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We give sufficient conditions on a real number β and on a closed set F in a general
space of homogeneous type (X, d, μ) in such a way that μ(B(x, d(x, F )))β becomes
a Muckenhoupt weight. In order to prove our result, we modify the underlying space
so that it becomes 1-Ahlfors regular.
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1. Introduction

In some sense, Muckenhoupt weights are set to test the stability of harmonic analysis. The original
reference for the theory is [14]. See also [10] or [16]. Muckenhoupt weights are the densities of the measures
which preserve the boundedness properties of the basic operators of harmonic analysis: Hardy–Littlewood
maximal and Calderón–Zygmund singular integral operators.

Muckenhoupt weights are also used extensively in the theory of partial differential equations, since they
can be applied in different problems substituting the Lebesgue measure in the Euclidean space. Sobolev
spaces without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. For
degenerate partial differential equations, i.e., equations with various types of singularities in the coefficients,
it is natural to look for solutions in weighted Sobolev spaces. Weighted Sobolev spaces with Muckenhoupt
weights are of particular interest in the study of the solutions of degenerate elliptic equations, since weighted
imbedding theorems and Poincaré type inequalities hold (see [9]).
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Muckenhoupt weights play also some important roles in more classical problems of partial differential
equations. Such is the case of the Dirichlet boundary value problem

−�u + u = f on Ω,

u = g in F,

where Ω is a domain in R
n with boundary F . The behavior of the source f near the boundary of Ω may

cause non-solvability of this problem in a classical non-weighted Sobolev space. So we can ask whether this
problem has a weak solution in a weighted Sobolev space, with an adequate weight function such that these
difficulties might be avoided. For example, if f has an unbounded growth near F , we should search for a
weight which vanishes there. This is the case of the power-type weights, which are of the form dβ(x, F ),
where d(x, F ) denotes the distance from the point x to the set F . So the singularity (β < 0) or degenerations
(β > 0) can appear on the boundary of Ω as well as in the interior of the domain.

From the above remarks, it seems natural to seek conditions on a set F in such a way that dβ(x, F ) belongs
to a Muckenhoupt class, for adequate values of β. For the Euclidean case, the results in [8] show that in a
domain in R

n whose boundary has dimension n−1, if the domain is smooth enough then dβ(x, ∂Ω) ∈ Ap(Rn)
for −1 < β < p − 1. In [7] this result has been generalized to some s-dimensional compact sets F in R

n

with 0 � s < n. They proved that dβ(x, F ) ∈ Ap(Rn) for −(n − s) < β < (n − s)(p − 1). In [1] the
authors extend this result to a general metric measure space satisfying an Ahlfors condition. A fundamental
tool for this extension is that adequate powers of the maximal Hardy–Littlewood operator belong to the
A1-Muckenhoupt class. This result was extended to a general space of homogeneous type in [1], following
the lines given in [6,10,16] for the Euclidean case, with some technical modifications.

The basic theory of Muckenhoupt weights related to the boundedness of the Hardy–Littlewood maximal
operator and singular integrals has been extended to some very general environments. In particular, to the
setting of space of homogeneous type.

Ahlfors spaces are a particular case of non-atomic space of homogeneous type. Nevertheless, a measure
can be doubling but not Ahlfors of any order. In this note we obtain a class of power-type weights in a
general space of homogeneous type (X, d, μ). In particular the general setting allows atoms and coexistence
of several dimensions. More precisely, we give sufficient conditions on a closed subset F of X in such a way
that μ(B(x, d(x, F )))β becomes a Muckenhoupt weight for adequate values of β.

2. Definitions and statement of the main result

A quasi-metric on a set X is a non-negative symmetric function d defined on X×X such that d(x, y) = 0
if and only if x = y, and there exists a constant K � 1 such that the inequality

d(x, y) � K
(
d(x, z) + d(z, y)

)
holds for every x, y, z ∈ X. We will refer to K as the triangle constant for d. As it is shown in [12], d induces
a metrizable topology on X.

A Borel measure μ defined on the d-balls B(x, r) = {y ∈ X: d(x, y) < r} is said to be non-trivial if
0 < μ(B(x, r)) < ∞ for every x ∈ X and every r > 0. A non-trivial measure μ is said to be doubling if for
some constant A � 1 we have the inequality

μ
(
B(x, 2r)

)
� Aμ

(
B(x, r)

)
,

for every x ∈ X and every r > 0. When μ is a doubling measure, (X, d, μ) is said to be a space of
homogeneous type (see [5]).
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We say that a point x in a space of homogeneous type (X, d, μ) is an atom if μ({x}) > 0. When μ({x}) = 0
for every x ∈ X we say that (X, d, μ) is a non-atomic space. Macías and Segovia proved in [12] that a point
is an atom if and only if it is topologically isolated, and that the set of such points is at most countable.

One of the main interests regarding the structure of space of homogeneous type is due to the fact
that several problems in harmonic analysis can be extended to those settings. In particular, the theory of
Muckenhoupt weights and their relation with the Hardy–Littlewood maximal operator has been consider
in the literature [14,4,3,2]. Let (X, d, μ) be a space of homogeneous type. For a given locally integrable
function f , the Hardy–Littlewood maximal operator is given by

Mμf(x) = sup 1
μ(B)

∫
B

|f | dμ,

where the supremum is taken over the family of the d-balls B containing x.
The definition of the Hardy–Littlewood maximal operator can be extended to a non-negative Borel

measure ν such that every ball has finite ν-measure by

Mμν(x) = sup ν(B)
μ(B) ,

where the supremum is taken over the family of the d-balls B containing x. Since μ is doubling, Mμν(x) is
equivalent to its centered version, i.e.

Mμν(x) = sup
r>0

ν(B(x, r))
μ(B(x, r)) .

If (X, d, μ) is a space of homogeneous type and 1 < p < ∞, the Muckenhoupt class Ap(X, d, μ) is defined
as the set of all weights (non-trivial, non-negative, measurable and locally integrable functions) w defined
on X for which there exists a constant C such that the inequality

(
1

μ(B)

∫
B

w dμ

)(
1

μ(B)

∫
B

w− 1
p−1 dμ

)p−1

� C

holds for every d-ball B in X. For p = 1, we say that w ∈ A1(X, d, μ) if there exists a constant C such that

1
μ(B)

∫
B

w dμ � Cw(x)

holds for every d-ball B in X and almost every x ∈ B. Set A∞(X, d, μ) =
⋃

p�1 Ap(X, d, μ). These functions
w are known with the name of Muckenhoupt weights. A basic property of Muckenhoupt weights is that
wdμ, with w ∈ A∞(X, d, μ), is also a doubling measure on X. Notice that if w0 and w1 belong to A1,
then w := w0w

1−p
1 ∈ Ap. It is a classical result in the theory of Muckenhoupt weights that every weight in

Ap(X, d, μ) can be factorized in this way (see [11]).
In this note we aim to produce weights with singularities on a closed set F , of the form

w(x) = μ
(
B
(
x, d(x, F )

))β
,

under certain dimensional conditions on F , for some positive and negative values of β. Here d(x, F ) =
inf{d(x, y): y ∈ F}. We shall provide an interval about 0 for β, such that w(x) is an Ap-Muckenhoupt weight.

We start by defining a particular type of s-dimensional set in a general space of homogeneous type. Later
on we shall prove that this concept coincides with the s-Ahlfors condition with respect to the normalized
quasi-distance defined by Macías and Segovia in [12].
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To illustrate the definition, let us consider the one dimensional character of a line L or any smooth curve
in the plane. First notice that for any point x ∈ L, if the area of the disc B = B(x, t) is less than r, then the
length of B ∩ L is bounded above by a constant times

√
r. Of course the above condition is not sufficient

for a set L to be a one-dimensional. Indeed a singleton L = {x0} satisfies this property. To recover the idea
of L as an one dimensional set, we observe that for every x ∈ L and for r small enough, there exists a disc
B containing x with area less than r and with length of B ∩ L bounded below by

√
r.

We shall say that a closed subset F of X is s-dimensional with respect to μ, s � 0, if there exist a
Borel measure ν supported on F and three constants c1, c2, c3 > 0 such that for every x ∈ F and every
0 < r < diam(F ) the following two conditions are satisfied;

(1) if t is a positive number for which μ(B(x, t)) < r, then ν(B(x, t)) � c1r
s;

(2) there exists a d-ball B containing x with μ(B) < c2r and ν(B) � c3r
s.

If F is unbounded and the above conditions hold for every 0 < r < r0, where r0 is a positive number less
than diam(F ), we say that F is locally s-dimensional with respect to μ.

Remark 1. From [15, Prop. 1.5] and Theorem 9 in this note, we can conclude that if F is an s-dimensional
set with respect to μ in a non-atomic space of homogeneous type (X, d, μ), then dimH(F ) = s. Here dimH

denotes the Hausdorff dimension relative to μ.

The main result in this note is contained in the next statement.

Theorem 1. Let (X, d, μ) be a space of homogeneous type and let F ⊆ X be s-dimensional with respect to μ,
with 0 � s < 1. If no atom of X belongs to F , then

w(x) = μ
(
B
(
x, d(x, F )

))γ(s−1)

belongs to A1(X, d, μ) for every 0 � γ < 1. Consequently μ(B(x, d(x, F )))β ∈ Ap(X, d, μ) for −(1 − s) <

β < (1 − s)(p− 1) and 1 � p < ∞.

The paper is organized as follows. In Section 3 we associate to a given space of homogeneous type a
1-Ahlfors space. In order to achieve this, we shall use the normalization introduced by Macías and Segovia
in [12] and an ad hoc procedure to substitute atoms by continua. We would like to observe that the normaliza-
tion in [12] generally does not produce 1-Ahlfors spaces since it does not eliminate atoms. In this sense is that
we distinguish among normal and 1-Ahlfors spaces. On the other hand, in order to compare the Muckenhoupt
classes in the original space with the corresponding classes in the new normalized structure, for the sake of
completeness we prove a result that is probably known on the equivalence of the Hardy–Littlewood maximal
operators of each setting. In Section 4 we apply [1, Thm. 7] to the 1-Ahlfors space defined in the previous sec-
tion to obtain an A1-Muckenhoupt weight in (X, d, μ). The mentioned theorem is indeed a particular instance
of Theorem 1 above, when (X, d, μ) is an α-Ahlfors space. We complete the proof of Theorem 1 rewriting
the obtained weight in terms of the original metric d. Section 5 contains some examples and particular cases.

3. A 1-Ahlfors space associated to a space of homogeneous type

Let (X, d, μ) be a given space of homogeneous type. The aim of this section is to associate to the given
space a 1-Ahlfors space. We start by recalling some terminology. A quasi-metric measure space (X, d, μ) is
said to be an α-normal space if there exists a constant c � 1 such that

c−1rα � μ
(
Bd(x, r)

)
� crα, (3.1)
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for every x ∈ X and every μ({x}) < r < μ(X). We shall refer to c as the constant for the α-normality of
(X, d, μ). We shall say that (X, d, μ) is normal when it is 1-normal.

A non-atomic α-normal space is also known as α-Ahlfors space. We will refer to the triangle constant K
and the constants c and α in (3.1) as the geometric constants of the space. The most classical example of
n-normal (and n-Ahlfors) space is the Euclidean space (Rn, | · |, λ), where | · | denotes the usual distance and
λ the Lebesgue measure on R

n.
We shall say that a closed subset F of X is locally s-Ahlfors with measure ν in (X, d) if ν is a Borel

measure supported on F such that (3.1) holds, with ν instead of μ, for every x ∈ F and every 0 < r < r0,
for some positive r0.

In [1, Prop. 1] it is proved that the concepts of s-Ahlfors and locally s-Ahlfors coincide when the set F

is bounded. More precisely, there is proved that if F is a bounded subset of X and is locally s-Ahlfors with
measure ν, then (F, d, ν) is an s-Ahlfors space.

It is easy to see that each α-normal space is a space of homogeneous type with doubling constant which
depends only on c and α. Nevertheless a measure can be doubling but not α-normal for any α > 0. The
examples can even be obtained in the interval [0, 1] for measures that are absolutely continuous with respect
to Lebesgue measure. Indeed, dμ(x) = w(x) dx with w(x) = x−1/2 is a doubling measure on the interval [0, 1],
but μ is not α-normal for any α > 0. This is a consequence of the fact that, for small ε > 0,

∫ ε

0 w dx � √
ε

while
∫ 1
1−ε

w dx � ε. However, Macías and Segovia give in [12] an explicit construction of a quasi-metric δ

on the space of homogeneous type (X, d, μ) in such a way that the new structure (X, δ, μ) becomes a normal
space, and the topologies induced on X by d and δ coincide. This quasi-metric is defined as

δ(x, y) = inf
{
μ(B): B is a d-ball with x, y ∈ B

}
if x 	= y, and δ(x, y) = 0 if x = y. By the definition of δ we have that for every x ∈ X and every r > 0,
if μ({x}) � r then Bδ(x, r) = {x}, where Bδ(x, r) := {y ∈ X: δ(x, y) < r}. It will be also useful to notice
that in the proof of the above mentioned result of Macías and Segovia it is proved that

Bδ(x, r) =
⋃{

B: B is a d-ball with x ∈ B and μ(B) < r
}
,

for every x ∈ X and every r > μ({x}). Throughout this paper δ shall denote this quasi-metric.
We shall prove that A1(X, δ, μ) = A1(X, d, μ). Actually, we have the following result.

Proposition 2. The Hardy–Littlewood maximal operators on (X, d, μ) and (X, δ, μ) are equivalent.

To see this, it is enough to observe that if d1 and d2 are two quasi-metrics on X satisfying that there exists
a constant C such that for every d1-ball B1 there exists a d2-ball B2 including B1 with μ(B2) � Cμ(B1),
then Md1f(x) � CMd2f(x). Here we have used Mdi

to denote the Hardy–Littlewood maximal operators
on (X, di, μ). Then, the fact that Mδ and Md are equivalent operators is a consequence of the following
lemma.

Lemma 3. Let (X, d, μ) be a space of homogeneous type with triangular constant K and doubling constant A.
Set δ the quasi-metric defined by Macías and Segovia and let c be the constant for the 1-normality of (X, δ, μ).
Then

(1) for every d-ball Bd there exists a δ-ball Bδ such that Bd ⊆ Bδ and μ(Bδ) � 2cμ(Bd);
(2) for every δ-ball Bδ there exists a d-ball Bd such that Bδ ⊆ Bd and μ(Bd) � cAmμ(Bδ), with m a positive

integer satisfying m � log2(5K2).
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Proof. To prove (1), let us fix a d-ball Bd. Set r∗ to denote μ(Bd), and let x0 be the center of Bd. Since
2r∗ > μ({x0}) we have that

Bδ

(
x0, 2r∗

)
=

⋃{
B: B is a d-ball with x0 ∈ B and μ(B) < 2r∗

}
,

and then Bd ⊆ Bδ(x0, 2r∗). Since (X, δ, μ) is normal, if 2r∗ < μ(X) we also have that

μ
(
Bδ

(
x0, 2r∗

))
� c2r∗ = 2cμ(Bd).

Otherwise, if 2r∗ � μ(X) then X is bounded and Bδ := Bδ(x0, 2 diamδ(X)) works, since Bd ⊆ Bδ = X and
μ(Bδ) = μ(X) � 2r∗ = 2μ(Bd). Here diamδ(X) denotes the value sup{δ(x, y): x, y ∈ X}.

In order to show (2), let us fix a δ-ball Bδ(z, t). Notice first that if t � μ({z}), then Bδ(z, t) = {z}. In other
words, z is an isolated point in (X, δ). Since the topologies induced by d and δ on X coincide, z is an isolated
point in (X, d). Then there exists r∗ > 0 such that B(z, r∗) = {z} and (2) holds taking Bd = B(z, r∗).
For the case t > μ({z}), we claim that there exist x0 ∈ X and r∗ > 0 such that μ(B(x0, r

∗)) < t and
Bδ(z, t) ⊆ B(x0, 5K2r∗). If this statement holds, we have that

μ
(
B
(
x0, 5K2r∗

))
� Amμ

(
B
(
x0, r

∗)) � Amt � cAmμ
(
Bδ(z, t)

)
.

To prove the claim, recall that

Bδ(z, t) =
⋃{

B: B is a d-ball with z ∈ B and μ(B) < t
}
.

Let s = sup{r > 0: B is a d-ball with radius r, z ∈ B and μ(B) < t}. If s < ∞, there exist s
2 < r∗ � s

and a d-ball B with ratio r0 such that z ∈ B and μ(B) < t. Let x0 be the center of B. Then Bδ(z, t) ⊆
B(x0, 5K2r∗). In fact, for any d-ball B(w, r) containing z with measure less than t, we have that r � s < 2r∗.
Therefore, if y ∈ B(w, r), we have that

d(y, x0) � K2(d(y, w) + d(w, z) + d(z, x0)
)
< K2(2r + r∗

)
< 5K2r∗.

Finally, if s = ∞ then μ(X) < ∞ so that X is bounded. Then we fix any x0 in X and take r∗ =
2 diam(X). �

From Proposition 2 we obtain that the Ap classes are invariant under normalization. More precisely, we
have the following result.

Corollary 4. w ∈ Ap(X, d, μ) if and only if w ∈ Ap(X, δ, μ).

As we already mentioned, since the topologies induced by d and δ on X coincide, a point x is an atom
in (X, d, μ) if and only if it is an atom in (X, δ, μ). In other words, δ does not remove atoms. We shall
proceed to construct a new space (Z, ρ, μ) induced by (X, d, μ). For this purpose, let us consider the space
Y = X × R equipped with the quasi-metric defined by

ρ :Y × Y −→ R
+
0

ρ
(
(x, t), (y, s)

)
= max

{
δ(x, y), |t− s|

}
.

Let Z ⊆ Y be defined as

Z = X0 ∪
⋃ (

{a} × Ia
)
,

a∈A
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Fig. 1. The set Z with A = {a1, a2, a3, a4}.

where A denotes the set of all atoms of X, X0 = {(x, 0): x ∈ X\A}, and Ia = (−μ({a})/2, μ({a})/2) (see
Fig. 1). Given a Borel subset E of Z, we define

μ(E) = μ(E ∩X0) +
∑
a∈A

λ
((
{a} × Ia

)
∩E

)
,

where λ denotes the Lebesgue measure on R.

Theorem 5. (Z, ρ, μ) is a non-atomic normal space. In other words, (Z, ρ, μ) is a 1-Ahlfors space.

Proof. Fix (x, s) ∈ Z and r > 0, and set Bρ((x, s), r) = {(y, t) ∈ Z: ρ((x, s), (y, t)) < r}. Since

Bρ

(
(x, s), r

)
∩X0 =

(
Bδ(x, r) × (s− r, s + r)

)
∩
(
(X\A) × {0}

)
=

{(
Bδ(x, r)\A

)
× {0}, |s| < r,

∅, |s| � r,

we have that

μ
(
Bρ

(
(x, s), r

))
= μ

(
Bδ(x, r)\A

)
X(−r,r)(s) +

∑
a∈A∩Bδ(x,r)

Λ(r, a)

= μ
(
Bδ(x, r)\A

)
X(−r,r)(s) +

∑
a∈A∩Bδ(x,r):

r�μ({a})

Λ(r, a) +
∑

a∈A∩Bδ(x,r):
r>μ({a})

Λ(r, a),

where XE denotes the characteristic function of E and Λ(r, a) = |(s − r, s + r) ∩ Ia|. We will first analyze
the last term in the right hand side of above equality. Take a ∈ A ∩ Bδ(x, r) such that r > μ({a}). In this
case we have that Ia ⊆ (s− r, s + r) so that |(s− r, s + r) ∩ Ia| = μ({a}). To see this inclusion, let t ∈ Ia,
or in other words, −μ({a})/2 < t < μ({a})/2. If x is not an atom in X, then s = 0 and clearly t ∈ (−r, r),
since μ({a}) < r. If x is an atom, we have that −μ({x})/2 < s < μ({x})/2. Then if μ({x}) � r, it is clear
that −r < t− s < r. So that t ∈ (s− r, s + r). Otherwise, if μ({x}) > r, then Bδ(x, r) = {x} and therefore
a = x. Hence r < μ({a}) < r, which is a contradiction. Then

μ
(
Bρ

(
(x, s), r

))
= μ

(
Bδ(x, r)\A

)
X(−r,r)(s) +

∑
a∈A∩Bδ(x,r):

r�μ({a})

∣∣(s− r, s + r) ∩ Ia
∣∣

+ μ
({

a ∈ A ∩Bδ(x, r): r > μ
(
{a}

)})
.

In order to analyze the second term, let

Ar(x) :=
{
a ∈ A ∩Bδ(x, r): r � μ

(
{a}

)}
.
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If a ∈ Ar(x), then x ∈ Bδ(a, r) = {a} and consequently we have a = x. Hence Ar(x) = ∅ if x /∈ A or if
r > μ({x}), and Ar(x) = {x} = Bδ(x, r) if x ∈ A and r � μ({x}). Then, if we define

Ar :=
{
a ∈ A: r � μ

(
{a}

)}
,

we have that Ar(x) = {x} = Bδ(x, r) if x ∈ Ar, and Ar(x) = ∅ otherwise, so that

∑
a∈A∩Bδ(x,r):

r�μ({a})

∣∣(s− r, s + r) ∩ Ia
∣∣ =

{
|(s− r, s + r) ∩ Ix|, x ∈ Ar,

0, x /∈ Ar.

Hence,

μ
(
Bρ

(
(x, s), r

))
= μ

(
Bδ(x, r)\A

)
X(−r,r)(s) +

∣∣(s− r, s + r) ∩ Ix
∣∣XAr

(x)

+ μ
({

a ∈ A ∩Bδ(x, r): r > μ
(
{a}

)})
.

We shall now see that if x ∈ Ar, then |(s− r, s + r) ∩ Ix| � r. Indeed, it is clear that |(s− r, s + r) ∩ Ix| �
|(s− r, s + r)| = 2r. On the other hand, notice that (s− r, s + r) ∩ Ix includes at least one of the intervals
(s − r/2, s) or (s, s + r/2), both with length equal to r/2. This follows from the fact that x ∈ Ar implies
−μ({x})/2 < s < μ({x})/2 and r � μ({x}), so it is enough consider the cases s < 0 and s � 0 to obtain
the respective inclusions. So that

∣∣(s− r, s + r) ∩ Ix
∣∣ � r, if x ∈ Ar. (3.2)

We are now in position to show that μ(Bρ((x, s), r)) � r. To do this, let us first consider the possibility
|s| < r. In this case we have that

μ
(
Bδ(x, r)\A

)
X(−r,r)(s) + μ

({
a ∈ A ∩Bδ(x, r): r > μ

(
{a}

)})
is equal to μ(Bδ(x, r)\Ar(x)), and since Ar(x) = Bδ(x, r) if x ∈ Ar, and Ar(x) = ∅ otherwise, we obtain

μ
(
Bρ

(
(x, s), r

))
= μ

(
Bδ(x, r)

)
XAc

r
(x) +

∣∣(s− r, s + r) ∩ Ix
∣∣XAr

(x).

From (3.2) and the fact that (X, δ, μ) is normal we have that

μ
(
Bρ

(
(x, s), r

))
� rXAc

r
(x) + rXAr

(x).

Otherwise, if |s| � r then x is an atom and |s| < μ({x})/2, so that r � μ({x}) and XAr
(x) = 1. Then

μ
(
Bρ

(
(x, s), r

))
� r + μ

({
a ∈ A ∩Bδ(x, r): r > μ

(
{a}

)})
.

But in this case Bδ(x, r) = {x}, so that {a ∈ A ∩Bδ(x, r): r > μ({a})} = ∅. In brief,

μ
(
Bρ

(
(x, s), r

))
�

{
rXAc

r
(x) + rXAr

(x), |s| < r,

r, |s| � r.

We can conclude that (Z, ρ, μ) is a normal space, and since has not isolated points, it will be non-atomic. �
To every function f :X → R we have a canonically associated function f :Z → R defined by f((x, 0)) =

f(x) if x /∈ A, and f((x, t)) = f(x) for every x ∈ A and every t ∈ Ix. Hence the space Lp(X,μ) can be



120 H. Aimar et al. / J. Math. Anal. Appl. 416 (2014) 112–125
identified with the subspace of those functions in Lp(Z, μ) which are constant on each a× Ia, with a ∈ A.
An analogous point of view can be applied to the Muckenhoupt classes. Notice also that if MX and MZ

denote the Hardy–Littlewood maximal operator of each setting, we have that MZf(x, t) = MXf(x), for
every (x, t) ∈ Z.

4. Proof of Theorem 1

Let (X, d, μ) be a given space of homogeneous type, and let (Z, ρ, μ) and A be as in previous section. Let
F be a given closed s-Ahlfors set in (X, δ) for some 0 � s < 1. Then F0 := {(y, 0): y ∈ F} is an s-Ahlfors
set in (Z, ρ). Indeed, since F is s-Ahlfors in (X, δ) then there is no point of A in F , so that (Bδ(y, r)∩F )0 =
Bρ((y, 0), r) ∩ F0 for every y ∈ F and every r > 0. Since (Z, ρ, μ) is a 1-Ahlfors space, if we define

w(z) := ρ(z, F0)γ(s−1) (4.1)

on Z, then w ∈ A1(Z, ρ, μ) for every 0 � γ < 1 (see [1, Thm. 7]). The first purpose of this section is to prove
that this implies δ(x, F )γ(s−1) ∈ A1(X, d, μ) for every 0 � γ < 1. Consequently δ(x, F )β ∈ Ap(X, d, μ) for
−(1 − s) < β < (1 − s)(p− 1).

Lemma 6. For every z = (x, t) ∈ Z, we have that ρ(z, F0) = δ(x, F ). Consequently, ρ((x, t), F0) =
ρ((x, 0), F0) for every (x, t) ∈ Z.

Proof. Let us fix z = (x, t) ∈ Z. We shall prove first that ρ(z, F0) = max{δ(x, F ), |t|}. In fact, notice that

ρ(z, F0) = inf
y∈F

{
max

{
δ(x, y), |t|

}}
.

Then, if we prove that

inf
y∈F

{
max

{
f(y), C

}}
= max

{
inf
y∈F

f(y), C
}
,

with f a function defined on F and C any constant, the result is obtained taken f(y) = δ(x, y) and C = |t|.
In order to prove the inequality, let us denote by L and R the left and right hand side respectively. Assume
first that f(y) > C for every y ∈ F . Then L = infy∈F f(y) = R. On the other hand, if there exists y0 ∈ F

such that f(y0) � C, then L � C and R = C. Since also we always have that L � C, we obtain L = C = R.
Now, if x /∈ A, then t = 0 and hence max{δ(x, F ), |t|} = δ(x, F ). On the other hand, for any x /∈ F we

have that for every ε > 0 there exists yε ∈ F such that δ(x, yε) < δ(x, F ) + ε. Also there exists a d-ball B
containing x and yε such that μ(B) < δ(x, yε) + ε. Then

μ
(
{x}

)
� μ(B) < δ(x, F ) + 2ε.

Making ε tend to zero we obtain that μ({x}) � δ(x, F ). Then, if x ∈ A we have that |t| � μ({x})/2 � δ(x, F ),
so that max{δ(x, F ), |t|} = δ(x, F ). �
Lemma 7. δ(x, F )γ(s−1) ∈ A1(X, δ, μ).

Proof. Fix a δ-ball B = Bδ(x0, r) and let B̃ = Bρ((x0, 0), r). If w is the weight defined in (4.1), then we
have that ∫

w(x, t) dμ � Cμ(B̃)w(x0, 0),

B̃
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for some constant C which does not depend on x0 or r. Then, since
∫
A f(x) dμ(x) =

∑
a∈A f(a)μ({a}) and∫

Ia
g(a, t) dt = g(a, 0)μ({a}) provided that g(a, t) = g(a, 0) for every t ∈ Ia, applying Lemma 6 we have that

∫
B

δ(x, F )γ(s−1) dμ(x) =
∫

B∩Ac

δ(x, F )γ(s−1) dμ(x) +
∫

B∩A

δ(x, F )γ(s−1) dμ(x)

=
∫

B̃∩X0

w(x, t) dμ +
∑
a∈A

δ(a,x0)<r

μ
(
{a}

)
w(a, 0)

=
∫

B̃∩X0

w(x, t) dμ +
∑
a∈A

δ(a,x0)<r

∫
Ia

w(x, t) dt

=
∫
B̃

w(x, t) dμ

� Cμ(B̃)w(x0, 0)

� C̃μ
(
Bδ(x0, r)

)
δ(x, F )γ(s−1),

where we have used the fact that (Z, ρ, μ) and (X, δ, μ) are normal spaces. �
From Lemma 7 and Corollary 4, we have that δ(x, F )γ(s−1) ∈ A1(X, d, μ). Then, Theorem 1 will be

proved if we show the following two facts. First, that the function δ(x, F ) defined for x ∈ X, is equivalent
to the function μ(B(x, d(x, F ))), and finally, that every s-dimensional set F with respect to μ is s-Ahlfors
in (X, δ). Moreover, we shall prove that this concepts are equivalent in Theorem 9.

Lemma 8. Let F be a closed subset of X. Then

A−1δ(x, F ) � μ
(
B
(
x, d(x, F )

))
� A�δ(x, F ),

where A is the doubling constant for μ and m is a positive integer satisfying 
 � log2(3K2), with K the
triangular constant for d.

Proof. If x ∈ F , then δ(x, F ) = μ(B(x, d(x, F ))) = 0, so that we can assume x /∈ F . Since F is closed, there
exists ε such that 0 < ε < d(x, F ). For this fixed ε, there exists y0 ∈ F such that d(x, y0) < d(x, F ) + ε.
Then d(x, y0) < 2d(x, F ). On the other hand, if B is any d-ball containing x and y0, we have that δ(x, F ) �
δ(x, y0) � μ(B). In particular, this inequality holds taking B = B(x, 2d(x, F )). Hence

δ(x, F ) � μ
(
B
(
x, 2d(x, F )

))
� Aμ

(
B
(
x, d(x, F )

))
.

To obtain the other inequality, take x /∈ F and ε > 0. Let us fix y0 ∈ F such that δ(x, y0) < δ(x, F ) + ε,
and let B be a d-ball containing x and y0 such that μ(B) < δ(x, y0) + ε. Then

μ(B) < δ(x, F ) + 2ε. (4.2)

Let us use x0 to denote the center of B and r0 to its radius. Then

B
(
x, d(x, y0)

)
⊆ B

(
x0, 3K2r0

)
, (4.3)

where K is the triangular constant for d. In fact, if y ∈ B(x, d(x, y0)) then

d(y, x) < d(x, y0) � K
(
d(x, x0) + d(x0, y0)

)
< 2Kr0.
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Hence

d(y, x0) � K
(
d(y, x) + d(x, x0)

)
� 2K2r0 + Kr0 � 3K2r0.

From (4.3), (4.2) and the doubling condition for μ we obtain

μ
(
B
(
x, d(x, F )

))
� μ

(
B
(
x, d(x, y0)

))
� A�

(
δ(x, F ) + 2ε

)
.

By letting ε tend to zero we obtain the desired inequality. �
Theorem 9. Let (X, d, μ) be a space of homogeneous type and let F be a non-atomic closed subset of X.
Then F is (locally) s-dimensional with respect to μ if and only if F is (locally) s-Ahlfors in (X, δ).

Proof. Suppose that F is s-dimensional with respect to μ with associated measure ν, and fix x ∈ F and
0 < r < diam(F ). If B is the d-ball given by (2) and c2 � 1, we immediately have that

ν
(
Bδ(x, r)

)
� ν(B) � c3r

s.

Otherwise, if c2 > 1 take B the d-ball given by (2) for r̃ = r/c2. Then B contains x, μ(B) < r and
ν(B) � c3r

s/cs2. Hence

ν
(
Bδ(x, r)

)
� ν(B) � c3r

s/cs2.

The case diam(F ) � r < ν(F ) only can occur if F is bounded, so that we apply [1, Prop. 1] to obtain the
result.

On the other hand, notice that

Bδ(x, r) ⊆
⋃
t∈T

B(x, t),

where T = {t > 0: μ(B(x, t)) � Amr}, where m is an integer greater than or equal to 1+log2 K, K denotes
the triangular constant for d, and A the doubling constant for μ. In fact, if y belongs to Bδ(x, r) then
there exist z ∈ X and t > 0 such that x, y ∈ B(z, t) and μ(B(z, t)) < r. So that d(x, y) � 2Kt and
μ(B(x, 2Kt)) � Amμ(B(x, t)) < Amr.

Let t∗ = supT . Then

ν
(
Bδ(x, r)

)
� ν

( ⋃
t∈T

B(x, t)
)

� ν
(
B
(
x, t∗

))
.

Notice also that μ(B(x, t∗)) � Am+1r, so that from property (1) in definition of s-dimensional set with
respect to μ, we obtain

ν
(
B
(
x, t∗

))
� c1

(
Am+1r

)s = Crs,

provided that Am+1r < diam(F ). This inequality always holds if F is an unbounded set. If F is bounded,
we use [1, Prop. 1] to obtain that F is s-Ahlfors in (X, δ).

In the case that F is locally s-dimensional with respect to μ, we take r < r̃0 := r0A
−m−1.

For the converse, fix x ∈ F and r > 0. By hypothesis there exist a Borel measure ν supported on F and
a constant c � 1 such that

c−1rs � ν
(
Bδ(x, r)

)
� crs,
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provided that r < ν(F ) (r < r0 for the local case). We shall assume then r < ν(F ) (resp. r < r0). Assume
that there exists t > 0 such that μ(B(x, t)) < r. Then B(x, t) ⊆ Bδ(x, r) and

ν
(
B(x, t)

)
� ν

(
Bδ(x, r)

)
� crs,

so that (1) holds taking c1 = c. To see (2), let x0 ∈ X and r∗ > 0 be such that μ(B(x0, r
∗)) < r and

Bδ(x, r) ⊆ B(x0, 5K2r∗) (see proof of Lemma 3). Set B = B(x0, 5K2r∗). Then μ(B) � Amr and

ν(B) � ν
(
Bδ(x, r)

)
� c−1rs,

where A denotes the doubling constant for μ, and m is a positive integer such that 2m � 5K2. Then (2)
holds with c3 = c−1 and c2 = Am.

It only remains to consider the case ν(F ) � r < diam(F ). In this case we have that ν(F ) < ∞, so that if
we prove that also diam(F ) < ∞, we can use the argument in [1, Prop. 1] to obtain that F is s-dimensional
with respect to μ. In order to prove that diam(F ) < ∞, notice first that a set F is d-bounded if and
only if is δ-bounded. Indeed, from the definition of δ we have that diam(F ) < ∞ implies diamδ(F ) < ∞.
Reciprocally, if F ⊆ Bδ for some δ-ball, then F is contained in the d-ball with finite radius constructed
in the proof of (2) in Lemma 3. On the other hand, it is well known that a space of homogeneous type is
bounded if and only if has finite measure. So that we can conclude that an s-Ahlfors set F with measure ν

in (X, d) is bounded with respect to d or δ if and only if ν(F ) < ∞. This completes the proof. �
From the above result and [1, Prop. 1] we can conclude that the concepts of s-dimensional with respect

to μ and locally s-dimensional with respect to μ coincide when the set F is bounded.
Finally, we want to point out that when we deal with several sets which have different dimensions, with

the additional hypothesis of boundedness we obtain the following result. The proof is analogous to that of
Theorem 1, applying [1, Thm. 6] instead of [1, Thm. 7].

Theorem 10. Let (X, d, μ) be a space of homogeneous type and let {F1, . . . , FH} be a family of pairwise
disjoint bounded and non-atomic subsets of X, such that Fi is locally si-dimensional with respect to μ, with
0 � si < 1 for i = 1, 2, . . . , H. Then there exist open sets U1, . . . , UH pairwise disjoint with Ui containing Fi

such that

w(x) =
{
μ(B(x, d(x, Fi)))γ(si−1), for x ∈ Ui;
1, for x ∈ (

⋃H
i=1 Ui)c

belongs to A1(X, d, μ) for every 0 � γ < 1. Consequently,

v(x) =
{
μ(B(x, d(x, Fi)))βi , for x ∈ Ui;
1, for x ∈ (

⋃H
i=1 Ui)c

belongs to Ap(X, d, μ) for every −(1 − si) < βi < (1 − si)(p− 1) and every 1 � p < ∞.

5. Examples and particular cases

Let us start this section by showing that when (X, d, μ) is an α-Ahlfors space and F is an s-Ahlfors
subset of X, for some 0 � s < α, then we recover the result in [1], which is actually a basic ingredient in the
proof of Theorem 1. Indeed, as the next lemma shows, we have that d(x, F )γ(s−α) ∈ A1(X, d, μ) for every
0 � γ < 1.
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Lemma 11. Let (X, d, μ) be an α-Ahlfors space. Then

(1) the quasi-metrics δ and dα are equivalent;
(2) if F is (locally) s-Ahlfors with measure ν in (X, d), then F is (locally) s/α-Ahlfors with measure ν

in (X, δ);
(3) if F is s-Ahlfors in (X, d) for some 0 � s < α, then d(x, F )γ(s−α) ∈ A1(X, d, μ) for every 0 � γ < 1.

Proof. The proof of (1) is a straightforward calculation, (2) follows directly from (1), and (3) is a consequence
of (2), Lemma 7, Corollary 4 and (1). �

The next two examples deal with non-Ahlfors spaces.

Example 1. Let X = R
2 equipped with the usual distance d, and with the measure μ defined by

μ(E) =
∫
E

|y|β dy,

for a fixed β > −2. Then (X, d, μ) is a space of homogeneous type since |x|β ∈ Ap(R2) for some p > 1, but
is not an α-Ahlfors space for any α. Fix two real numbers a and b with 0 < a < b and let F = {(x, 0): a �
x � b}. It is known that μ(B(x, r)) � |x|βr2, for every x = (x1, 0) in F and every 0 < r < a/2.

Let us check that F is 1
2 -Ahlfors in (R2, δ), with the one-dimensional Lebesgue measure λ restricted to F .

For this, observe that since δ(x, y) � |x− y|2|x|β whenever x and y are close to each other and away from
the origin, we have that there exists r0 > 0 such that

λ
(
F ∩Bδ(x, r)

)
� λ

(
F ∩B

(
x, r1/2|x|β/2

))
� r1/2,

for 0 < r < r0. Then, applying Theorem 1 we have that

w(x) = μ
(
B
(
x, d(x, F )

))γ ∈ Ap(X, d, μ),

for −1
2 < γ < (p−1)

2 and 1 � p < ∞. Finally, notice that for x in an enlargement of F (i.e. x such that
d(x, F ) < a/2) we have that

w(x) � |x|βγd(x, F )2γ .

Example 2. Let (R, | · |, μ) with μ(E) =
∫
E
|x|−β dx, for some 0 < β < 1. Since |x|−β ∈ A1(X, | · |, λ), we have

that (R, | · |, μ) is a space of homogeneous type, but is not an α-Ahlfors space for any α. Let us consider the
usual ternary Cantor set C defined on [0, 1], and set F = f(C) with f(x) = x

1
1−β . Then F is an s-Ahlfors

set in (X, δ), with s = log 2
log 3 . Indeed, by the definition of δ and μ we have that δ(x0, y) = 1

1−β |x
1−β
0 − y1−β |

if x0 	= y and δ(x0, y) = 0 if x0 = y. Then for x0 ∈ F we have

F ∩Bδ(x0, r) =
{
y ∈ F : δ(x0, y) < r

}
=

{
y ∈ F :

∣∣x1−β
0 − y1−β

∣∣ < r(1 − β)
}

= f
({

ỹ ∈ C: |x̃0 − ỹ| < r(1 − β)
})

= f
(
C ∩B

(
x̃0, r(1 − β)

))
,

where x̃0 = f−1(x0) ∈ C. Since it is well known that C is an s-Ahlfors set in (X, d) with the s-dimensional
Hausdorff measure (see for example [13]), we have that F is an s-Ahlfors set in (X, δ) with the pullback of
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the s-dimensional Hausdorff measure. Then, applying Theorem 1 we have that

μ
(
B
(
x, d(x, F )

))β ∈ Ap(X, d, μ)

for −(1 − s) < β < (1 − s)(p− 1) and 1 � p < ∞.
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