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Multinomial approximation to the Kolmogorov
Forward Equation for jump (population) processes
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Abstract: We develop a simulation method for Markov Jump processes with finite
time steps based in a quasilinear approximation of the process and in multinomial
random deviates. The second-order approximation to the generating function,
Error = O(dt2), is developed in detail and an algorithm is presented. The algorithm is
implemented for a Susceptible-Infected-Recovered-Susceptible (SIRS) epidemic
model and compared to both the deterministic approximation and the exact
simulation. Special attention is given to the problem of extinction of the infected
population which is the most critical condition for the approximation.
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1. Introduction
In a broad sense, stochastic population processes correspond to the time-evolution of countable
sets (and subsets) of individuals in interaction. The description is performed by tracking the
number of members of each relevant subpopulation over time. The classification scheme used
for the populations is dictated by the problem. For example, in an epidemic problem, it is often
sensible to group the population in at least two sets: susceptible, S and infectious, I. In the
description of the lifecycle of an insect, we will often refer to subsets (compartments) correspond-
ing to different developmental stages such as eggs, larvae, pupae and adults. Such models can be
used in a large range of problems in chemistry and biology. The quality of such models largely
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depends on the quality of the transcription between natural science and mathematics. For
example, stochastic compartmental models applied to vector-borne diseases such as yellow
fever perform very satisfactorily when compared to real (historic) data (Fernández, Otero,
Schweigmann, & Solari, 2013). The vector component of the model can be used to forecast the
expected range of the vector (in this case, the mosquito Aedes aegypti) (Otero, Solari, &
Schweigmann, 2006), yielding results that agree well with field studies (Zanotti et al., 2015).
However, if the modelling strategy is going to be useful, it is a practical requirement that it shall
use a reasonable amount of computational resources. The general family of population processes
described in this work is associated with the probabilities ruled by the Kolmogorov Forward
Equation (KFE) for jump processes (Kolmogoroff, 1931), since populations update by jumps (events)
such as the hatching of an egg that decreases the egg-population by one and increases the larvae
population by one.

The description of population problems by means of stochastic methods has a modern history of
over 100 years (McKendrick, 1914) (though its origins can be traced further back to Malthus, 1798).
This approach has several advantages over other existent approaches. In the first place, it
recognises the individual level and the intrinsic impossibility of describing this level in a determi-
nistic way. Further, it deals with integer variables, which is the only consistent way of dealing with
individuals at all levels of presence (from extinction to groups of billions). Further, for systems
where the actual evolution time is relevant, the use of Markov Jump processes (Ethier & Kurtz,
1986) (continuous-time Markov chains) provides a rationale for organising the dynamics. The
relation between the stochastic description of population problems and the – possibly more
popular – differential equations approach has been studied and established by Kurtz (see Ethier
& Kurtz, 1986), where the validity and limitation of the so-called deterministic limit is discussed
(see also Aparicio, Natiello, & Solari, 2012).

The “jumps” in the Markov Jump process are the symbolic description of the dynamical evolution,
identifying situationswhere the population suffers drastic changes at a point in time (e.g., an individual
is born). This change is called an event. The list of events will control the outcome possibilities of a
model. Events come in different flavours, characteristic times, and so on and the more accurate the
description in biological terms, the larger the number of events that need to be considered.

The origin of this approach goes back to Kolmogorov (Kolmogoroff, 1931) and, more specifically, to
Feller’s work on stochastic processes (Feller, 1949) developing from the equations that he named
Kolmogorov equations. Subsequently, Kendall (1949, 1950) devised an algorithm to implement Feller’s
approach.

Event-based models, though powerful and successful (see above), are computationally time-
consuming. The approach requires to track all individual events in their given time order. On the
contrary, experimental data are usually collected and grouped within reasonable time intervals (in
an epidemic outbreak, we speak of number of cases per week, while e.g., municipal housing
policies consider only the balance between birth, death, emigration and immigration over a
year). Eventually, we arrive to a situation where approximations to Kendall’s algorithm are
required. Rather than computing a large number of individual events, it would be desirable to
estimate the overall event-count within a fixed time step, drastically shortening computation
resources without loosing accuracy.

Approximating a stochastic process with another stochastic process is an interesting issue by
itself. Consider families of processes such as e.g., KðNÞ, a Kendall problem for a population of size N
and AðNÞ its approximation. If the approximation should have a chance to be satisfactory, we
should have, in some abstract sense, that KðNÞ ¼ AðNÞ þ EðNÞ, where EðNÞ is the error of the
approximation. A minimum, necessary, requirement is of course that limN!1EðNÞ ¼ 0, but this is
not enough. In all situations, simulations and modelling involve a finite value (or range) of N. A way
to estimate and control EðNÞ for any N is needed. Things do not get easier when one realises that
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since EðN0Þ�0 for any finite N0, the statistics of KðN0Þ and AðN0Þ will differ, eventually, when the
number of repetitions is very large. Approximations involve hence different tolerances: (a) small
EðNÞ so that it makes sense to attempt to approximate K with A, and (b) medium large statistics so
that while A satisfactorily uncovers the dynamical effects of the system in study, its stochastic
difference with K can still be considered negligible.

In previous works, we have developed a Poisson approximation (Solari & Natiello, 2003) to
Kendall’s algorithm as well as a general view of approximation methods (Solari & Natiello,
2014). These approximation methods are organised building upon the concept of linear events
(those where the probability rate depends linearly on the involved populations) along with a
consistent multinomial approximation for the linear situation with constant (in time) coefficients.

The goal of this work is to develop a new consistent multinomial approximation to Kendall
processes based on a linear approximation to event rates (called quasilinear approximation),
allowing for general time-dependencies in the event rates. The manuscript is organised closely
following Solari and Natiello (2014), of which it is an extension and in some form a natural
development. After a section refreshing the idea of KFE, we state the quasilinear approximation in
Section 3. This section starts by presenting and defining the approximation, subsequently for-
mulating the computation of averages within it. Then, the error estimates of the approximation,
which are necessary to control the accuracy of the implementation are computed in Section 3.2
and finally the generating function is computed. The section ends with the statement of the
stochastic dynamical equations, in Lemmas 3 and 4, for the second-order approximation. These
lemmas are the central tools in the following sections dealing with examples. Section 4 deals
with a well-known example, rendered technically difficult by the time-dependency. Section 5
dwells in a more elaborated example, which is the source for numerical tests. Some concluding
remarks are found in Section 6.

2. Kolmogorov Forward Equation
Let ðn1;n2; � � � ;nEÞ ¼ n denote a state of the system with the count of how many events of each

type has occurred up to a given time. Denote the product zn1
1 zn2

2 � � � znE
E by zn and the generating

function by Φ ¼ ∑n z
nPðn; t;X0Þ, where Pðn; t;X0Þ is the probability of having n events at time t

given the initial population state X0. Finally, X is the population array ðX1;X2; � � � ;XNÞ, where the

subpopulations satisfy Xj ¼ X0
j þ∑α nαδ

α
j . The transition matrix δαj denotes the modification acted

by event α on population j (Solari & Natiello, 2003) and it has integer entries.

For a general Markov Jump process, the KFE for the generating function reads (Solari & Natiello, 2003),

@
@tΦ ¼ ∑

n
zn ∑

α
WαðXðn� 1αÞÞPðn� 1α; t;X0Þ �WαðXðnÞÞPðn; t;X0Þ
h i

¼ ∑
n
zn ∑

α
ðzα � 1ÞWαðXðnÞÞPðn; t;X0Þ; (1)

where WαðXðnÞÞ is the transition rate associated with event α, in other words, the probability per
unit time for the occurrence of event α given the state XðnÞ.

The population array X ¼ ðX1;X2; � � � ;XNÞ denotes the count of individuals Xi in each subpopula-
tion i (at a given time t or after the occurrence of n events) which is necessarily non-negative. The
following definition is therefore proper:

Definition 1. A set of states U, with the property that if X 2 U at t0 then X 2 U for all t � t0 is
called positively invariant.
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Positively invariant sets are often called trapping sets. For example, the extinction state where all
subpopulations are zero is a trapping set. The set of states with non-negative populations is a
positively invariant set as well.

3. Quasilinear approximation
A common feature in all population problems involving higher organisms is that the events
modifying the system can be regarded as belonging to only three classes:

(1) Individual death events where the relevant consequence is to reduce some subpopulation in
one unit, while no other subpopulation is modified.

(2) Development events where one subpopulation increases by one and another decreases by
the same amount (e.g., a transition from pupa to adult in insect development).

(3) Creation events where some populations decrease by a total of k members and some other
populations increase by a larger number k0 > k. Quite often k ¼ 1. Consider for example
oviposition in insects, where the number of fecundated females decreases by one unit and
the number of eggs increases by k0 � 1.

An interesting fact in biological processes is that rarely, if ever, an event can exist that does not
decrease any population. Biological “creation” processes always involve the modification of some
previous entity (usually one individual of another subpopulation which in the act of creation ceases
to exist). In this poetical sense, becoming adult decreases the young population in one, being born
decreases the pregnant female population in one, becoming ill decreases the healthy (often called
susceptible) population in one, etc., and no other subpopulation is decreased in each case. Hence,
we will hereafter consider processes where the events α ¼ 1; � � � ; E may be sorted according to the
subpopulation JðαÞ that they decrease. Clearly, not all population problems are linear as in (Solari &
Natiello, 2014). However, similar arguments to those used to prove Lemma 7 in (Solari & Natiello,
2014) apply here, this is,

Lemma 1. Let the polynomial transition rate Wα be such that it only decreases the subpopulation
JðαÞ in one unit, i.e., δαJðαÞ ¼ �1 and δαi � 0. Population space is positively invariant only if

Wα ¼ XJðαÞfαðXÞ: (2)

Proof. Positive invariance demands that for any sufficiently short time h the probability PαðhÞ of
occurrence of an event α such that XJðαÞðtþ hÞ ¼ XJðαÞðtÞ � 1 < 0 is zero (we are just saying that no

event can push a subpopulation into negative counts). Under the Markov Jump Process assump-
tions (Durrett, 2001; Feller, 1940), this probability may be written as PαðhÞ ¼ WαðXðtÞÞhþ oðhÞ.
Hence, WαðX1 . . .0Jα . . .Þ ¼ 0 and we can extract a factor of XJðαÞ thus proving the relation.

Polynomial smoothness gives the desired result. ◽

Therefore, we introduce the quasilinear approximation, namely we let the transition rates be
approximated by

Wα � XJðαÞ < fα >ψ ; (3)

where JðαÞ is the subpopulation decreased by α. We shall denote by ψðz; tÞ ¼ ∑n z
n�Pðn; tÞ the quasi-

linear approximant of Φ and �P the quasilinear approximant of the probabilities. The quasilinear
approximation consists in replacing fαðXÞ by a self-consistent average < fαðXÞ >ψ (to be specified
later in detail), i.e., an average based on the generating function ψ. In other words, we extract a linear
part associated with the decreasing subpopulation on each Wα (in the situation where W is actually
linear, f is just a constant). The quasilinear approximation allows for further computation. Indeed,
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@

@t
ψðz; tÞ ¼ ∑

n
zn ∑

α
ðzα � 1Þ < fαðXÞ >ψ XJðαÞ�Pðn; t;X0Þ

,∑
n
zn ∑

α
ðzα � 1ÞðX0

JðαÞ þ∑
β
nβδ

β
JðαÞÞ�Pðn; t;X0Þ < fαðXÞ >ψ

¼ ∑
α
ðzα � 1Þ < fαðXÞ >ψ X0

JðαÞψ þ∑
β
zβδ

β
JðαÞ

@ψ

@zβ

( )
;

(4)

cf. (Solari & Natiello, 2014; Equation 10).

An important feature of this work is that the quasilinear approach is an approximation. Hence, error
bounds relative to the full-problem must be considered. We discuss this issue in subsection 3.2.

Since the approximated problem is linear, most of the results in Solari and Natiello (2014) can be
transported or generalised to the present work, once the appropriate changes for possible time-
dependencies in the quasilinear coefficients rkβ are introduced. For the present problem, the main
specification reads

rkα ¼ δkJðαÞ < fαðXÞ >ψ (5)

(the δ-symbol with two population indices is the Kronecker delta) and it will introduce a time-
dependency through the expectation values.

We have that < fαðXÞ >ψ ¼ Cα (a constant) for linearly decaying events.

3.1. Dynamical equation for the average populations
Starting from the population values Xk ¼ X0

k þ∑γ δ
k
γnγ, we obtain < Xk> ¼ X0

k þ∑β δ
β
k < nβ > ¼

X0
k þ∑β δ

β
k ∑n nβPðn; tÞ and further

d
dt < Xk> ¼ d

dt X0
k þ∑

β
δβk ∑

n
nβPðn; tÞ

 !

¼ d
dt X0

k þ∑
β
δβk zβ @

@zβ
ψðz; tÞ

h i
z¼1

 !

¼ ∑
β
δβk zβ @

@zβ
@
@tψðz; tÞ
� �h i

z¼1
;

where it is sufficient to sum over all events β such that δβk�0. Recalling Equations (3) and (4) (JðαÞ is
the population decreased by event α),

@

@t
ψðz; tÞ ¼ ∑

α
ðzα � 1Þ < fαðXÞ >ψ X0

JðαÞψ þ∑
γ
zγδ

γ
JðαÞ

@ψ

@zγ

( )
;

we obtain expressions within the quasilinear approximation:

d
dt

< Xk> ¼ ∑
β
δβk < fβðXÞ >ψ < Xk> ¼ ∑

β
δβk < WβðXÞ >ψ : (6)

This result has an equivalent in (Solari & Natiello, 2003; Equation 48), the large N limit:

Lemma 2. If limΩ!1 < Xk
Ω > ¼ xk exists and WβðXÞ is polynomial in X, then under the generalised

mass action law (Ethier & Kurtz, 1986; Solari & Natiello, 2003) (i.e., WβðXÞ ¼ ΩWβðXΩÞ, being Ω a

typical size for the system) the deterministic limit of the population dynamics

reads d
dt xk ¼ ∑

β
δβk < fβðxkÞ >ψxk:

Proof. From Equation (6), we obtain
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lim
Ω!1

d
dt

1
Ω

< Xk > ¼ lim
Ω!1

∑
β
δβk < fβðXÞ >ψ

1
Ω

< Xk > ¼ lim
Ω!1

∑
β
δβk

1
Ω

< WβðXÞ >ψ :

By the generalised mass action law, WβðXÞ ¼ ΩWβð < X >þðX� < X >Þ
Ω Þ is a polynomial in the random

variable Y ¼ X� < X >, where < Y > ¼ 0. For the moments of a multinomial, it holds that

limΩ!1Ω < Y
Ω

� �k
> ¼ 0. Hence, if limΩ!1 < Xk

Ω > ¼ xk exists,

lim
Ω!1

∑
β
δβk

1
Ω

< WβðXÞ >ψ ¼ lim
Ω!1

∑
β
δβk < Wβð < X

Ω
>Þ >ψ ¼ ∑

β
δβk < WβðxÞ >ψ :

Furthermore, ∑β δ
β
k < WβðxÞ >ψ ¼ ∑β δ

β
k < fβðxkÞ >ψ xk. Since the right-hand side is finite, we can

also interchange the limits in the left-hand side.

3.2. Error estimates
We want to reconsider the error estimates of (Solari & Natiello, 2003) in order to assess the accuracy of
the approximation. The procedure in (Solari & Natiello, 2003; Sections 3 and 4) is general enough and it
can be reproduced here, taking care of the proper expression for theW’s and the generating function.

Bounds to the error of the approximation Δ ¼ Φ� ψ can be computed by integrating the
difference between the exact and approximate time-evolutions from the same initial condition.
We start by defining the auxiliary operator L formally solving the exact time-evolution as

LðX0ÞΦ ;∑
n
zn ∑

α
ðzα � 1ÞWαðXðnÞÞPðn; t;X0Þ ¼ ∑

n
zn ∑

α
ðzα � 1ÞfαðXÞXJðαÞPðn; t;X0Þ

¼ ∑
N

k¼1
∑

α 2 Bk

ðzα � 1ÞfαðXÞXJðαÞΦ:
(7)

This is achieved by expanding the right-hand side of Equation (1) using Equation (2) and reordering
the sum over events. Bk denotes the set of events that decrease the subpopulation k. Note that for

β 2 Bk, δ
β
JðβÞ ¼ �1 and r jβ ¼ 0 for j � JðβÞ (from Equation 5), being then JðβÞ ¼ k.

The approximate time-evolution in the quasilinear approximation is recovered putting together
Equations (1) and (3), finally leading to

LðX0Þ � d
dt

� �
ψ ¼ ∑

N

k¼1
∑

α 2 Bk

ðzα � 1ÞðfαðXÞ � rkαÞXkψ
h i

: (8)

We can now compute the error estimate as:

Δðz; t;X0Þ ¼ ðΦ� ψÞðz; t;X0Þ ¼
ðt
0
dseLðX

0Þðt�sÞ LðX0Þ � d
ds

� �
ψðz; s;X0Þ

¼
ðt
0
dseLðX

0Þðt�sÞ ∑
N

k¼1
∑

α 2 Bk

ðzα � 1ÞðfαðXÞ � rkαÞXkψðz; s;X0Þ
h i

¼
ðt
0
ds ∑

N

k¼1
∑

α 2 Bk

ðfαðXÞ � rkαÞXk

� ðzαψðz; t� s;X0 þ δαkÞ � ψðz; t� s;X0Þ
h i

;

given that ψðz;0;X0Þ ¼ Φðz;0;X0Þ (Φ being the exact generating function). Note that all operators
in the square bracket depend on s:. Hence, for suitable bounded positive constants A and B, using
Grönwall’s inequality it also holds that

ðzαψðz; t� s;X0 þ δαkÞ � ψðz; t� s;X0Þ
h i��� ��� � Aðt� sÞeBðt�sÞ:

Finally, for a suitable bounded positive constant, C it follows that
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Δðz; t;X0Þ
��� ��� � C

B2 1þ eBtðBt� 1Þ� � ¼ C
2
t2 þ oðt2Þ:

The present approach has smaller upper bounds than the method developed in (Solari & Natiello,
2003), since the constant C is proportional to B:

C / B ¼ sup
X; k¼JðαÞ

Xk ðfαðXÞ � rkαÞ
�� ��� �

:

Thus, only the nonlinear processes contribute to the error.

The conditions that optimise the estimation of average values and dispersions require that
(Solari & Natiello, 2003; Equations 26 and 51)

∑
N

k¼1
∑

α 2 Bk

ðfαðXÞ � rkαÞXkψð1; t;X0Þ
h i

¼ 0;

where ψðz; t;X0Þ is the approximated generating function, to be considered in the next section. The
later expression can be read

∑
N

k¼1
∑

α 2 Bk

Xk < ðfαðXÞ � r kαÞ >X0 ¼ 0;

where the averages are taken with the approximated generating function with initial condition

PðX0Þ ¼ 1. Hence, we arrive to the condition

rJðαÞα ¼ < fαðXÞ >X0

(we recall that JðαÞ is the population decreased in one by the event α). This expression justifies our

early (intuitive) choice for r JðαÞα in Equation (3).

3.3. Generating function
The quasilinear generating function ψðz; t0; tÞ can be computed taking advantage of the linearity
properties of the approximation (Solari & Natiello, 2014; Equation 35). For the present work,
rendering time-dependency explicit, we have

ψðz; t0; tÞ ¼
Q
β

φβðz; t; t� t0Þ
� �mβ

¼Q
β

exp �
t�t0

0
∑
α

∑
k
δβkr

k
αðt� τÞ

 !
zαφαðz; t; τÞ � 1ð Þdτ

 !" #( )mβ

;

where φαðz; t; τÞ satisfies the equation

d
dτ

ln φβðz; t; τÞ� � ¼ ∑
α

∑
k
δβkr

k
αðt� τÞ

 !
zαφαðz; t; τÞ � 1ð Þ; φβðz; t;0Þ ¼ 1;

to be integrated over 0 � τ � t� t0, and the coefficients mβ express the initial condition in terms of

the event matrix δ: Xkðt0Þ ¼ ∑β δ
β
kmβ. Recasting the result in population space (Solari & Natiello,

2014; Equation 36), we may write d
dτ ln φαðz; t; τÞð Þ ¼ ∑k δ

α
k

d
dτ ln wkðz; t; τÞð Þ, (where wk is the generat-

ing function for one individual of the population k, see Lemma 5 in Appendix A) thus arriving to a
differential equation for the generating function for each subpopulation to be integrated over 0 �
τ � t� t0 (cf. Solari & Natiello, 2014; Equation 43):

d
dτ

ln wkðz; t; τÞð Þ ¼ ∑
β
rkβðt� τÞ zβ

Y
j

w
δβ
j

j ðz; t; τÞ � 1

0
@

1
A; wkðz; t;0Þ ¼ 1: (9)
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We recall that for β 2 Bk, δ
β
JðβÞ ¼ �1 and r jβ ¼ 0 for j � JðβÞ. Hence, for β 2 Bk we have JðβÞ ¼ k, ðδβk þ

1Þ ¼ 0 and

d
dτwkðz; t; τÞ þ ∑

β 2 Bk

rkβðt� τÞwkðz; t; τÞ

¼ ∑
β 2 Bk

rkβðt� τÞzβ
Q
j�k

w
δβ
j

j ðz; t; τÞ; wkðz; t;0Þ ¼ 1:
(10)

We rewrite Equation (10) as an integral equation. We set first

Hkðt; t0; aÞ ¼ expð�
ðt�t0

a
∑

β 2 Bk

rkβðt� uÞduÞ: (11)

Hence,

wkðz; t; t� t0Þ ¼ Hkðt; t0;0Þ

þ
ðt�t0

0
Hkðt; t0; xÞ ∑

β 2 Bk

rkβðt� xÞzβ
Q
j�k

w
δβj
j ðz; t; xÞ

 ! !" #
dx:

(12)

The first term is the probability of no events, while the second term is built with two objects,

dQk
βðx � u � t� t0Þ ¼ exp �

ðt�t0

x
∑

β 2 Bk

rkβðt� uÞdu
 !

∑
β 2 Bk

rkβðt� xÞzβ
 !

dx;

ψðz=βÞ ¼ Q
j�k

w
δβj
j :

The first contribution gives the probability of the first event taking place precisely in the interval
x; xþ dx½ � while the second factor is the generating function for an individual after the occurrence
of an event β at time u. The factor zβ counts the event β.

3.4. Ordinary differential equation form of the approximation
The approximation lemma in Appendix A establishes the relevant properties of the generating
functions wk within the approximation. Picard’s iteration scheme starts with wð0Þ

k ðz; t; t� t0Þ ¼ 1.
The next-order approximation obeys (always with the initial condition wkðz; t;0Þ ¼ 1 at any order)

d
dτ

wð1Þ
k ðz; t; τÞ þ∑

β
rkβðt� τÞwð1Þ

k ðz; t; τÞ ¼ ∑
β
rkβðt� τÞzβ

Y
j�k

wj
� �δβj

2
4

3
5
ð0Þ

ðz; t; τÞ;

with the solution

wð1Þ
k ðz; t; t� t0Þ ¼ 1þ ðzβ � 1Þ 1�

ðt�t0

0
∑

β 2 Bk

rkβðt� sÞds
 !

:

In general, we have

d
dτw

ðnþ1Þ
k ðz; t; τÞ þ∑

β
rkβðt� τÞwðnþ1Þ

k ðz; t; τÞ

¼ ∑
β
rkβðt� τÞzβ

Q
j�k

wj
� �δβj" #ðnÞ

ðz; t; τÞ:
(13)

When computing specific problems, the coefficients rkβ may actually depend on the solutionswk and a
further approximation scheme will be required to approximate the time integrals. A more manage-
able expression is obtained by changing variables in Equation (12) via t� u ¼ t0 þ v . First we let

~Hkðt; t0Þ ¼ exp �
ðt�t0

0
∑

β 2 Bk

rkβðt0 þ vÞdv
 !

:
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Then, Equation (12) reads,

wkðz; t; t� t0Þ ¼ ~Hkðt; t0Þ

þ
ðt�t0

0

~Hkðt� x; t0Þ ∑
β 2 Bk

rkβðt� xÞzβ
Y
j�k

w
δβj
j ðz; t; xÞ

0
@

1
A

0
@

1
Adx

and further t� x ¼ t0 þ �:

wkðz; t; t� t0Þ ¼ ~Hkðt; t0Þ

þ
ðt�t0

0

~Hkðt0 þ �; t0Þ ∑
β 2 Bk

rkβðt0 þ �Þzβ
Y
j�k

w
δβ
j

j ðz; t; t� t0 � �Þ
0
@

1
A

0
@

1
Ad�:

3.4.1. Second-order approximation
From the approximation lemma in Appendix A, we know that wðnÞ

k is a n-th degree polynomial in the
variables zβ, with time-dependent coefficients. We propose the following approximated expression
for wk:

wkðz; t; τÞ ¼ 1þ ∑
β 2 Bk

ðzβ � 1ÞPkβðt; τÞ

þ ∑
β 2 Bk

∑
jjδβ

j
>0

n o ∑
α 2 Bj

Pkjβαðt; τÞzβðzα � 1Þ

þ Oðz2ðz� 1ÞjΔtj3Þ;

(14)

since we will only need event strings of length at most two to implement the second-order
approximation.

Lemma 3. The following relations hold, for β 2 Bk and α 2 Bj:

d
dτ

Pkβðt; τÞ þ Pkβðt; τÞ ∑
ν 2 Bk

rkνðt� τÞ
 !

¼ r kβðt� τÞ; P k
βðt;0Þ ¼ 0

and

d
dτ

Pkjβαðt; τÞ þ Pkjβαðt; τÞ ∑
ν 2 Bk

rkνðt� τÞ
 !

¼ δβj r
k
βðt� τÞP j

αðt; τÞ; Pðt;0Þ ¼ 0:

Proof. Straightforward substitution of Equation (14) into Equation (13) gives the result by separat-
ing terms after powers of z. ◽

Note also that Pkjβα can be decomposed as the sum of δβj identical probabilities per generated

individual,
Pkjβα
δβj
.

Each member of subpopulation k undergoes an event β with probability Pkβ. In terms of the popula-

tion, nβ events are produced, with nβ a random variable distributed with Multinomial Pkβ
n o

;Xkð0Þ
� �

.

The occurrence of this event produces an increment δβj nβ ¼ Δj
β in the subpopulations j : δβj > 0.

The newly arrived members of the population j may in turn undergo a new transition triggered by

event α (or no transition at all). The probability of this sequence βα is Qβα ¼ Pkjβα
δβj P

k
β

, i.e., the probability

of event α following event β for each of the new individuals δβj , conditioned to the actual

occurrence of β. Thus, there will be nα additional events subtracting individuals from the j
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subpopulation as a consequence of event α 2 Bj. This will modify in turn the subpopulations in the

set l δlα > 0
��	 


by an amount Δl
βα ¼ δlαnα. The value of nα is drawn from Multinomial Qβα

	 

;Δj

β

� �
.

Lemma 4. The approximated generating function

wkðz; t; τÞ ¼ 1þ ∑
β 2 Bk

ðzβ � 1ÞP k
βðt; τÞþ

þ ∑
β 2 Bk

∑
jjδβj >0

n o ∑
α 2 Bj

P kj
baðt; τÞzβðzα � 1Þ þ þOðz2ðz� 1ÞjΔtj3Þ

Equation (14) corresponds to a concatenation of multinomial processes.

Proof. Consider a process described by strings of length two Ξ ¼ βα such that β 2 Bk; α 2 Bj; δ
β
j >1.

Then,

ψðzβ; zαÞ ¼ ∑
nβ jβ 2 Bkf g

∑
nα jα 2 Bjf g

Pðnβ;nαÞznβ

β znα
α

¼ ∑
nβ jβ 2 Bkf g

PðnβÞznβ

β ∑
nα jα 2 Bjf g

Pðnα=nβÞznα
α

0
@

1
A

¼ ∑
nβ jβ 2 Bkf g

P nβ

� �
znβ

β ψ=β zαð Þ
� �

;

where ψ=βðzαÞ is given by the conditional probability and corresponds to a multinomial

ψ=βðzαÞ ¼ 1þ ∑
α 2 Bj

ðzα � 1ÞQβα

 !δ β
j nβ

;

where Qβα ¼ P kj
βα

δ β
j P

k
β

. The generating function is

ψðzβ; zαÞ ¼ ∑
nβ jβ 2 Bkf g

PðnβÞ zβð1þ ∑
α 2 Bj

ðzα � 1ÞQβαÞδ
β
j

 !nβ
 !

¼ ψ zβ 1þ ∑
α 2 Bj

ðzα � 1ÞQβα

� �δβ
j ;1

 ! 
:

The generating function of the marginal probability

ψ zβ;1
� � ¼ 1þ ∑

β 2 Bk

ðzβ � 1ÞPβ
 !

is itself a multinomial distribution resulting from the competing exponential events. Finally, 14
corresponds to the first order in Δt of the development of ð1þ∑α 2 Bj

ððzα � 1ÞQβαÞδ
β
j

¼ ð1þ∑α 2 Bj
δβj ððzα � 1ÞQβαÞ þ OðjΔtj2Þ. ◽

The proof actually applies to any order of the truncation of 12 which results always in the
concatenation of multinomial distributions arising from the generating function for the marginal
probabilities (which are themselves multinomial since they are the consequence of competing
exponential events).

4. Example: SIR
Equipped with the lemmas of the previous section, we are in a position to compute an approximate
generating function and approximate dynamics keeping the steps of the time-evolution sufficiently
low to guarantee error control.
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Let us consider a SIR epidemic system. There are three subpopulations: Susceptible,
Infected and Recovered. At a given time t0 we have the initial values S0, I0 and R0. We are
interested in the dynamical outcome at a later time t and hence τ ¼ t� t0. The transitions are
as follows:

(1) Contagion δ1S ¼ �1; δ1I ¼ 1; δ1R ¼ 0, W1 ¼ gSI.

(2) Recovery δ2S ¼ 0; δ2I ¼ �1; δ2R ¼ 1, W2 ¼ cI.

There are no events decreasing the recovered population, hence wR ¼ 1. Further, at time t we
have:

< SI > ¼ < S >< I >þ < ðS� < S >ÞðI� < I >Þ >
¼ < S0 � n1 >< I0 þ n1 � n2 >

� < ðn1 � < n1 >Þðn1 � n2 � < n1 � n2 >Þ >:

The expected average values at time t for a process initiated at time t0read,

< n1 > ¼ S0PS1ðt; t� t0Þ
< n2 > ¼ I0PI2ðt; t� t0Þ þ S0PSI12ðt; t� t0Þ
< ðn1 � < n1 >Þ2 > ¼ S0PS1ðt; t� t0Þ 1� PS1ðt; t� t0Þ

� �
< ðn1 � < n1 >Þðn2 � < n2 >Þ > ¼ 1� PS1ðt; t� t0Þ

� �
S0PSI12ðt; t� t0Þ:

The last line can be computed in two equivalent ways. Either as stated, using that the individual
expectation values correspond to adequate z-derivatives of the quasilinear generating function
evaluated at z ¼ 1, or noting that for this problem n2 can be splitted as a contribution independent
of event 1, plus a contribution following the occurrence of event 1, i.e., n2 ¼ n2� þ n12. While n2� is

independent of n1, n12 is distributed with Binomial PSI12
PS1

� �
;n1

� �
. Hence,

< n1n2 >� < n1 >< n2 > ¼ < n1n12 >� < n1 >< n12 >

¼ < n2
1 >� < n1 >2

� � PSI12ðt;t�t0Þ
PS1ðt;t�t0Þ

since from the joint distribution Pðn1;n12Þ ¼ Pðn1ÞP n12
n1

� �
we have that the expectation value of

n12 conditioned to n1 is < n12 >n1 ¼ n1
PSI12
PS1

and < n1n12 > ¼ < n1 < n12 >n1 > ¼ < n2
1 > PSI12

PS1
.

The results are completed by

< S > ¼ S0 1� PS1ðt; t� t0Þ
� �

;

< I > ¼ I0 1� PI2ðt; t� t0Þ
� �þ S0 PS1ðt; t� t0Þ � PSI12ðt; t� t0Þ

� �
;

< R > ¼ R0 þ I0PI2ðt; t� t0Þ þ S0PSI12ðt; t� t0Þ;
< W1 > ¼ gS0 1� PS1ðt; t� t0Þ

� �
� I0 1� PI2ðt; t� t0Þ

� �þ ðS0 � 1Þ PS1ðt; t� t0Þ � PSI12ðt; t� t0Þ
� �� �

:

Hence,

rS1ðt� τÞ ¼ < W1 >
< S > ¼ g < SI >

< S >

¼ gI0ð1� PI2ðt; t� t0 � τÞÞ
þ gðS0 � 1Þ PS1ðt; t� t0Þ � PSI12ðt; t� t0 � τÞ� �

¼ g < I >� PS1ðt; t� t0 � τÞ � PSI12ðt; t� t0 � τÞ� �� �
;

while rI2 ¼ c. In the above equations, 0 < τ < τmax ¼ t� t0. We write them in this form since in

order to solve the differential equations we will evaluate rS1 at time t� τ, where τ is the integration
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variable. As for the probabilities, we are also interested in the P’s evaluated at τ ¼ t� t0 and they
obey the following differential equations:

d
dτ

PS1ðt; τÞ þ PS1ðt; τÞrS1ðt� τÞ ¼ rS1ðt� τÞ;

d
dτ

PSI12ðt; τÞ þ PSI12ðt; τÞrS1ðt� τÞ ¼ rS1ðt� τÞPI2ðt; τÞ;

d
dτ

PI2ðt; τÞ þ PI2ðt; τÞc ¼ c;

(15)

with initial conditions PS1ðt;0Þ ¼ 0, respectively PSI12ðt;0Þ ¼ 0 and PI2ðt;0Þ ¼ 0. Being c a constant, the
last equation can be solved straightforwardly, while the others require to adopt some form of

approximation. For example, approximating rS1
� �ð0Þ ¼ gI0, i.e., by a constant value, we obtain a first

approximation

PS1
� �ð1Þ ¼ 1� expð�gI0ðt� t0ÞÞ
PI2
� � ¼ 1� expð�cðt� t0ÞÞ

Subsequently, a first-order approximation for the rate is produced using the calculated values
and PSI12

� �ð1Þ ¼ 0:

rS1
� �ð1ÞðtÞ ¼ g I0 expð�cðt� t0ÞÞð Þ þ ðS0 � 1Þ 1� expð�gI0ðt� t0ÞÞð Þð Þ

¼ gI0 1� c� ðS0 � 1Þgð Þðt� t0Þð Þ þ O maxðc; gI0Þðt� t0Þ½ �2
� �

Finally, this first-order approximation is used to solve the second-order equations. Recall that what
enters in the differential equations is rS1

� �ð1Þðt� τÞ, while the equations have to be integrated
over 0 < τ < t� t0.

The stochastic number of events occurring in a short time-interval h starting at t0 can be
obtained as follows:

(1) Solve 15 and obtain the coefficients PkðhÞ.
(2) Compute the stochastic number of events n1 and n2 using a binomial deviate generator for

1þ ðz� 1ÞPS1
� �S0 and 1þ ðz� 1ÞPI2

� �I0 .
(3) For the case of contagion events, we note that p ¼ PSI12

δ1I P
S
1
¼ PSI12

PS1
and compute the stochastic

number of events following a contagion as 1� pð1� zÞð Þn1δ
I
1 ¼ ð1� pð1� zÞÞn1 .

5. Example: SIRS
In this example, we extend the previous results including loss of immunity of recovered
individuals and provide numerical computations within the quasilinear approximation. While
in the SIR model of the previous section an individual will suffer no other events after following
the sequence S ! I ! R, the loss of immunity in the present example allows for the occurrence
of arbitrarily long sequences of S ! I ! R events, being the computational situation more
involved.

5.1. Formulae
We consider now a Susceptible-Infected-Recovered-Susceptible (SIRS) epidemic system. We have
three subpopulations: Susceptible, Infected and Recovered. The transitions are as follows

(1) Contagion δ1S ¼ �1; δ1I ¼ 1; δ1R ¼ 0, W1 ¼ bSI.

(2) Recovery δ2S ¼ 0; δ2I ¼ �1; δ2R ¼ 1, W2 ¼ cI .

(3) Immunity loss δ3I ¼ 0; δ3R ¼ �1; δ3S ¼ 1, W3 ¼ dR.
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We have that

< SI > ¼ < S >< I >þ < ðS� < S >ÞðI� < I >Þ >
¼ < S0 � n1 þ n3 >< I0 þ n1 � n2 >

� < ðn1 þ n3 � < n1 >� < n3 >Þðn1 � n2 � < n1 � n2 >Þ >;

which must be calculated with the first-order approximation (which is a multinomial distribution).
The generating function reads,

ψ ¼ 1þ ðz1 � 1ÞPS1 þ z1ðz2 � 1ÞPSI12
� �S0 � 1þ ðz2 � 1ÞPI2 þ z2ðz3 � 1ÞPIR23

� �I0
� 1þ ðz3 � 1ÞPR3 þ z3ðz1 � 1ÞPRS31
� �R0 :

Hence,

< n1 > ¼ S0PS1 þ R0PRS31
< n2 > ¼ I0PI2 þ S0PSI12
< n3 > ¼ R0PR3 þ I0PIR23
< ðn1 � < n1 >Þ2 > ¼ S0PS1 1� PS1

� �þ R0PRS31 1� PRS31
� �

< n1n2 >� < n1 >< n2 > ¼ 1� PS1
� �

S0PSI12
< n1n3 >� < n1 >< n3 > ¼ R0PRS31 1� PR3

� �
< n2n3 >� < n2 >< n3 > ¼ I0PIR23ð1� PI2Þ:

With these elements we can compute

< S > ¼ S0 1� PS1
� �þ I0PIR23 þ R0 PR3 � PRS31

� �
and

< W1 >
b ¼ S0ð1� PS1Þ þ I0PIR23 þ R0ðPR3 � PRS31Þ

� �
� S0ðPS1 � PSI12Þ þ I0ð1� PI2Þ þ R0PRS31
� �

� I0ð1� PI2ÞPIR23 þ S0ð1� PS1ÞðPS1 � PSI12Þ þ R0PRS31ðPR3 � PRS31Þ
� �

:

Hence,

rS1 ¼ < W1 >
< S > ¼ b S0ðPS1 � PSI12Þ þ I0ð1� PI2Þ þ R0PRS31

� �
�b I0ð1�PI2ÞPIR23þS0ð1�PS1ÞðPS1�PSI12ÞþR0PRS31ðPR3�PRS31Þ

S0ð1�PS1ÞþI0PIR23þR0ðPR3�PRS31Þ

h i
:

The remaining rates are linear, hence rI2 ¼ c and rR3 ¼ d: As for the differential equations,

d
dt

PS1 þ PS1r
S
1 ¼ rS1; PS1ð0Þ ¼ 0

d
dt

PI2 þ PI2c ¼ c; PI2ð0Þ ¼ 0

d
dt

PR3 þ PR3d ¼ d; PR3ð0Þ ¼ 0

d
dt

PSI12 þ PSI12r
S
1 ¼ rS1P

I
2; PSI12ð0Þ ¼ 0

d
dt

PIR23 þ PIR23c ¼ cPR3; PIR23ð0Þ ¼ 0

d
dt

PRS31 þ PRS31d ¼ dPS1; PRS31ð0Þ ¼ 0:

(16)

The stochastic number of events occurring in a short time-interval h can be obtained as follows:

(1) Solve 16 and obtain the coefficients PkðhÞ.
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(2) Compute the stochastic number of events n1, n2 and n3 using a binomial deviation generator

for 1þ ðz1 � 1ÞPS1
� �S0 , 1þ ðz2 � 1ÞPI2

� �I0 and 1þ ðz3 � 1ÞPR3
� �R0 .

(3) Compute the stochastic number of following events. For example, from p ¼ PSI12
δIIP

S
1
¼ PSI12

PS1
the

following events distribute as ð1� pð1� z2ÞÞn1δ
I
1 ¼ ð1� pð1� z2ÞÞn1 . Similar equations hold

for the other two cases, modifying the indices cyclically.

5.2. Comments
Let us assume that we have the SIRS system

S!ri I!rr R!rs S

and our population values are S; I;Rð Þ ¼ S0;1; R0ð Þ. In case, the race between recovery of infected
and new infection (i.e., the next event influencing I) is won by the recovery, the epidemic stops at
that point, and the infected population becomes extinct. We know then that, with this initial
condition, extinction is bounded by P I¼0f g > rr

rrþS0ri
. We know as well that the probability of extinc-

tion increases with time. We further know that the probability of extinction in a time-interval Dt is
bounded as P I¼0f gðDtÞ > rr

rrþS0ri
1� expð�ðrr þ S0riÞDtÞð Þ to a very good approximation (the parenth-

esis expresses the probability of the occurrence of an event in ½0;Dt�).

We now consider the case in our approximation up to first order. Since, IðDtÞ ¼ 1� n2 þ n1 and
n2 � 1 we need n1 ¼ 0 and n2 ¼ 1.

The probability Pðn1 ¼ 0Þ ¼ ð1� P1ÞS0 ¼ expð�riS0DtÞ must be multiplied by the probability
Pðn2 ¼ 1Þ ¼ P2 ¼ 1� expð�rrDtÞ since both events are assumed to be independent in the approx-
imation. Thus, P I¼0f g ¼ expð�riS0DtÞ 1� expð�rrDtÞð Þ. This function is convex and it is zero at t ¼ 0

while also limt!1P I¼0f gðtÞ ¼ 0. Hence, unlike the exact case, the probability is not non-decreasing.

The observation imposes a qualitative limit for the possible time steps, namely
Dt 	 logð rr

ri S0
þ 1Þ=rr. For example, S0 ¼ 6000, rr ¼ 0:8, ri ¼ 0:0002 we have Dt 	 0:64

Another interesting feature that generalises to all systems is that the expression < S > that

appears in the denominator of r ¼ ri < SI >
< S > can be written as < S > ¼ < S0 � n1 þ n3 > ¼

S0 þ � @ψ
@z1

þ @ψ
@z3

n o
z¼1

and has the form < S > ¼ S0a1 þ R0a2 þ I0a3. The factors aiare Oðhi�1Þ and

according to the approximation lemma (in Appendix A), they admit a power-series expansion. If only
the lowest orders are to be kept, it is needed that rrDt; riDt; rsDtf g 	 1. In the case of our example,

considering S0; I0; R0f g � 104 this requires Dt < 0:01, but the requirement to neglect R0a2 in front of

S0a1 in all cases require to consider the worst scenario S0 ¼ 1; R0 ¼ 104 . This translates into

Dt 	 10�4. Thus, further approximations should be considered with caution and it is advisable not
to perform them. In the same form, < SI > will have 12 terms when parsed by the first and second
powers of S0; I0; R0f g.

5.3. Simulations
We use the SIRS model to illustrate the differences between different simulations. The model
corresponds exactly to a Feller–Kendall process; hence, we visually compare the exact process, the
deterministic model and the present approach.

In Figure 1, it is shown that the approximatedmethod closely follows the exact simulation in contrast
with the deterministic method that presents large departures after reaching the minimum number of
infected individuals (upper right panel in the figure). Both the total number of runs (out of 104) where
the infected population goes into extinction and the distribution in time of these events is well
represented by the approximation method (no extinction is possible in the deterministic simulation).
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6. Concluding remarks
The goal of this manuscript has been to discuss, develop and implement a quasilinear approxima-
tion to the Feller–Kendall algorithm for Markov Jump processes. The work follows closely the ideas
in Solari and Natiello (2014), where linear and constant transition rates are discussed. In the
present work, we extend those ideas to the more useful situation where rates are not necessarily
linear and – quite important – they are also time-dependent. The relevance of the use of approx-
imations ultimately lies in the judgement of the user. However, for population problems with
realistic aspirations, the Feller–Kendall algorithm soon becomes too slow and reliable approxima-
tions are a reasonable way out. The alternatives available for choosing a proper approximation
level are therefore also discussed.
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Appendix A. Properties of exact solutions
We may think of Φ as the conditional probability of the standard formulation of the Kolmogorov

Forward Equation. X0 resumes all the information of the path at time s that is relevant for the
future (the condition), while n represents the number of events that have occurred after the initial

time s. Thus, Φ ¼ Φðz; t;X0; sÞ. The transition probabilities may then show a dependence with time
as well. To lighten the notation, we have suppressed the initial time in the arguments since we will
seldom use it.

The description by events offers more information than the description by states of the popula-
tion. The projection of the increments in the number of events, n, onto population states is made
by the matrix δ with elements δαj which in general is an integer-valued rectangular matrix of

dimensions ðE� NÞ with E � N. Since the matrix is rectangular, we are certain to have zero
eigenvalues whenever E > N. We call the associated eigenvectors, vj, structural zeros. We take

the following results from (Solari & Natiello, 2014):

Definition. A nonzero vector vj such that ∑α δ
α
j v

α
k ¼ 0, for j ¼ 1; � � � ;N is called a structural zero of δ.

There are E� N structural zeros. The basis of the space of events can be taken as the union of
the N vectors xj with components xαj ¼ δαj and the E� N vectors vj. We have that xj � vk ¼ 0.

Equation (1) can be formally written as:

@Φ
@t

;LðX0; tÞΦðz; t;X0; sÞ ¼ ∑
n
zn ∑

α
ðzα � 1ÞWαðXðnÞÞPðn; t;X0Þ:

Thus the operator L is defined as acting over the monomials znas LðX0; sÞzn ¼ zn∑αðzα � 1Þ
WαðX0 þ δnÞ. If we write XðnÞ ¼ X0 þ δn it is clear that

LðX0; sÞznþk ¼ zkLðX0 þ δk; sÞzn

and then

@ðzkΦÞ
@t

;LðX0; tÞzkΦðz; t;X0; tÞ ¼ zkLðX0 þ δk; tÞΦðz; t;X0; sÞÞ: (A1)
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We call Kðz; t;X0; sÞ the operator that solves the Kolmogorov Backward Equation

@Kðz; t;X0; sÞ
@s

¼ �Kðz; t;X0; sÞLðX0; sÞ; (A2)

with Kðz; t;X0; tÞ1 ¼ Φðz; t;X0; tÞ, where 1 is the generating function corresponding to no events.
Following (Solari & Natiello, 2003), we have

Φ ¼ ψ þ Δ;

where Δðz; s;X0; sÞ ¼ 0 and then we can write

Δðz; t;X0; sÞ ¼ �
ðt
s

d
ds0

Kðz; t;X0; s0Þψðz; s0;X0; sÞ
� �

ds0:

Thus, we obtain

Δðz; t;X0; sÞ ¼ � Kðz; t;X0; s0Þψðz; s0;X0; sÞ
� �

jts
¼ �Idψðz; t;X0; sÞ þ Kðz; t;X0; sÞ1
¼ Φ� ψ:

where Id is the identity operator. Then,

Δðz; t;X0; sÞ ¼
ðt
s

Kðz; t;X0; s0Þ LðX0; s0Þ � d
ds0

� �
ψðz; s0;X0; sÞ

� �
ds0: (A3)

Recalling Equation (8)

ðLðX0; s0Þ � d
ds0

Þψðz; s0;X0; sÞ ¼ ∑
n
zn ∑

k
∑

α 2 Bk

ðzα � 1Þ ðfαðXÞ � rkαÞ
� �

Xk�Pðn; s0;X0; sÞ

where �P are the approximated probabilities,

ψðz; t;X0; sÞ ¼ ∑
nf g
zn�Pðn; t;X0; sÞ:

Using the later and Equation (A1), we obtain the result

Δðz; t;X0; sÞ
¼
ðt
0

∑
k;α 2 Bk; nf g

zn�Pðn; s0;X0; sÞ fαðXÞ � rkα
� �

Xk
� �

zαΦðz; t;Xþ δα; s0Þ �Φðz; t;X; s0Þð Þ
 !

ds0:

A.1. The approximation lemma
The form of the approximations to the generating function can also be obtained by the following
iterative scheme starting from Equation (12), recalling also the auxiliary definition in Equation (11):

wðnþ1Þ
k ðz; t; t� t0Þ ¼ Hkðt; t0; 0Þ

þ
ðt�t0

0
Hkðt; t0; τÞ ∑

β 2 Bk

rkβðt� τÞzβ
Q
j�k

wjðz; t; τÞ
� �δβj" #ðnÞ

dτ
(A4)

with wð0Þ
k ðz; t; t� t0Þ ¼ 1. The following Lemma was originally proved in (Solari & Natiello, 2014;

Lemma 22). We add to the present version one more item (item e) and a slightly improved
iteration scheme.
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Lemma 5. For t 2 ½0;h�, h ¼ t� t0 > 0 sufficiently small and for each order of approximation

n � 0, wðnÞ
k ðz; t; t� t0Þ in 12 is a polynomial generating function for one individual of the population,

i.e., it has the following properties:

(a) wðnÞ
k ðz1; � � � ; zE; t; t� t0Þ is a polynomial of degree n in z1; � � � ; zE, where the coefficient of zn1

1 ; � � � ; znE
E is

OðhpÞ, with p ¼ n1 þ � � � þ nE.

(b) wðnÞ
k ð1; � � � ;1; t; t� t0Þ ¼ 1.

(c) ΔðnÞ
k ðz; t;hÞ ¼ wðnÞ

k ðz; t;hÞ �wðn�1Þ
k ðz; t;hÞ ¼ OðhnÞ, for n � 1.

(d) The coefficients of wðnÞ
k ðz1; � � � ; zE; t; t� t0Þ regarded as a polynomial in zαf g are non-negative func-

tions of time.

(e) Δn
k ðz; t;hÞ / zðn�1Þðz� 1Þ, for n � 1.

Proof. We proceed inductively. For n ¼ 0, we set wð0Þ
k ¼ 1 and replacing in the iterated form we obtain

w1
k ðz; t; t� t0Þ ¼ exp �

ðt�t0

0
∑

β 2 Bk

rkβðt� uÞdu
 !

þ
ðt�t0

0
exp �

ðt�t0

τ
∑

β 2 Bk

rkβðt� uÞdu
 !

∑
β 2 Bk

rkβðt� τÞzβ
 !

dτ:

Noting thatðt�t0

0
∑β 2 Bk

rkβðt� τÞ
� �

exp �
ðt�t0

τ
∑β 2 Bk

rkβðt� uÞdu
 !

dτ

¼
ðt�t0

0

d
dτ

exp �
ðt�t0

τ
∑β 2 Bk

rkβðt� uÞdu
  !

dτ

¼ 1� exp �
ðt�t0

0
∑β 2 Bk

rkβðt� τÞdτ
 !

;

we realise that properties (a)–(e) hold for n ¼ 1. In particular,

Δ1
kðz; t; hÞ ¼

ðh
0
exp �

ðh
τ

∑
β 2 Bk

rkβðt� uÞdu
 !

∑
β 2 Bk

rkβðt� τÞðzβ � 1Þ
 !

dτ:

Under the iterative scheme A4, assuming that the properties hold for arbitrary n� 1 (with n � 2), it
is immediate that property (a) holds also for n, since the iterative scheme adds one power of z to

the previous polynomial. Moreover, the correction ΔðnÞ
k ðz; t;hÞ ¼ wðnÞ

k ðz; t;hÞ �wðn�1Þ
k ðz; t;hÞ reads

(with the auxiliary Hk defined in Equation 11):

ΔðnÞ
k ðz; t; hÞ ¼

ðh
0
Hkðt; t� h; τÞ ∑

β 2 Bk

rkβðt� τÞzβ
Q
j�k

wjðz; t; τÞ
� �δβj" #ðn�1Þ0

@
1
A

0
@

1
Adτ

�
ðh
0
Hkðt; t� h; τÞ ∑

β 2 Bk

rkβðt� τÞzβ
Q
j�k

wjðz; t; τÞ
� �δβj" #ðn�2Þ0

@
1
A

0
@

1
Adτ:

Note that throughout, we will consider the individual w’s inside each square bracket to be truncated
to the same order of the bracket, since this implies no loss of generality. Thus, property (b) follows

since by the inductive hypothesis wðn�1Þ
j ð1; t; t� t0Þ ¼ 1 and hence ΔðnÞ

k ð1; t;hÞ ¼ 0. Using that
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w
δ β
j

j

 �ðn�1Þ
¼ w

δ β
j

j

 �ðn�2Þ
þ δ β

j w
δ β
j �1

j

 �ðn�2Þ
Δðn�1Þ
k þ Oðt2n�2Þ

and thatΔðnÞ
k ¼ OðtnÞ for n � 2, we can drop the higher order terms. Thus, we have (for arbitrary n > 1),

ΔðnÞ
k ðz; t; hÞ ¼

ðh
0
Hkðt; t� h; τÞ ∑

β 2 Bk

rkβðt� τÞzβ ∑
j�k

δβj w
δβj �1

j

 �ðn�2Þ
Δðn�1Þ
j

 ! !
dτ

þ Oðt2n�1Þ;

but since Δðn�1Þ
k ¼ Oðtn�1Þ we can also drop higher order terms in wðn�2Þ

j ¼ 1þ OðtÞ since they do not
contribute to the leading order. Finally,

ΔðnÞ
k ðz; t; hÞ ¼

ðh
0
Hkðt; t� h; τÞ ∑

β 2 Bk

rkβðt� τÞzβ ∑
j�k

δβj Δ
ðn�1Þ
k

� � !
dτ

þ Oðtnþ1Þ;

thus giving both (c) and (e). For (d) we observe that,

wðnÞ
k ðz; t; t� t0Þ ¼ wð1Þ

k ðz; t; t� t0Þ þ ∑
n

m¼2
ΔðmÞ
k ðz; t; t� t0Þ

¼ 1þ ∑
n

m¼1
ΔðmÞ
k ðz; t; t� t0Þ:

Inserting the expression for ΔðnÞ
k ðz; tÞ above, we may write:

wðnÞ
k ðz; t; t� t0Þ ¼ wð1Þ

k ðz; t; t� t0Þ

þ
ðt�t0

0
Hkðt; t0; τÞ ∑

β 2 Bk

rkβðt� τÞzβ
Q
j�k

wjðz; t; τÞ
� �δβj" #ðn�1Þ

� 1

0
@

1
Adτ:

Recalling the expression for wð1Þ; we finally obtain:

wðnÞ
k ðz; t; t� t0Þ ¼ Hkðt; t0; 0Þ

þ
ðt�t0

0
Hkðt; t0; τÞ ∑

β 2 Bk

rkβðt� τÞzβ
Q
j�k

wjðz; t; τÞ
� �δβj" #ðn�1Þ

dτ:

Hence, if wðn�1Þ
k is a polynomial with positive coefficients, the same property holds for wðnÞ

k since it
results from multiplication by positive numbers and integration term by term.

It remains to be shown that A4 converges towards a solution of 12, or what is the same, that

limn!1 wkðzÞ �wðnÞ
k ðzÞ

��� ��� ¼ 0. However, for m > 0,

wðnþmÞ
k �wðnÞ

k � ∑
m�1

j¼0

�����
�����wðnþjþ1Þ

k �wðnþjÞ
k � Cj jznþ1ðz� 1Þ

�����
�����jtjnþ1

with

C ¼ sup
0 � τ � t�t0

expð�
ðt�t0

τ
∑

β 2 Bk

rkβðt� uÞduÞ ∑
β 2 Bk

rkβðt� τÞ
 !

:

Then, for bounded transition rates and sufficiently small t, the iterative scheme is a contraction
map and by Banach’s theorem has a fixed point which is the solution we are looking for.
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