledged.

#### References

[1] (a) M. Pereyre, J.-P. Quintard, A. Rahm, Tin in Organic Synthesis, Butterworths, London, 1987;
(b) N.D. Smith, J. Mancuso, M. Lautens, Chem. Rev. 100 (2000) 3257;
(c) A. Backara, F. L. Bulida, J. A. Bingán, P. Cardarda, D. Calia, C. Cardarda, D. Calia, C. Cardarda, D. Calia, C. Cardarda, D. Calia, C. Cardarda, C. Cardarda,

(c) A. Barbero, F.J. Pulido, J.A. Rincón, P. Cuadrado, D. Galisteo, H. Martínez-García, Angew. Chem. Int. Ed. 40 (2001) 2101.

- [2] (a) S. Usugi, J. Tang, H. Shinokubo, K. Oshima, Synlett (1999) 1417;
  - (b) M. Alami, F. Ferri, Synlett (1996) 755;
  - (c) J.-F. Betzer, F. Delaloge, B. Muller, A. Pancrazi, J. Org. Chem. 62 (1997) 7768.
- [3] (a) A.B. Chopa, A.E. Zúñiga, J.C. Podestá, J. Chem. Research (S) (1989) 234;

(b) J.C. Podestá, N.N. Giagante, A.E. Zúñiga, G.O. Danelon, O.A. Mascaretti, J. Org. Chem. 59 (1995) 3747;

(c) J.C. Podestá, A.B. Chopa, N.N. Giagante, A.E. Zúñiga, J. Organomet. Chem. 494 (1995) 5;

(d) J.C. Podestá, A.B. Chopa, G.E. Radivoy, C.A. Vitale, J. Organomet. Chem. 494 (1995) 11;

(e) C.A. Vitale, J.C. Podestá, J. Chem. Soc. Perkin Trans. 1 (1996) 2407.

- [4] A.J. Leusink, H.A. Budding, W. Drenth, J. Organomet. Chem. 11 (1968) 541.
- [5] F. Liron, P. Le Garrec, M. Alami, Synlett (1999) 246.
- [6] A. Cope, M. Burg, J. Am. Chem. Soc. 74 (1952) 168.
- [7] A.B. Chopa, A.E. Zúñiga, J.C. Podestá, J. Chem. Res. (S), (1989) 234.
- [8] E.H. Huntress, T.E. Lesslie, J. Bornstein, Org. Synth. 32 (1952) 55.
- [9] E.B. Bates, E.R.H. Jones, M.C. Whiting, J. Chem. Soc. (1954) 1854.