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Abstract. We study the collisional dynamics of multiple dark solitons in a Bose-Einstein condensate con-
fined by a toroidal trap. We assume a tight enough confinement in the radial direction to prevent possible
dissipative effects due to the presence of solitonic vortices. Analytical expressions for the initial order pa-
rameters with imprinted phases are utilized to generate different initial arrays of solitons, for which the
time-dependent Gross-Pitaevskii equation is numerically solved. Given that the soliton velocity is con-
served due to the lack of dissipation, we are able to apply a simple quasiparticle description of the soliton
dynamics. In fact, the trajectory equations are written in terms of the velocities and the angular shifts
produced at each collision, in analogy to the infinite one-dimensional system. To calculate the angular
shifts, we directly extract them from the trajectories given by the Gross-Pitaevskii simulations and, on the
other hand, we show that accurate values can be analytically obtained by adapting a formula valid for the
infinite one-dimensional system that involves the healing length, which in our inhomogeneous system must
be evaluated in terms of the sound velocity along the azimuthal direction. We further show that very good
estimates of such a sound velocity can be directly determined by using the ground state density profile and
the values of the imprinted phases. We discuss the possible implementation of the system here proposed
using the current experimental techniques.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices, and topological excitations – 03.75.Kk Dynamic properties of condensates; collective and hydro-
dynamic excitations, superfluid flow

1 Introduction

Solitons arise as fundamental solutions of nonlinear wave
equations ruling in quite diverse systems such as, shallow
liquid waves [1], magnetic films [2], complex plasmas [3],
and optical fibers [4]. Particularly, in Bose-Einstein con-
densates (BECs) solitons are characterized by their form
stability under time evolution, even after interacting with
other solitons, behaving akin to classical particles. Accord-
ing to the nature of the interatomic interaction occurring
in such ultracold gases, that is, an attractive or repulsive
one, we may respectively have bright or dark solitons, of
which the latter will be in the focus of the present work.

Soliton collisions have been extensively studied in in-
finite one-dimensional (1D) systems from the theoretical
viewpoint [5–9]. In such systems, solitons collide elasti-
cally and continue moving with a constant velocity away
from the collision region. Hence, the dynamics of a num-
ber of interacting solitons can be described by considering
them as quasiparticles moving with constant velocities,
whereas the corresponding collisions are regarded as in-
stantaneous shifts in the soliton positions. In a pioneering
work, Tsuzuki arrived at a simple relationship between the

shifts produced at a collision of two solitary waves [5] and
later, in Ref. [6], an explicit expression for the values of
such shifts was obtained. In this formalism each soliton is
identified by the corresponding velocity. In a more recent
work, it has been shown that very slow solitons, which are
identified by their density notches, can be safely regarded
as a hard-sphere-like system of particles, which interact
through an effective (velocity dependent) repulsive poten-
tial [9].

As strictly 1D condensates are impossible to imple-
ment experimentally, more realistic soliton systems in atomic
BECs confined by different trapping potential geometries
have been extensively studied in the last years [10]. Re-
cently, renewed interest has arisen from the experimental
observation of solitonic vortices in bosonic and fermionic
systems [11–13]. In such BEC experiments, solitons have
been spontaneously created through the Kibble-Zurek mech-
anism [14]. The so far commonly used candidate to exper-
imentally realize a realistic configuration close to that of
the infinite 1D system has been a cigar-shaped conden-
sate. Such a condensate, however, presents the potential
drawback of showing a quite different (oscillating) single
soliton dynamics. It has been shown that in the Thomas-
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Fermi approximation a soliton oscillates in a cigar-shaped
condensate with the frequency ωtrap/

√
2 [9, 15–19], where

ωtrap is the angular frequency of the trap in the longitudi-
nal direction. One could avoid, however, such a potentially
undesirable effect stemming from the harmonic trap, sim-
ply by changing to a toroidal condensate [20, 21] .

Experimental setups of toroidal condensates have been
extensively utilized for different purposes [22–24], particu-
larly, they are currently employed as a fundamental com-
ponent of test-bed configurations within the emerging field
of atomtronics [22, 23, 25, 26]. On the other hand, the ex-
perimental realization of solitonic initial profiles in such
type of condensates could in principle be implemented by
standard phase imprinting and/or density manipulation
methods, similarly to those applied in cigar-shaped con-
densates [18]. Actually, an improved phase imprinting pro-
tocol for preparing states of given circulation in a toroidal
condensate has been recently proposed [27]. In such work,
the authors stated that it would be very interesting to
extend these ideas to create multiple solitons with well
defined relative velocities. In a recent work [20], we have
derived an expression for the soliton energy in a toroidal
configuration, which depends on the imprinted phases. In
particular, we have shown that such an energy turns out
to be a decreasing function of the soliton velocity. In such
a work, we have studied the dynamics of a pair of symmet-
rically counter-rotating solitons in a toroidal condensate
for a wide range of initial velocities. We note that the soli-
ton velocity v lies between 0 and c (0 < v < c), where c is
the sound velocity. It has been shown that only for very
slow solitons (v ' 0.001c), the angular velocity remains
constant along the evolution except, of course, around the
collisions. For larger velocity values, the solitonic profiles
are converted in solitonic vortices. In such a work, we were
interested in describing the active role that the vortices
play in the dynamics. As a consequence of the appearance
of solitonic vortices, a continuous increase of the soliton
velocities along the evolution was observed, which in turn
yields a decrease of the soliton energy that can be inter-
preted as a dissipative dynamics of the solitonic system.
Several other regimes arise from a modulation of the trap
parameters [21].

The goal of this work is to study the non dissipative
dynamics of gray solitons in a toroidal BEC using a simple
quasiparticle picture. We will show that the trajectories,
described in terms of the soliton velocities and the angu-
lar shifts, can be determined by solely using the density
maximum of a Gaussian ground state profile and the im-
printed phases. For that purpose, we will model a toroidal
condensate tightly enough confined in the radial direc-
tion, in order to discard sources of dissipation associated
to the presence of solitonic vortices, which may affect the
conservation of the soliton velocities. For such trapping
parameters, we have found that energy dissipation occurs
as the soliton velocity increases during the time evolution.
In the present work we will analyze the soliton trajecto-
ries arising from time-dependent Gross-Pitaevskii (GP)
simulations. In particular, we will demonstrate that the
soliton velocities remain constant along the evolution and

we will calculate the angular shifts at the collisions. We
will show that such shifts can be accurately calculated by
only precisely determining the sound velocity for each set
of imprinted phases.

It is important to notice that the soliton velocity deter-
mines the size of the condensate density notch and hence
the “negative” mass of the soliton. Thus, the quasiparticle
picture involves solitons with a definite mass. We will show
that a rich variety of initial configurations may be reached
by implementing certain phase-imprinting protocol.

This paper is organized as follows. In Sec. 2 we intro-
duce the system, particularly the toroidal trap and the
set of parameters involved, which are chosen in order to
avoid sources of dissipation. In Sec. 3, based on a previ-
ous work [20], we propose a form of constructing initial
arrays of gray solitons with different imprinted velocities.
Section 4 is devoted to the study of the soliton dynam-
ics. We first obtain the soliton trajectories along the torus
by solving the time-dependent GP equation, showing that
in fact, the velocities are conserved, and hence, a simple
quasiparticle picture for describing the dynamics can be
applied. Within such a picture the quasiparticle collisions
are described as angular shifts. A relationship between the
angular shifts involved in a collision, analogous to that of
the 1D system, is established and, on the other hand, such
shifts are evaluated using the trajectories obtained from
GP simulations. We also show that very accurate shift
values can be analytically obtained by using a few param-
eters, namely the maximum of the ground state density
and the imprinted phases. In addition, we show that the
velocity of sound propagating along the angular direction
acquires a relevant role in determining the accuracy of the
model, and thus we analyze the dependence of such veloc-
ity on the imprinted phases. Finally, the conclusions of our
study are gathered in Sec. 5.

2 Theoretical framework

We assume a toroidal trapping potential written as the
sum of a term depending only on x and y, and a term
that is harmonic in the z direction:

VTrap(x, y, z) = V (r) +
1

2
mΩ2

zz
2 , (1)

where r2 = x2 + y2 and m denotes the atomic mass of
87Rb.

The term depending on r is modeled as the following
ring-Gaussian potential [28]

V (r) = V0

[
1− exp

[
−Λ

(
r

r0
− 1

)2
]]

, (2)

where V0 and r0 denote the depth and radius of the po-
tential minimum. The dimensionless parameter Λ is asso-

ciated to the 1/e2 potential width w = r0

√
2
Λ .

The trap parameters have been selected to reproduce
similar experimental conditions to those described in Ref.



H. M. Cataldo and D. M. Jezek: Collisional dynamics of multiple dark solitons 3

[22]. We have set V0=70 nK, r0=4 µm, and fixed the par-
ticle number to N = 1000. A high value of Ωz = 2π× 922
Hz yields a quasi two-dimensional (2D) condensate which
allows a simplified numerical treatment [29]. Then, the or-
der parameter can be represented as a product of a wave
function on the x-y plane, ψ(x, y), and a Gaussian wave
function along the z coordinate, from which the following
2D interacting parameter can be extracted [29]

g = g3D

(
mΩz
2πh̄

)1/2

, (3)

where g3D = 4πh̄2a/m, being a = 98.98 a0 the s-wave
scattering length of 87Rb and a0 being the Bohr radius.

In the mean-field approximation, the condensate dy-
namics is ruled by the time-dependent GP equation

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2 + V (r) + g |ψ|2

]
ψ, (4)

where ψ ≡ ψ(x, y, t) denotes a 2D order parameter nor-
malized to the number of particles. Finally, as will be dis-
cussed in the next section, a high value of the dimension-
less parameter Λ = 50 (w = 0.8 µm) is assumed, in order
to assure a condensate confinement in the radial direction
that avoids the appearance of solitonic vortices in the dy-
namics.

3 Initial arrays of gray solitons

In a previous work [20], we have shown that for a simi-
lar toroidal trap, a dark soliton located along the x-axis
may be safely modeled through an order parameter with
a Gaussian profile of the form,

ψG(r, θ) =
√
n(X) exp

[
−γ

2

(
1− r

r0

)2
]

×
[√

1−X2 tanh
(√

1−X2 kr sin θ
)

+ iX
]
,

(5)

with k =
√
n(X = 0)gm/h̄ and n(X) = n0/(1− 2

√
1−X2

πkr0
),

where 0 ≤ X ≤ 1, and n0 denotes the ground-state den-
sity maximum located at r = r0. For X = 1 one recovers
the ground state, whereas for X = 0 a stationary state
with a double-notch with vanishing density is obtained,
which is referred to as a black soliton. Gray solitons are
determined by the intermediate values 0 < X < 1, which
define the absolute value of the soliton initial velocity in
units of the sound speed. Such gray solitons are charac-
terized by having non vanishing density notches. It is im-
portant to note that the subsequent dynamics of the gray
soliton initial order parameter actually corresponds to a
pair of symmetrically counter-rotating solitons, with the
soliton initially located across the torus at x < 0 (x > 0)
moving clockwise (counterclockwise) [20]. As the number
of particles is fixed, n(X) is a decreasing function of X,

which is due to the fact that for a smaller X more particles
are expelled from the density notch. It is easy to propose
a generalization of the above ansatz for an initial state
consisting of an even number NS of rotating solitons:

ψG(r, θ) = A exp

[
−γ

2

(
1− r

r0

)2
]

NS/2∏
j=1

[√
1−X2

j tanh
(√

1−X2
j kr sin(θ − αj)

)
+iXj ] , (6)

being A a normalization constant and k =
√
n0gm

h̄ . Here
the pair of gray solitons labeled by the subscript j are as-
sumed to be initially located along an axis forming an an-
gle αj with the x-axis, and they move counter-rotationally
at an angular speed determined by the parameter Xj

(0 < Xj < 1). We note that the phase between adjacent
density notches turns out to be a flat function of θ, i.e.,
it does not present any gradient around the torus, which
would be the case if single-notch solitons were generated
for each parameter Xj [27].

In Fig. 1, we depict the densities corresponding to the
stationary solutions of the GP equation for the ground
state (Xj = 1) and the four-notch black soliton (Xj = 0),
which are very similar to those predicted by the Gaussian
model (6) with k = 1.95µm−1. It is worthwhile noticing
that the density maximum of the four-notch black soliton
configuration turns out to be appreciably higher than that
of the ground state, because a large number of atoms are
expelled from the density notches. Fig. 2 shows the GP
order parameter of the four-notch black soliton as a func-
tion of the angular coordinate for r = r0, which shows
a very good agreement with that given by the Gaussian
model, as well. Such a profile also quantitatively agrees
with the kinks observed in the second-excited stationary
analytic solution of a strictly 1D ring ruled by the non-
linear Schrödinger equation [30], and the same agreement
was observed between the double-notch black soliton and
the two-node first-excited solution of the 1D ring system
[20].

The value of γ in Eq. (6) has been determined by min-
imizing the energy per particle,

E(γ) =
1

N

∫
d2r ψG(r, θ, γ)

[
− h̄2

2m
∇2 + V (r)

+
g

2
|ψG(r, θ, γ)|2

]
ψG(r, θ, γ), (7)

where ψG(r, θ, γ) is the order parameter given by Eq. (6)
with Xj = 1 and γ is used as a variational parameter.
We depict in Fig. 3 such an energy as a function of γ,
whose minimum turns out to be around 80. On the other
hand, we have found the following analytical approxima-
tion valid for γ >> 1,

E(γ) =
h̄2

4Mr2
0

γ+V0

[
1−

√
γ

Λ+ γ

]
+

Ng

2
5
2π3/2r2

0

γ1/2, (8)
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Fig. 1. Density profiles ρ(r, θ) = |ψ(r, θ)|2 as functions of the radial coordinate r for the ground state (left panel), and the
four-notch black soliton (right panel) calculated at θ = π/4. Black solid lines correspond to the GP density, whereas the red
dashed lines correspond to the Gaussian model (6) for Xj = 1 (left panel) and Xj = 0 (right panel) with α1 = 0 and α2 = π/2.
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Fig. 2. The four-notch black soliton order parameter as a function of the angular coordinate calculated at the potential minimum
r = r0 = 4µm. The black solid line corresponds to the GP solution, whereas the red dashed line corresponds to the Gaussian
model (6) for Xj = 0 with α1 = 0 and α2 = π/2.

where the first, second and third term on the right-hand
side, correspond to the kinetic, trap and interaction ener-
gies, respectively. Such an expression shows an excellent
agreement with the numerically integrated energy, as seen
in Fig. 3. We have found that the error in using such an
expression turns out to be less than 0.01 % for γ > 30.
Therefore, the value of γ for the energy minimum can be
safely obtained by using Eq. (8) for our parameter range,
which in fact yields γ = 80.

The values of the trap parameter Λ and the number
of particles have been selected according to a recent work
by Gallucci and Proukakis [21], where the authors stud-
ied the regimes that appear in the dynamics when vary-
ing the dimensionless parameter lr/ζ0 for a similar trap-

ping potential, where lr =
√
h̄/mωr corresponds to the

harmonic oscillator length and ζ0 = h̄√
n0gm

denotes the

healing length. Three distinct regimes were identified: soli-

tonic (stable), shedding, and snaking (unstable). In partic-
ular, the solitonic regime features an internal subdivision
around lr/ζ0 = 1 [21]. Here we want to avoid the appear-
ance of solitonic vortices and thus we restrict ourselves to
the regime defined by lr/ζ0 < 1, where radial excitations
are suppressed. We have found that with a high Λ = 50
and a number of particles N = 1000 such a relation is
verified. More precisely, the size of the condensate in the
radial direction may be directly estimated from the ex-
pression of the Gaussian density compared to that of a
harmonic oscillator trapping potential:

ψ2
G(r) = A exp

[
−γ
(

1− r

r0

)2
]

= A exp

[
− (r − r0)

2

l2r

]
(9)

leading to lr = r0/
√
γ = 0.447 µm. On the other hand,

we have ζ0 = 0.51 µm for the healing length, which con-
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Fig. 3. Energy per particle corresponding to the soliton-free order parameter (6) as a function of the Gaussian parameter
γ. The red dashed line corresponds to the analytic expression given by Eq. (8), whereas the black solid line corresponds to a
numerical integration of the energy.

firms us that we are within the pursued regime. Here it is
worthwhile noticing that in our previous work [20], these
quantities yielded lr = 0.685 µm and ζ0 = 0.50 µm, con-
sistent with the fact that we were also interested in explor-
ing how the presence of vortices affects the dynamics. In
fact, in such a work it was shown that the solitons become
accelerated, a signature of dissipative effects that appear
when solitonic vortices are formed.

4 The dynamics

4.1 GP numerical simulations

To analyze the soliton dynamics, we have numerically solved
the time-dependent GP equation for initial order param-
eters of the form (6) with different soliton velocities. For
all cases we have used α1 = 0 and α2 = −π/2, in or-
der to obtain four well separated initial soliton dips. In
Fig. 4, we show snapshots of the density and phase for
the case X1 = 0.2 and X2 = 0.4, where the top pan-
els correspond to the initial configuration and the bottom
panels illustrate how the phase remains almost constant at
both sides of each density dip during the evolution, aside
from small fluctuations associated to sound excitations. In
particular, it may be seen at the bottom panels that the
slower solitons, which exhibit the deeper density notches,
have performed half a cycle around the torus, while the
faster solitons have almost completed an entire one. We
note that such a time turns out to be about 14% smaller
than the one corresponding to the same trajectory of non-
interacting solitons.

It is worthwhile noticing that initial states of this kind
can be experimentally achieved by using a phase imprint-
ing method consisting in illuminating the bottom (y < 0)
and left (x < 0) half-spaces with different intensities,

where, in the case of the top panel of Fig. 4, the former in-
tensity has been assumed to be higher than the latter. The
impression of such a distribution of phases can be experi-
mentally implemented by using a Spatial Light Modulator
(SLM) [27] with different intensities in each quadrant of
the (x, y)-plane that fulfill the above mentioned condition.

The numerical evolutions for three initial arrays are
depicted in Fig. 5, where we show the (k)-soliton angular
position θk(t) (left panels) and the corresponding phase
difference ∆φk between both sides of the (k)-soliton (right
panels). We are assigning the prefix value k = j(−j) to the
soliton with positive (negative) angular velocity imprinted
through the parameter Xj . In such arrays, the combina-
tion of values of the parameters Xj have been chosen to
cover the distinct behaviors at collisions. It is important to
observe that in all cases, each soliton moves with a con-
stant angular velocity, except near collisions, as may be
seen in the left panels of Fig. 5. Hence, the quasiparticle
picture for describing the dynamics of our soliton system
turns out to be plausible. We note that the mass asso-
ciated with a soliton depends on the depth of the soliton
density notch, which in turn depends on its velocity. Then,
we may say that each soliton behaves as a quasiparticle
with a fixed mass. In contrast to the configuration studied
in Ref. [20], all the present cases have shown that solitons
can undergo many collisions without evidencing any sig-
nature of energy dissipation that could be inferred from a
velocity increase.

It is worthwhile mentioning that in an experimental
work on bright solitons [31], it has been shown that in
an asymmetric collision, the solitons pass through one an-
other and emerge from the collision unaltered in shape,
amplitude, or velocity, but with a new trajectory. It is im-
portant to remark that this behavior is also observed for
dark solitons in all the simulations we have performed, as
can be seen in Fig. 5. In contrast, such an effect cannot be
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Fig. 4. In the left panels we show the phase distribution (colors) and particle density isocontours (white solid lines) for a GP
time dependent simulation with an initial condition obtained from Eq. (6) for X1 = 0.2 and X2 = 0.4. The top and bottom
panels correspond to snapshots taken at t = 0 and t = 43 ms, respectively. A dashed line is also shown at the left panels to
denote isocontours corresponding to a 10 percent of the maximum density of the ground state, while the arrows indicate the
soliton velocities and their colors identify each soliton. The right panels show angular distributions of the particle density (red
solid line) and phase (black dashed line) for the azimuthal angle θ at the radius r0 = 4µm. The phase colors at the left panels
are linked to the corresponding phase values depicted on the right panels.

discerned in the simulations of Ref. [20], where only sym-
metric collisions take place and hence each soliton cannot
be distinguished.

We notice that during an asymmetric collision the pre-
cise location of the faster soliton could eventually become
undetermined, if its density minimum disappears at merg-
ing with the deeper density minimum of the slower soli-
ton, when the distance between both density dips becomes
smaller than two healing lengths. This is the case for the
faster solitons of the middle and bottom left panels of Fig.
5.

The imprinted phase difference can be estimated by
considering the asymptotic values ±1 of the hyperbolic
tangent in Eq. (6), which determine the phase at each
side of the soliton density notch as the phases of the com-

plex numbers ±
√

1−X2
j + iXj , yielding the initial phase

difference

∆φ±j = ∓ 2 cos−1(Xj) (10)

for the (±j)-soliton. It is worthwhile noticing that the
above expression can be used in an experiment to obtain
the parameters Xj by using the values of the imprinted
local phases.
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Fig. 5. Time evolutions of the soliton angular positions (left panels) and phase differences at both sides of each density minimum
(right panels), for the initial order parameter (6) with α1 = 0, α2 = −π/2, and X1 = 0.2 and X2 = 0.4 ( top panel ), X1 = 0.4
and X2 = 0.6 (middle panel), and X1 = 0.6 and X2 = 0.8 (bottom panel). The horizontal red (green) dashed lines on the right
panels indicate the initial phase difference given by Eq. (10) for the j(−j)-soliton. The empty blue circles in the middle and
bottom panels locate the overtaking collisions mentioned in the text. Circles, squares, stars, and diamonds are depicted at the
top left panel to guide the eye on the different quasiparticle trajectories. The symbols have the same color of the arrows that
distinguish each soliton at the left panels of Fig. 4.
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In the right panels of Fig. 5, we show the initial val-
ues obtained from Eq. (10) as horizontal dashed lines.
Note that the mean value of each phase difference remains
around its initial value, except near collisions. Such a be-
havior is also a signature of the lack of dissipation in the
soliton system, as the phase difference is directly linked to
the soliton velocity through Eq. (10). In particular, from
the time evolutions provided by the simulations in Ref.
[20], it may be seen that whenever the main absolute value
of the phase difference decreases, the absolute value of the
velocity increases.

Taking into account the head-on collisions, we can dis-
tinguish the following characteristics. In the top right panel
of Fig. 5, we may observe that the phase differences at
collisions reach ±π for X1 = 0.2 and X2 = 0.4, which is
in accordance with that observed in Ref. [20] for velocities
slower than half the sound speed ( Xj < 0.5). On the other
hand, for X1 = 0.6 and X2 = 0.8 (bottom panel), we have
both soliton velocities above such a limit and the phase
differences vanish at collisions, remaining bounded along
the whole evolution, as previously observed for symmet-
ric collisions [20]. Finally, we may observe in the middle
right panel that both behaviors coexist for X1 = 0.4 and
X2 = 0.6, as expected.

A different class of soliton interaction, arising only
for asymmetric collisions, takes place when an overtak-
ing event occurs. Such overtaking collisions can be viewed
for example in the middle and bottom panels of Fig. 5, in-
dicated by the empty circles at t ' 20 ms and t ' 22 ms,
respectively. Note also in the right panels, the phase differ-
ence approaches that can be observed in between adjacent
horizontal dashed lines for this kind of collisions, in con-
trast to the above high velocity head-on collisions, where
the phase differences go to zero.

4.2 Quasiparticle picture

In this subsection we will treat the solitons as quasipar-
ticles. In this picture, each quasiparticle has a fixed (neg-
ative) mass and can freely move in the angular direc-
tion. The interaction between such quasiparticles occurs
through a particular type of collision, where both colliding
quasiparticles are transmitted through each other without
altering their velocity. As a consequence of such a collision,
an angular shift on each soliton position is produced. We
recall that this behavior has been experimentally observed
for bright solitons [31].

By means of the GP numerical simulations, we have
shown that the velocity of each soliton remains constant,
except around collisions. As a consequence, the depth of
the soliton density dip is conserved, which implies that
the soliton mass is also conserved. Hence, the quasiparticle
description can be safely applied and the trajectory θk(t)
of a soliton with angular velocity ωk can be written as,

θk(t) = ωkt+
∑
l

∆θk(tl) U(t− tl) + θk(0), (11)

where U(t− tl) denotes the unit step function, tl indicates
the time of the l-th collision, and ∆θk(tl) designates the
angular shift produced at such a collision.

We note that the number of collisions, in contrast to
the 1D infinite case, is not upper bounded and could take
any value, depending on the time interval involved. How-
ever, we will see that the shifts could only take a few
different values.

As seen in the previous section, we have considered
initial configurations with two distinct values of the pa-
rameter Xj , which gives rise to a system of four rotating
solitons, each one identified by its corresponding angular
velocity ωk. We will see that such a system could yield
only six absolute values of the shift. In the next subsec-
tions, we will derive a relation between the shifts involved
in an asymmetric collision, and we will also evaluate all
of them using a numerical method and an analytical ap-
proach.

4.2.1 Theoretical treatment of the shifts

In an infinite 1D system, the spatial shifts ∆zi at a col-
lision have been analytically obtained using the explicit
form of the order parameter [6] as,

|∆zi| =
ζ

2
√

1− Y 2
i

× ln

 (Yi − Yj)2
+
(√

1− Y 2
i +

√
1− Y 2

j

)2

(Yi − Yj)2
+
(√

1− Y 2
i −

√
1− Y 2

j

)2

 ,(12)

where i = 1, 2 and j = 1, 2, with i 6= j. Here Yk = żk/c
represents the velocity (in units of the sound speed c) of
the corresponding soliton and ζ denotes the healing length
of the homogeneous system. Both shifts have always oppo-
site signs and, as previously demonstrated by Tzusuki [5]
by analyzing the motion of the soliton mass center during
a collision, they fulfill the following relation

∆z1

√
1− Y 2

1 +∆z2

√
1− Y 2

2 = 0. (13)

In our toroidal configuration, the hypothesis of conserva-
tion of the linear momentum does not remain valid, how-
ever, by applying the conservation of the angular momen-
tum, we will see that an analogous expression to (13) can
still hold. We will assume solitons as point-quasiparticles
with masses Mi that move at a fixed radius r0.

Considering a time interval (0 ≤ t ≤ tf ) where a single
collision takes place, which occurs between the (1)- and
(2)-soliton at t = tc < tf , and using Eq. (11), we obtain
both soliton angular velocities,

θ̇1(t) = ω1 +∆θ1,2
d

dt
U(t− tc), (14)

θ̇2(t) = ω2 +∆θ2,1
d

dt
U(t− tc), (15)
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where ∆θ1,2 = ∆θ1(tc) denotes the angular shift on θ1

produced by the collision with the (2)-soliton. Hereafter,
all the angular shifts will be identified by the subscripts
of the solitons involved in the corresponding collision.

Multiplying the above angular velocities by the square
of the radius r2

0 and the corresponding soliton mass Mi,
we can write the expressions for each soliton angular mo-
mentum as,

L1 = M1r
2
0 ω1ẑ +

d

dt

[
M1r

2
0∆θ1,2 U(t− tc)

]
ẑ, (16)

L2 = M2r
2
0 ω2ẑ +

d

dt

[
M2r

2
0∆θ2,1 U(t− tc)

]
ẑ, (17)

where ẑ denotes the z-coordinate unit vector. Now, as-
suming that the total angular momentum L = L1 + L2

must be conserved, the sum of the second terms of Eqs.
(16) and (17), should at least be bounded. Rearranging
such a sum we have,

d

dt

[
r2
0(M1∆θ1,2 +M2∆θ2,1) U(t− tc)

]
(18)

and hence, applying to this quantity the condition of being
bounded leads to,

M1∆θ1,2 +M2∆θ2,1 = 0. (19)

On the other hand, the negative mass of the soliton
[18, 19] can be estimated by using Eq. (6) to calculate the
number of particles expelled from the core, yielding

Mi = −2mA2

√
1−X2

i

k

∫
dr

r

r0
exp

[
−γ
(

1− r

r0

)2
]
,

(20)
which replaced in (19) leads to the following expression
analogous to (13),

∆θ1,2

√
1−X2

1 +∆θ2,1

√
1−X2

2 = 0 (21)

for our toroidal configuration.
Given that our condensate is not a 1D ring, we do not

have analytical solutions of our solitonic system, and hence
we cannot derive an analogous formula to (12) for the
shift values. Nevertheless, in the next section we will show
that accurate values can be obtained by adapting (12) in
a convenient manner. We want to note that, being our
system non homogeneous, the way we adopt for evaluating
the healing length becomes crucial to guarantee such an
accuracy in the values of the shifts.

4.2.2 Numerical and analytical determination of the angular
shifts

In order to numerically determine the angular shifts, we
have run a GP simulation for an initial condition with
X1 = 0.6 and X2 = 0.2, where, as seen in Fig. 6, it is
clearly shown that there exist four different types of colli-
sions. By measuring each slope of the four numerically ob-
tained trajectories θk(t) (k = ±1,±2), we have determined

the soliton angular velocities ω1 = (0.060± 0.001)πms−1

and ω2 = (0.020± 0.001)πms−1, being ω−k = −ωk. Here
it is important to notice that, in analogy to the infinite 1D
case, where Xj = vj/c, with vj the soliton (linear) speed,
we may write c(X1, X2) = ω1r0/X1 = ω2r0/X2. Thus, we
can utilize such a proportionality to extract an estimate of
the linear speed of sound azimuthally propagating along
our ring-shaped condensate, yielding c ' 1.26µm/ms.

To illustrate the way we have calculated the angular
shifts, in Fig. 7 we show close-ups of both kinds of asym-
metric collisions displayed at the left panel of the previous
figure, drawing the tangent lines to the soliton trajectories
before and after the collisions, with slopes corresponding
to the aforementioned angular velocities. This in turn de-
termines the shifts denoted by the vertical dashed lines.
Due to the Cartesian grid, the error in the determination
of the angular shifts is about 0.003π. Particularly, for the
head-on collision [32, 33] which involves the (−1)- and (2)-
soliton, depicted in the left panel, we obtained for the an-
gular shift on the (−1)-soliton |∆θ−1,2| = 0.051π and for
the angular shift on the (2)-soliton |∆θ2,−1| = 0.042π. So,
the quotient turns out to be |∆θ2,−1/∆θ−1,2| = 0.82±0.07,
which yields a good agreement with the result√

1−X2
1/
√

1−X2
2 = 0.81, in accordance with Eq. (21).

We note that a collision between the (1)- and the (−2)-
soliton yields the same preceding absolute values of the
angular shifts, i.e, |∆θ1,−2| = |∆θ−1,2| and |∆θ−2,1| =
|∆θ2,−1|.

On the other hand, for the overtaking collision shown
on the right panel of Fig. 7 that involves the (−1)- and
(−2)-soliton, we obtained |∆θ−1,−2| = 0.084π and
|∆θ−2,−1| = 0.067π, which yields a quotient
|∆θ−2,−1/∆θ−1,−2| = 0.80± 0.07 that again equals√

1−X2
1/
√

1−X2
2 , within the predicted error. Once more,

the (1)- and (2)-soliton would yield the same shift values.
We have calculated in a similar fashion the shifts in the

symmetric collisions, which yielded |∆θ1,−1| = |∆θ−1,1| =
0.030π and |∆θ2,−2| = |∆θ−2,2| = 0.076π.

In summary, for our particular four-soliton system only
six different absolute values of the angular shifts are ob-
tained, which are given in Table 1. In particular, we have
two symmetric collisions, each one involving a single abso-
lute value of the shift, and two types of asymmetric colli-
sions which give rise to the remaining four absolute values.

In view of the analogy between Eqs. (13) and (21),
it becomes evident that one could also try to adapt for-
mula (12) to our present toroidal geometry. Thus, taking
into account that the parameters Xj are defined as posi-
tive quantities, we may obtain the absolute values of the
different angular shifts as,

|∆θ−i,±j |/π =
ζ∗/(πr0)

2
√

1−X2
i

× ln

 (Xi ±Xj)
2

+
(√

1−X2
i +

√
1−X2

j

)2

(Xi ±Xj)
2

+
(√

1−X2
i −

√
1−X2

j

)2

 ,(22)

where i = 1, 2 and j = 1, 2. The sign + (−) corresponds
to head-on (overtaking) collisions. Here it is important to
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Fig. 6. Same as Fig. 5 for X1 = 0.6 and X2 = 0.2. The dashed lines in the left panel indicate noninteracting trajectories for
the (1)-soliton (red) and the (2)-soliton (blue).
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Fig. 7. Enlarged graphs of both kinds of asymmetric collisions represented at the left panel of Fig. 6. The left (right) panel
shows a head-on (overtaking) collision with dashed lines tangent to the trajectories before and after the collisions, while the
vertical dotted lines indicate the corresponding shifts.

recall that, as our system is non homogeneous, the value
of the healing length would depend on the density of the
selected point at which it is calculated. Conversely, the
value of the sound speed, obtained in the previous sec-
tion, only depends on well defined quantities: Xj and the
(j)-soliton velocity. Hence, we have utilized the expres-
sion ζ∗ = h̄/(mc) for calculating the healing length with
our above estimate of the sound speed, c = 1.26µm/ms,
which yields ζ∗ = 0.575µm. The corresponding results
arising from Eq. (22), which agree very well with those
obtained from numerical simulations, are summarized in
Table 1. Also it is worth noting that the use of other com-
mon estimates of the healing length, such as that derived
for a homogeneous system at the density maximum, would
have yielded an underestimated shift in about a 20 per-
cent.

Table 1. Absolute value of the angular shifts (in units of π)
produced at the collisions.

Type of collision Xk Simulation Eq. (22)

Head-on asymmetric 0.6 0.051 0.050
0.2 0.042 0.041

Overtaking asymmetric 0.6 0.084 0.082

0.2 0.067 0.067

Head-on symmetric 0.6 0.030 0.029

0.2 0.076 0.076

4.2.3 Sound velocity

Given the importance that the sound velocity acquires
for determining the angular shifts, we have obtained its
numerical values when varying the imprinted phases by
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using the relationship c(X1, X2) = ωjr0/Xj . Such values
are depicted as solid circles in Fig. 8, as a function of the
square root of the soliton density maximum. On the other
hand, we have theoretically derived an analytic formula
for the sound velocity in terms of our soliton 2D density
maximum. With such a purpose, we have used the result
that the sound propagation speed in an elongated con-
densate reads c =

√
gn̄/m [34], where n̄ is the averaged

density in the transversal direction. Then, we have con-
sidered a 2D elongated condensate with a density profile
in the transversal direction defined by the coordinate r
that emulates the density profile of our solitonic system
far from the density notches, which, using (6) can be mod-
eled as,

n(r) = nmax exp

[
−γ
(

1− r

r0

)2
]
, (23)

where nmax denotes the density maximum. Such a maxi-
mum changes with the imprinted phases and hence it de-
pends on X1 and X2. An analytical expression for
nmax(X1, X2) will be derived below. Using the above pro-
file, we have calculated the mean value n̄ =

∫
n2dr/

∫
ndr,

which yields n̄ = nmax/
√

2 and hence c =
√
gnmax/

√
2m.

It is worthwhile recalling that in the three-dimensional
case, the value n̄ = nmax/2 is obtained [34]. It can be

seen in Fig. 8 that the curve c =
√
gnmax/

√
2m is in

a very good accordance with the set of points obtained
from the time dependent simulations. On the other hand,
the upper curve c =

√
gnmax/m represents the velocity

that should be used to calculate the healing length by em-
ploying its analytical expression as a function of the local
density ζ = h̄/

√
nmaxgm. For completeness we have also

depicted the function c =
√
gnmax/2m (lower line), which

represents the expression for a three-dimensional density.
As we are dealing with a fixed total number of parti-

cles, the value of nmax increases with the imprinted phase
difference. In particular, nmax(X1, X2) aquires its maxi-
mum value when X1 = X2 = 0, which corresponds to a
black soliton. We can go further and obtain an analytical
expression for such a quantity by evaluating the amount of
particles expelled from the place where each soliton den-
sity notch is formed, instead of using nmax = A2 of Eq.
(6). Thus we obtain,

nmax(X1, X2) =
n0

1− 2
√

1−X2
1

πkr0
− 2
√

1−X2
2

πkr0

(24)

where n0 = nmax(X1 = 1, X2 = 1) is the ground state
density maximum. We have found that with such an es-
timate, the sound velocity is obtained within a relative
error of 2 percent. We have plotted as red stars in Fig.
8 some representative points obtained by using this sim-
plified protocol. The nearest black solid circles, obtained
from the time dependent simulations, correspond to the
same set of parameters X1 and X2. From these results,
we may conclude that a good quasiparticle description

can be achieved by solely using the ground state den-
sity and the imprinted phases. It is worthwhile noticing
that, given that the experimental images correspond to
integrated densities along the direction through which the
condensate is viewed, yielding thus images proportional to
2D densities, our result could also be applicable to such
configurations.

4.2.4 Accumulative shift effect

Here it is important to note that, although each individ-
ual shift at a collision may not be expected to lie within
the reach of the available experimental resolution [32], an
accumulative effect of the shifts during one period could
in principle be experimentally detectable. The magnitude
of such an effect can be viewed in Fig. 6, where one can
observe that the collisions cause a sizable advance on the
soliton dynamics, as compared to the trajectories of ide-
ally noninteracting solitons, which are depicted as dashed
lines. We can analytically estimate this effect by using the
velocities and the angular shifts. For instance, the period
for the noninteracting trajectory starting at θ = 0 turns
out to be 33.3 ms, whereas the shifts produced at each
collision bring about that this time becomes effectively
reduced. In particular, we may see that the corresponding
(1)-soliton undergoes two asymmetric and two symmetric
collisions during such a time interval, with an estimated
reduction in time |∆θ1,k/ω1| at each collision with another
(k)-soliton, which yields a reduction in the whole period
of about 2.7 ms (∼ 10%). On the other hand, for the tra-
jectory that starts at θ = −π/2 that corresponds to the
(2)-soliton, we obtain that its half-period becomes reduced
in 4.7 ms with respect to the noninteracting one (50 ms),
which means again about a 10%. It is worthwhile noticing
that only in this case a negative shift is produced in the
evolution, which comes from the overtaking collision ( see
left panel of Fig. 6 for t ' 35 ms). Such analytical calcu-
lations are in accordance with the deviations between the
trajectories of noninteracting solitons and GP simulations
observed in Fig. 6.

5 Conclusions

By choosing a suitable trapping potential, we have fur-
nished a toroidal condensate, whose soliton dynamics is
appropiate for being described as a quasiparticle system
with constant energy. More specifically, each soliton tra-
jectory can be described in terms of a constant velocity
plus the angular shifts produced at each collision.

The soliton states are created by proposing a varia-
tional ground state Gaussian profile in the radial direction
and next imprinting phase differences through the param-
eters Xj , with the same structure in the angular direction
as that obtained for infinite 1D systems. In fact, we have
shown that introducing different configurations with such
initial states into the time dependent GP equation, the
solitons evolve conserving their velocities except around
collisions.
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Fig. 8. Sound velocity as a function of the square root of the density maximum nmax. The solid line corresponds to c =√
gnmax/

√
2m, which has been extracted by using the Gaussian density profile. The dashed (dotted) line corresponds to

c =
√
gnmax/m (c =

√
gnmax/2m). The black solid circles have been obtained from GP simulations in the manner outlined

in Sec. 4.2.2. The red stars correspond to the sound velocity derived in Sec. 4.2.3, with the densities obtained from Eq. (24) for
(X1, X2) = (0.9, 1), (0.7, 0.8), and (0.1, 0.2), from left to right.

In order to analyze the values of the angular shifts in-
volved in the dynamics, we have numerically determined
by means of GP simulations the six different shifts arising
in a four-soliton system. In addition, we have derived in
a first step a relationship between the shifts produced in
a particular collision, assuming both solitons as massive
quasiparticles that collide conserving the angular momen-
tum. Next, we show that very accurate shift values can be
analytically obtained by adapting the corresponding ex-
pression of an infinite 1D system to our present toroidal
geometry. It is important to recall that such a formula de-
pends on the healing length, whose determination in an
inhomogeneous system becomes vague. However, we have
successfully overcome this drawback by using the sound
velocity propagating in the angular direction. We have
shown that the sound velocity can be calculated either
by employing the relationship between the soliton veloc-
ity and the parameter Xj , or by using a prescription we
have derived, which employs solely the ground state den-
sity. Such a procedure have yielded very accurate results,
as compared to those arising from GP simulations.

We emphasize the fact that the value of the sound
speed azimuthally propagating along the toroidal conden-
sate acquires a crucial role in our calculations, so we have
paid special attention to its determination.

To conclude we first recall that toroidal condensates
are used in current experiments [22, 23, 25, 26]. We believe

that the phase imprinting method that we have outlined
in Sec. 4.1, which consists in simultaneously illuminating
different half-spaces with distinct intensities, could be ex-
perimentally applied. Then, using Eq. (10) the parameters
Xj = cos(∆φj/2) could be extracted from the imprinted
phases. On the other hand, by fitting the 2D ground state
density obtained from experimental images with a Gaus-
sian profile and following the procedure explained in Sec.
4.2.3, the sound velocity could be accurately determined
for each set of imprinted phases, as shown in Fig. 8. There-
fore, having the values of the sound velocity c and the
parameters Xj , the quasiparticle picture should be com-
pletely defined.

Finally, in case that the individual shifts could not be
measured for lying out of the current experimental reso-
lution [32], we have proposed to determine them by using
long enough evolutions, where the shift values are accu-
mulated. To conclude such a process, just a set of linear
equations should remain to be solved. In particular, we
have shown that in our simulations the soliton trajecto-
ries turn out to be advanced in about a 10% of a time
period with respect to the ideally noninteracting ones.
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