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1 Introduction

It was recently shown in [1, 2] that deforming a general two-dimensional conformal field

theory (CFT2) by adding to its action the irrelevant operator T T̄ , where T refers to the

holomorphic component of the stress-tensor [3], retains integrability properties and defines

a solvable QFT. This is a very important result in the study of the renormalization group

flow and this is the reason why it attracted much attention recently [4–18]. In particular,

this modification was studied in the context of holography in [19], where it was proposed

that the UV deformation is geometrically realized by a cutoff that removes the asymptotic

region of AdS3 space and replaces it by wall at finite distance from the boundary, where a

QFT with Dirichlet boundary conditions is defined.

As pointed out in [20], in the context of holography, a large class of solvable deformed

CFTs can be obtained by studying string theory on AdS3 with NS-NS fluxes. There it

was shown that a single-trace analog of the T T̄ deformation of the boundary CFT2 gives

rise in the bulk to string theory in a background that interpolates between AdS3 in the

IR and a linear dilaton background of Little String Theory in the UV. This represents

quite an interesting setup, which raises the hope to work out the details of a non-AdS

holography scenario.

– 1 –



J
H
E
P
0
8
(
2
0
1
8
)
0
9
6

The irrelevant deformation studied in [20] shares some qualitative features with the

original T T̄ -deformation of [1, 2], in particular, the property of being solvable and uni-

versal [21]. The model of [20], however, follows from a rather different approach. It is

based on the worldsheet formulation of the bulk theory, and the marginal deformations,

when interpreted from the dual point of view, give rise to an irrelevant deformation in the

boundary. In fact, the model can be regarded as a single trace version of T T̄ . This yields

a solvable deformation of AdS3/CFT2 duality, which leads to a theory with a Hagedorn

entropy in the UV. The spectrum of the theory can be explicitly obtained and compared

with the spectrum predicted in [1, 2]; this was done in [21]. Correlation functions for the

model of [20] on the sphere topology were also computed [22, 23] which led to interest-

ing observations about the theory, especially in relation to its non-locality. The analytic

properties of the spectral density, the asymptotic convergence of the perturbation theory,

and the anomalous dimensions induced by the deformation were analyzed. Other features,

such as the structure of spatial entanglement and its comparison with the standard T T̄

deformation, were also studied recently [24].

In this paper, we will continue the study of this irrelevant deformation of AdS3/CFT2

by extending the results of [23] to the case in which the worldsheet theory has boundaries.

More precisely, we will consider the marginal deformation of the worldsheet theory on AdS3,

as proposed in [20], formulated on the disc geometry with conformal symmetry preserving

boundary conditions. In the undeformed theory, this describes AdS2 D-branes in terms

of correlation functions on the disc. For the deformed theory these observables have not

yet been computed, and this is the computation we undertake in this paper. In section

2, we will review the bulk theory in presence of the deformation, as proposed in [20]. In

section 3, we will discuss the contributions to the action coming from the boundary, which

amounts to discussing the appropriate boundary conditions. In section 4, we present the

correlation functions we want to compute and our strategy for obtaining the anomalous

dimensions induced by the deformation of the theory. In section 5, we compute the 1-point

function of a bulk primary operator in the disc geometry. We obtain the expression for the

anomalous dimension, which we compare with the result coming from the sphere 2-point

function. In section 6, we do a similar computation but involving two operators inserted

in the boundary of the disc. Using path integral techniques, we compute the boundary-

boundary 2-point function in the deformed theory in terms of the analogous observable

for the Wess-Zumino-Witten (WZW) model. In section 7, we compute the much more

involved bulk-boundary 2-point function, which gives a non-trivial consistency check of the

results obtained in the previous sections. As a further consistency check, in section 8 we

reproduce the results for the anomalous dimensions using perturbation theory. We include

three appendices with the details of the calculations.

2 Bulk theory and IR deformation

The bulk theory is defined by an action of the form1 S = SWZW + SD + Sb consisting of a

level k = 2 + b−2 SL(2,R) WZW theory action

SWZW =
1

2π

∫
Γ
d2z g1/2

(
∂φ∂̄φ+ β∂̄γ + β̄∂γ̄ +

b

4
Rφ− b2M0ββ̄e

2bφ

)
, (2.1)

1When comparing with [23], consider the changes in conventions: φ→ −φ/
√

2, M0→ 2M0/b
2, J−→ J+.

– 2 –
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deformed by a marginal operator

SD = −λ0

π

∫
Γ
d2z g1/2ββ̄, (2.2)

and a boundary action Sb, which we will discuss in the next section. Γ is the Riemann

surface corresponding to the disc geometry, which can be mapped to the complex upper

half plane. More precisely, Γ will be taken to be the upper half plane, i.e. y ≥ 0 with

z = x+ iy, while the boundary will be given by the real line z = x.

Bulk action S = SWZW+SD has been studied in detail in [20–24], and it appeared in the

literature before in different contexts; see for instance [25]. In the case λ0 = 0 it corresponds

to the SL(2,R) WZW model, which describes the string σ-model on AdS3; see [26] and

references therein and thereof. In presence of the deformation (i.e. λ0 6= 0) it describes a

string geometry that interpolates between AdS3 and a linear dilaton background. Indeed,

SD represents a worldsheet marginal deformation, which is build up by two of the SL(2,R)

Kac-Moody currents of the WZW model, i.e. J−J̄− = ββ̄. This makes the deformation to

be universal, in the sense that it will be present in all AdS3×M string theory backgrounds

with affine symmetry. The deformation (2.2) does break SL(2,R) symmetry but is exactly

marginal in the sense that it preserves conformal invariance. The deformation is still

solvable in the sense that the spectrum and correlation functions can be exactly derived

for finite λ0 [21–23].

We already mentioned that (2.2) can be though of as inducing a single-trace version of

the T T̄ -deformation in the dual theory. To see this, one can consider the stress-tensor of

the boundary CFT2 dual to the AdS3 string theory. The general form of such a tensor was

obtained in [27], where it was shown to be given as the worldsheet integration of certain

local fields, namely

T =

∫
d2z(∂xJ∂x + 2∂2

xJ)Φ1J̄ , (2.3)

with ∂x being the derivative with respect to an auxiliary complex variable x that organizes

the SL(2,R) representations. J is composed by the three Kac-Moody local currents J3,±

written as a polynomial in x, and Φ1 is a bulk primary field dual to a boundary operator

of conformal dimension 1; see [20, 27] for details. An analogous expression holds for the

anti-holomorphic counterpart T̄ by replacing ∂x ↔ ∂x̄ and J ↔ J̄ . This leads to define the

boundary T T̄ operator as follows

ST T̄ = −
∫
d2x

∫
d2z (∂xJ∂x + 2∂2

xJ)Φ1J̄ · c.c., (2.4)

since from the boundary CFT2 perspective, the variable x ∈ C represents the coordinates

where the dual operators are inserted. c.c. stands for the complex conjugate part, defined by

an independent integration over the worldsheet variable z′ ∈ C of the analogous expression

obtained by replacing x↔ x̄, J(z)↔ J̄(z̄′), and J̄(z̄)↔ J(z′).

Operator (2.2), in contrast, is given by a similar but different formula, namely

SD = −
∫
d2x

∫
d2z (∂xJ∂x + 2∂2

xJ)(∂x̄J̄∂x̄ + 2∂2
x̄J̄)Φ1 = −λ0

π

∫
d2z J−J̄−, (2.5)

– 3 –
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where λ0 is defined by integrating Φ1 over the worldhseet, and boundary terms have been

dismissed; see [20, 21] for details. The single integration over the worldsheet variable

in (2.5) explains in what sense this operator can be regarded as a single trace version

of (2.4).

3 Boundary theory and boundary conditions

Let us now discuss the boundary action Sb which is given by

Sb =
1

4π

∫
∂Γ
dx g1/4

(
2bKφ+ iβ(γ + γ̄)− iζβebφ − iλbβ

)
, (3.1)

where ζ is an arbitrary constant. ∂Γ refers to the boundary of Γ, i.e. the real line in the

case of the upper half plane representation of the disc. The factor g1/4 in the boundary

integration measure stands for the Jacobian written in terms of the induced metric. Here-

after we will omit the factor and work in the conformal frame. We will mainly follow the

conventions of [28, 29]. The boundary action Sb contains the boundary terms proposed

in [28] together with an additional term

− iλb
4π

∫
∂Γ
dxβ . (3.2)

After integrating the βγ fields in (3.1) by parts, we obtain the action

S =
1

2π

∫
Γ
d2z

(
∂φ∂̄φ− γ∂̄β − γ̄∂β̄ +

b

4
Rφ− b2M0ββ̄e

2bφ − 2λ0ββ̄

)
+

1

4π

∫
∂Γ
dx
(

2bKφ− iζβebφ − iλbβ
)
. (3.3)

Considering the boundary terms in its variation, using the constraint δ(β+ β̄)|z=z̄ = 0,

we have

δSb =
i

4π

∫
∂Γ
dx
(
δφ
(

(∂̄ − ∂)φ− ζbβebφ
)

+ δβ
(
γ + γ̄ − ζebφ − λb

))
(3.4)

from which we obtain the gluing conditions

β + β̄|z=z̄ = 0 , (∂̄ − ∂)φ|z=z̄ = ζbβebφ , γ + γ̄|z=z̄ = ζebφ + λb, (3.5)

valid at the boundary, where z = z̄, as the subscript indicates. As we will discuss below,

these gluing conditions are consistent with

J− + J̄−|z=z̄ = 0 , T (z)− T (z̄)|z=z̄ = 0 . (3.6)

The one on the left is the boundary condition of the only Kac-Moody current that is still

conserved, i.e. J− = β. The one on the right is the boundary condition of the worldsheet

stress-tensor T (z) = −β∂γ− (∂φ)2 + b∂2φ. While the former follows immediately from the

first condition in (3.5), the latter is more involved and requires to be proven. It will be

– 4 –
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enough to prove this at classical level.2 Consider the rescaled fields 2bφ→ ϕ, bβ → βcl, and

bγ → γcl, the rescaled constant b2M0 = λ̃, and the rescaled boundary parameters bζ → ζ̃

and bλb → λ̃b. Then, we define the classical limit of the stress-tensor components as

Tcl(z) = lim
b2→0

b2T (z) = −βcl∂γcl −
1

4
(∂ϕ)2 ,

T cl(z̄) = lim
b2→0

b2T (z̄) = −β̄cl∂γ̄cl −
1

4

(
∂̄ϕ
)2

(3.7)

which, with the use of the classical equations of motion,

∂∂̄ϕ = −2λ̃βclβ̄cle
ϕ, ∂̄βcl = 0, ∂β̄cl = 0

∂̄γcl = λ̃β̄cle
ϕ + λ0β̄cl, ∂γ̄cl = λ̃βcle

ϕ + λ0βcl (3.8)

are found to be conserved

∂̄Tcl(z) = 0 , ∂T cl(z̄) = 0. (3.9)

Notice that this is still true even with the modified equations of motion for γcl and γ̄cl
in (3.8), which involves the term coming from the deformation (2.2). The gluing conditions

in terms of the rescaled fields are

βcl + β̄cl|z=z̄ = 0, (∂̄ − ∂)ϕ|z=z̄ = 2ζ̃βcle
ϕ/2, γcl + γ̄cl|z=z̄ = ζ̃eϕ/2 + λ̃b. (3.10)

With the use of the equations of motion and the gluing conditions one can also

show that

∂̄γ̄cl|z=z̄ = ∂̄(−γcl + ζ̃eϕ/2 + λ̃b)|z=z̄ = −λ̃β̄cleϕ − λ0β̄cl + 1
2 ζ̃e

ϕ/2∂ϕ+ ζ̃2βcle
ϕ (3.11)

and

∂̄γ̄cl|z=z̄ = −λ̃βcleϕ − λ0βcl + 1
2 ζ̃e

ϕ/2∂ϕ. (3.12)

Therefore, we have

− β̄cl∂̄γ̄|z=z̄ = −βcl∂γ + ζ̃βcle
ϕ/2 + ζ̃2β2

cle
ϕ (3.13)

and thus

T cl|z=z̄ = −βcl∂γcl + ζ̃βcle
ϕ/2∂ϕ+ ζ̃2β2

cle
ϕ − 1

4

(
∂ϕ+ 2ζ̃βcle

ϕ/2
)2

= Tcl , (3.14)

which is exactly what we wanted to prove. This justifies the boundary action (3.1) as the

one preserving (3.6).

2A more definite argument valid at quantum level would demand verifying the conditions (3.6) for fields

inside correlators; see [28].
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4 Correlation functions and anomalous dimension

We are interested in computing correlation functions on the disc. We will consider the bulk

vertex operator

Φj(p|z) = |p|2(j+1)epγ(z)−p̄γ̄(z̄)e2b(j+1)φ(z,z̄), (4.1)

which is a Kac-Moody primary of the wordsheet CFT. In the undeformed WZW theory

(λ0 = 0), this operator has holomorphic and antiholomorphic conformal dimensions hj =

h̄j = −b2j(j + 1), where j labels the unitary representation of SL(2,R) to which the state

created by (4.1) belongs. We expect this conformal dimension to receive corrections in the

deformed theory, namely to change as

hj → hj,pΦ = hj + δhpΦ, (4.2)

where δhpΦ is a p-dependent anomalous dimension that vanishes when λ0 = 0. This was

studied in [23] by considering the 2-point function on the sphere topology. Here we will

consider observables of the deformed theory in the presence of a conformal boundary. On

the disc geometry, we will also consider operators of the form

Ψl(ν|τ) = |ν|l+1e
1
2νγ(τ)−1

2νγ̄(τ)eb(l+1)φ(τ), (4.3)

which are inserted at a point τ ∈ R of the boundary ∂Γ. In the undeformed theory these

operators have conformal dimension hl = −b2l(l+ 1) and, as in the case of bulk operators,

we expect the dimension to be corrected in the deformed theory, namely

hl → hl,νΨ = hl + δhνΨ . (4.4)

There are three correlation functions whose dependence on the worldsheet coordinates

are fully determined by conformal invariance. These are the bulk 1-point function

〈Φj(p|z)〉D ∼
1

|z − z̄|2h
j,p
Φ

, (4.5)

the boundary-boundary 2-point correlation function

〈Ψl(ν|τ1)Ψl(−ν|τ2)〉D ∼
1

|τ1 − τ2|2h
l,ν
Ψ

, (4.6)

and the bulk-boundary 2-point function

〈Φj(p|z)Ψl(ν|τ)〉D ∼
1

|z − z̄|2h
j,p
Φ −h

l,ν
Ψ |z − τ |2h

l,ν
Ψ

, (4.7)

where the subscript D refers to the fact that the expectation values are taken in presence

of the deformation.

Our strategy will be as follows: by carefully treating the deformation in the path in-

tegral approach of the bulk 1-point function and the boundary-boundary 2-point function,

we will obtain two expressions for δhpΦ and δhνΨ, which follow from the expected scal-

ings (4.5) and (4.6), respectively. Then, with those expressions at hand, we will check the

scaling (4.7) and verify the consistency of our computation, which in particular involves

the regularization of logarithmic divergences.

– 6 –
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5 Bulk 1-point function

As we prove in appendix A, considering arbitrary values of λb in Sb does not affect the

results as the boundary operator
∫
∂Γ dxβ does not contribute to the logarithmic divergence

and thus to the anomalous dimension. So let us set λb = 0.

The starting point is then to consider

〈Φj(p|z)〉D ≡
∫
DβDβ̄DγDγ̄Dφ e−S |p|2(j+1)epγ(z)−p̄γ̄(z̄)e2b(j+1)φ(z,z̄) (5.1)

and to evaluate the path integral following the techniques developed in [30]. We first

integrate out the γ and γ̄ fields. This yields the Dirac delta∫
Dγ e

∫
d2w
2π

γ∂̄βepγ(z) = 2πδ
(
∂̄β(w)− 2πpδ(2)(w − z)

)
(5.2)

and its anti-holomorphic counterpart∫
Dγ̄ e

∫
d2w
2π

γ̄∂β̄e−p̄γ̄(z̄) = 2πδ
(
∂β̄(w̄) + 2πp̄δ(2)(w̄ − z̄)

)
(5.3)

Fields β and β̄ are 1-differentials. The solutions of the two constraints above are

compatible with the proper boundary conditions only for p+ p̄ = 0. They are given by

β(w) =
p(z − z̄)

(w − z)(w − z̄)
, β̄(w̄) =

p̄(z − z̄)

(w̄ − z)(w̄ − z̄)
(5.4)

The rest of the path integral computation parallels exactly [28, 29], the only difference

being that now we have to evaluate the deformation operator SD on the solution (5.4).

This contributes to the final result with an additional overall factor

〈Φj(p|z)〉D ∝ e−
λ0
π
IB(z), (5.5)

where IB is the logarithmically divergent integral

IB(z) = |p|2|z − z̄|2
∫

Γ

d2w

|w − z|2|w − z̄|2
=

1

2
|p|2|z − z̄|2

∫
C

d2w

|w − z|2|w − z̄|2
. (5.6)

In the second equality we have used the fact that the change w ↔ w̄ leaves the integrand

invariant while mapping the upper half plane into the lower half plane. This means that

the original integral is half of the integral in the whole complex plane.

Since integral (5.6) is divergent, we need to regularize it in order to extract the logarith-

mic behavior. We may resort to dimensional regularization: we introduce the regularized

version of (5.6), namely

IεB(z) =
1

2
|p|2|z − z̄|2(l2eγπ)ε

∫
C
d2−2εw

1

|w − z|2|w − z̄|2
, (5.7)

where we have introduced the scale l and the factor eγεπε to absorb irrelevant constants.

This integral is easily solved by standard methods, obtaining

IεB(z) = |p|2l2εeγεπΓ2(−ε)Γ(1 + ε)

Γ(−2ε)|z − z̄|2ε
= 2|p|2

(
−π
ε

+ 2π log
|z − z̄|
l

+O(ε)

)
. (5.8)

– 7 –



J
H
E
P
0
8
(
2
0
1
8
)
0
9
6

Therefore, we obtain that

e−SD ' e2λ0|p|2/ε

|z − z̄|4λ0|p|2
, (5.9)

where the symbol ' here means that the quantity on the right hand side is what the piece

e−SD of the path integral measure reduces to after evaluation and in the limit ε→ 0.

From (5.9), we can read the correction δhpΦ in (4.5), which turns out to be

δhpΦ = 2λ0|p|2. (5.10)

This means that the conformal dimension of the worldsheet deformed theory is

hj,pΦ = −b2j(j + 1) + 2λ0|p|2. (5.11)

The spectrum of string theory on the interpolating background follows from the Virasoro

constraints for (5.11).

The rest of the 1-point function computation goes exactly along the lines of [28, 29].

In other words, the only difference between the computation in the WZW theory and in

the deformed theory is expressed by the following relation

〈Φj(p|z)〉D =
1

|z − z̄|4λ0|p|2
〈Φj(p|z)〉WZW, (5.12)

where a wave function renormalization of the vertex operator

Φj(p|z)→ Φj(p|z)e−2λ0|p|2/ε (5.13)

is needed in order to absorb the pole through the regularization.

Equation (5.12) gives a closed expression for the 1-point function in the deformed

theory in terms of the analogous quantity in the WZW theory. The latter, on the other

hand, can be explicitly computed [28] and thus shown to yield

〈Φj(p|z)〉D = |z − z̄|−2hj,pΦ cb δ(p+ p̄)|p|Γ(2j + 1)Γ(1 + b2(2j + 1)) cosh(2j + 1) (5.14)

where cb is an unimportant (j-independent) factor, and where we have fixed M0 to a specific

value resorting to the shift symmetry under φ→ φ+ φ0.

Before concluding this section, a few words on the regularization scheme are due: let

us go back to integral (5.6), namely

IB(z) = |z − z̄|2|p|2
∫

Γ

d2w

|w − z|2|w − z̄|2
. (5.15)

As said, this integral exhibits a logarithmic divergence when w → z. Since we are inte-

grating over half of the complex plane, the point z̄ lies outside the region of integration

and therefore it does not produce another divergence. In the computation above we re-

sorted to dimensional regularization. Alternatively, we could have chosen to extract the

– 8 –
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logarithmic behavior with the tricks employed in [23], which amounts to consider instead

the regularized integral

IεB(z) = |z − z̄|2|p|2
∫

Γ

d2w

|w − z|2−2ε|w − z̄|2−2ε
. (5.16)

However, expanding in ε and extracting the log |z − z̄| piece, (5.16) yields

SD '
λ0

π
IB ' 8λ0|p|2 log |z − z̄|+ . . . (5.17)

where the ellipsis stand for contributions other than the logarithmic piece, and therefore

e−SD ' 1

|z − z̄|8λ0|p|2
, (5.18)

which, after renormalization of the vertex, differs from (5.9) in a factor 2 in the exponent.

This difference is an artifact of the procedure (5.16), as we will discuss in detail in appendix

B. In turn, as a byproduct of (5.9), we correct a factor 2 in the computation of [23].

6 Boundary-boundary 2-point functions

Now, we move to the 2-point function. Consider the correlator of two boundary operators

with different momenta ν1 and ν2

〈Ψl(ν1|τ1)Ψl(ν2|τ2)〉D . (6.1)

The path integral over γ and γ̄ fields now produces the Dirac delta∫
Dγ e

∫
d2w
2π

γ∂̄βe
1
2ν1γ(τ1)e

1
2ν2γ(τ2) = 2πδ

(
∂̄β(w)− π

2∑
i=1

νiδ
(2)(w − τi)

)
and its anti-holomorphic counterpart. The solution exists only for ν1 + ν2 = 0, and is

given by

β(w) =
ν1

w − τ1
+

ν2

w − τ2
=

ν(τ1 − τ2)

(w − τ1)(w − τ2)
(6.2)

β̄(w̄) = − ν1

w̄ − τ1
− ν2

w̄ − τ2
=

ν(τ2 − τ1)

(w̄ − τ1)(w̄ − τ2)
(6.3)

where we defined ν = ν1 = −ν2. Since τi belongs to the boundary, the factor δ(2)(w − τi)
can be computed by slightly moving the insertions τi inside the bulk and then taking the

limit in order to correctly obtain the numerical factors in the solution for β and β̄. The

contribution SD, once evaluated on (6.2)–(6.3), yields

SD =
λ0

π
Ibb(z) (6.4)

with

Ibb(z) = ν2|τ1 − τ2|2
∫

Γ

d2w

|w − τ1|2|w − τ2|2
=

1

2
ν2|τ1 − τ2|2

∫
C

d2w

|w − τ1|2|w − τ2|2
, (6.5)
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where, again, in the second equality we halved the result by extending the integral to the

whole complex plane. Ibb is also divergent; its regularized version would be

Iεbb(z) =
1

2
ν2|τ1 − τ2|2(l2eγπ)ε

∫
C

d2−2εw

|w − τ1|2|w − τ2|2
, (6.6)

which is completely analogous to the integral of the previous section. In fact, we get

Iεbb(z) = 2ν2

(
−π
ε

+ 2π log
|τ1 − τ2|

l
+O(ε)

)
(6.7)

and, finally, the contribution of the deformation operator to the path integral gives

e−SD ' e2λ0ν2/ε

|τ1 − τ2|4λ0ν2 (6.8)

from which we read the correction δhνΨ using (4.6); namely

δhνΨ = 2λ0ν
2, (6.9)

which determines the spectrum of the boundary operators in the worldsheet theory.

Eventually, we find

〈Ψl(ν|τ1)Ψl(−ν|τ2)〉D =
1

|τ1 − τ2|4λ0ν2 〈Ψl(ν|τ1)Ψl(−ν|τ2)〉WZW, (6.10)

where, as in the case of the bulk 1-point function, the vertex operators Ψl(ν|τ) need to be

renormalized by a factor e−λ0ν2/ε.

7 Bulk-boundary 2-point functions

A non-trivial consistency check of the results obtained in the previous sections follows from

the computation of the boundary-bulk correlator 〈Φj(p|z)Ψl(ν|τ)〉D. As in the previous

cases, after integrating over γ and γ̄ fields, we obtain a pair of Delta functions whose

solutions exist for p+ p̄+ ν = 0. They are given by

β(w) =
p

w − z
+

p̄

w − z̄
+

ν

w − τ
, β̄(w̄) = − p

w̄ − z
− p̄

w̄ − z̄
− ν

w̄ − τ
. (7.1)

Using ν = −p− p̄ we may regroup the denominators

β(w) =
p(w − z̄)(z − τ) + p̄(w − z)(z̄ − τ)

(w − z)(w − z̄)(w − τ)
,

β̄(w̄) = −p(w̄ − z̄)(z − τ) + p̄(w̄ − z)(z̄ − τ)

(w̄ − z)(w̄ − z̄)(w̄ − τ)
. (7.2)

Evaluating these solutions on the deformation operator SD, we obtain

SD = −λ0

π

∫
Γ
d2wβ(w)β̄(w)→ λ0

π

(
I

(1)
Bb (z, τ) + I

(2)
Bb (z, τ) + I

(3)
Bb (z, τ)

)
(7.3)

– 10 –



J
H
E
P
0
8
(
2
0
1
8
)
0
9
6

where we define the (still unregularized) integrals

I
(1)
Bb (z, τ) =

1

2
|p|2|z − τ |2

∫
C
d2w

(
1

|w − z|2|w − τ |2
+

1

|w − z̄|2|w − τ |2

)
, (7.4)

I
(2)
Bb (z, τ) =

1

2
p̄2(z̄ − τ)2

∫
C
d2w

(w − z)(w̄ − z)

|w − z|2|w − z̄|2|w − τ |2
, (7.5)

and

I
(3)
Bb (z, τ) =

1

2
p2(z − τ)2

∫
C
d2w

(w̄ − z̄)(w − z̄)

|w − z|2|w − z̄|2|w − τ |2
, (7.6)

where I
(3)
Bb (z, τ) = (I

(2)
Bb (z, τ))∗.

Integral I
(1)
Bb (z, τ) is completely analogous to the integrals we regularized and calculated

in the two previous sections. Its regularized version I
(1,ε)
Bb (z, τ) results in

I
(1,ε)
Bb (z, τ) = 4π|p|2

(
−1

ε
+ 2 log

|z − τ |
l

+O(ε)

)
. (7.7)

In contrast, integrals I
(2)
Bb (z, τ) and I

(3)
Bb (z, τ) are much more involved and are solved

in appendix C. Here we just write down their results

I
(2,ε)
Bb (z, τ) =πp̄2

(
−1

ε
− 2 log

|z − z̄|
l

+ 4 log
|z − τ |
l

+O(ε)

)
,

I
(3,ε)
Bb (z, τ) =πp2

(
−1

ε
− 2 log

|z − z̄|
l

+ 4 log
|z − τ |
l

+O(ε)

)
. (7.8)

Using (7.7) and (7.8) in (7.3), we get

SD ' −
λ0

ε

(
2|p|2 + ν2

)
+ λ0

(
(4|p|2 − 2ν2) log

|z − z̄|
l

+ 4ν2 log
|z − τ |
l

)
+O(ε), (7.9)

where we used the simple property that since ν = −p − p̄, we have p2 + p̄2 = ν2 − 2|p|2.

Finally, the deformation operator contributes to the path integral with

e−SD ' e
2λ0
ε |p|

2+
λ0
ε ν

2

|z − z̄|4λ0|p|2−2λ0ν2 |z − τ |4λ0ν2 , (7.10)

which is exactly the power dependence on |z − z̄| and |z − τ | we expected (cf. (4.7)),

showing the consistency with our previous computations of the anomalous dimensions

δhpΦ = 2λ0|p|2 and δhνΨ = 2λ0ν
2. Moreover, the renormalization of the operators we had

proposed before, namely

Φj(p|z)→ Φj(p|z)e−
2λ0|p|2

ε , Ψl(ν|τ)→ Ψl(ν|τ)e−
λ0ν2

ε (7.11)

exactly cancels the poles in (7.10) allowing us to drop the regulator. In conclusion, the

correlator computation leads to the relation

〈Φj(p|z)Ψl(ν|τ)〉D =
1

|z − z̄|2δh
p
Φ−δh

ν
Ψ |z − τ |2δhνΨ

〈Φj(p|z)Ψl(ν|τ)〉WZW (7.12)

with exactly δhpΦ and δhνΨ that we obtained before.
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8 Perturbation theory

As a further consistency check of our results, in this section we show how the perturbative

approach, based on the Coulomb gas realization of the worldsheet correlation functions,

reproduces the path integral results obtained in sections 5 and 6.

The Coulomb gas realization amounts to considering the free field theory perturbed

by the bulk operator
1

2π

∫
Γ
d2zββ̄(b2M0e

2bφ + 2λ0) (8.1)

and the boundary operator
i

4π

∫
∂Γ
dxζβ ebφ, (8.2)

which will appear in the expectation values as integrated screening charges. The number

of such operators present in the correlators depends on the momenta of the external states

and is determined by the integration over the zero-mode of the free fields; see (8.6) below.

The gluing conditions for the free theory are given by

β + β̄|z=z̄ = 0 , γ + γ̄|z=z̄ = 0 , (∂ − ∂̄)φ|z=z̄ = 0 , (8.3)

cf. (3.5). The non-vanishing expectation values of the fields in the presence of the gluing

conditions (8.3) are

〈φ(z)φ(w)〉 = − log |z − w||z̄ − w| (8.4)

and

〈β(z)γ(w)〉 =
1

w − z
, 〈β̄(z̄)γ(w)〉 =

1

z̄ − w

〈β(z)γ̄(w̄〉 =
1

z − w̄
, 〈β̄(z̄)γ̄(w̄)〉 =

1

w̄ − z̄
.

(8.5)

Following standard techniques [28], we obtain an expression for the residue of the

resonant 1-point function, namely

Res
2j+1=−n

〈Φj(p|z)〉D =
1

2b
|p|2j+2

∞∑
m,l,t=0

δ2m+l,n
1

m!l!t!

m∏
i=1

∫
Γ
d2wi

k∏
k=1

∫
∂Γ
dxk

t∏
r=1

∫
Γ
d2qr

×
〈
epγ(z)−p̄γ̄(z̄)e2b(j+1)φ(z,z̄)

m∏
i=1

M0b
2

2π
β(wi)β̄(w̄i)e

2bφ(wi,w̄i)

×
∏̀
k=1

iζ

4π
β(xk)e

bφ(xk)
t∏

r=1

λ0

π
β(qr)β̄(q̄r)

〉
,

(8.6)

where 2j + 1 = −n with n ∈ Z≥0. The integrations on wi and qr are performed over the

upper half plane, while the integration over xk is along the real line. In the following, we

omit writing out the symbol Res, which is implicit.
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The expectation value is to be computed in the free theory. Let us choose the location of

the operator on the imaginary axis, say z = iy. Then, we obtain the following contributions

X =
〈
e2b(j+1)φ(iy)

m∏
i=1

e2bφ(wi)
∏̀
k=1

ebφ(xk)
〉

= |2y|−
b2

2
(n−1)2

(∏̀
k=1

(y2 + x2
k)

m∏
i=1

|y2 + w2
i |2
)b2(n−1)

·

·

(
m∏
i=1

∏̀
k=1

|wi − xk|2
m∏
i<i′

|wi − wi′ |2
m∏
i=1

m∏
i′=1

|wi − w̄i′ |
∏̀
k<k′

|xk − xk′ |

)−2b2

(8.7)

Y =
〈
epγ(iy)−p̄γ̄(−iy)

m∏
i=1

b2M0

4π
β(wi)β̄(w̄i)

∏̀
k=1

iζ

2π
β(xk)

〉
= 2πδ(p+ p̄)

(
−M0b

2

2π

)m
|2yp|n·

·
(
− iζ

4π

)` m∏
i=1

1

|y2 + w2
i |2
∏̀
k=1

1

(y2 + x2
k)

(8.8)

Z =
〈
epγ(iy)−p̄γ̄(−iy)

t∏
r=1

λ0

π
β(qr)β̄(q̄r)

〉
=

(
−λ0

π

)t
|2yp|2t

t∏
r=1

1

|y2 + q2
r |2
, (8.9)

which follows from (8.4) and (8.5). We are assuming here that the imaginary part of p is

positive; otherwise, ζ changes its sign in the expressions above.

Notice that Z does not depend on wi nor on xk. After elementary rearrangement, we

can write (8.6) in the following form

〈Φj(p|z)〉D =

 1

2b
|p|2j+2

∞∑
m,l=0

δ2m+l,n
1

m!l!

m∏
i=1

∫
Γ
d2wi

k∏
k=1

∫
∂Γ
dxk X · Y


·
∞∑
t=0

1

t!

t∏
r=1

∫
Γ
d2qr Z. (8.10)

From this, we observe that the expression is a product of the result for the unperturbed

WZW expectation value obtained in [28] times the new factor

∞∑
t=0

1

t!

t∏
r=1

∫
Γ
d2qr Z =

∞∑
t=0

1

t!

(
−λ0

π
|2yp|2

∫
Γ

d2q

|y2 + q2|2

)t
= e−

λ0
π
IB(iy), (8.11)

where IB is exactly the integral (5.6) obtained before. That is, the Coulomb gas computa-

tion confirms our path integral computation of the 1-point function.

For the 2-point function, the Coulomb gas approach also yields the correct result. To

see this, in the case of the boundary-boundary 2-point function, for example, one can use

the formula〈
e

1
2
νγ(z1)e−

1
2
νγ(z2)

n∏
r=1

β(wr)
〉

=
(ν

2

)n
(z1 − z2)n

n∏
r=1

(wr − z1)−1(wr − z2)−1 (8.12)
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and verify that it leads to reproduce (6.8) in perfect agreement. This is a further crosscheck

of our results for the anomalous dimensions.
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A Boundary integrals

In this appendix, we justify the choice λb = 0 in the computation performed in section 4.

More precisely, we show that the choice λb 6= 0 would not affect the result for the anomalous

dimension. To do so, we go back to the boundary action

Sb =
1

2π

∫
∂Γ
dx g1/4

(
bKφ +

iβ

2
(γ + γ̄)− iζ

2
β ebφ − iλb

2
β

)
, (A.1)

with arbitrary ζ and λb, and we will prove that the fourth term does not contribute to the

prefactor of the logarithmic divergence. We recall the conventions: z = x+ iy, z̄ = x− iy
and d2z = 2dxdy, so that

∂ =
∂

∂z
=

1

2
∂x −

i

2
∂y , ∂̄ =

∂

∂z̄
=

1

2
∂x +

i

2
∂y. (A.2)

In particular, this yields∫
R≥0

dy ∂y(βγ) =

∫
R≥0

dy
(
∂y(β̄γ̄)

)
= −iβγ

∣∣
y=0

. (A.3)

This is used to show that the total action takes the form we discussed before, namely

S =
1

2π

∫
Γ
d2z g1/2

(
∂φ∂̄φ− γ∂̄β − γ̄∂β̄ +

b

4
Rφ− b2M0ββ̄ e

2bφ − 2λ0ββ̄

)
+

1

4π

∫
∂Γ
dx g1/4

(
2bKφ− iζβ ebφ − iλbβ

) (A.4)

Path integration over fields γ and γ̄ compatible with the boundary conditions β +

β̄|z=z̄ = 0 yields the solutions

β(w) =
p(z̄ − z)

(w − z)(w − z̄)
, β̄(w̄) =

p̄ (z̄ − z)

(w̄ − z)(w̄ − z̄)
. (A.5)

Following [30] closely, we evaluate the full action on the solutions (A.5) for β and β̄,

what results in〈
Φj(p|z)

〉
D

=

∫
Dφ exp

(
−
∫

Γ

d2w

2π

(
∂φ∂̄φ +

b

4
Rφ

+
|p|2|z − z̄|2

|w − z|2|w − z̄|2
(b2M0e

2bφ + 2λ0)

))
·

· exp

(
−
∫
∂Γ

dx

4π

(
2bKφ − ip(z̄ − z)

(x− z)(x− z̄)
(ζebφ + λb)

))
·

· |p|2(j+1) e2b(j+1)φ(z,z̄)δ(2)(p+ p̄). (A.6)
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This reduces the computation of the 1-point function to a Liouville theory computa-

tion [31] times a prefactor. Such prefactor differs from the one in the unperturbed theory

by two contributions. These are

e−
λ0
π
IB(z) with IB =

1

2
|p|2|z − z̄|2

∫
C

d2w

|w − z|2|w − z̄|2
, (A.7)

with which we dealt in section 5, and

e−i
λb
π
Ib(z) with Ib = p(z − z̄)

∫
R

dx

(x− z)(x− z̄)
= 2πip. (A.8)

Unlike (A.7), integral (A.8) is finite, as it can be easily verified by evaluating the

residue of the integrand on Γ. Therefore, we conclude that the boundary operator
∫
∂Γ dxβ

does not contribute to the logarithmic divergence, and this justifies setting λb = 0 in the

computation of the anomalous dimensions in section 5.

B Regularization schemes

In this appendix, we discuss in detail different regularization schemes to solve the log-

arithmically divergent integrals we have been involved with. Let us go back to inte-

gral (5.6), namely

IB(z) = |z − z̄|2|p|2
∫

Γ

d2w

|w − z|2|w − z̄|2
. (B.1)

This integral has a logarithmic divergence when w → z. As mentioned before, the point

w = z̄ lies outside the region of integration and it does not produce another divergence.

The question is, what is the efficient way of dealing with the divergence in (A.7)?

Let us begin by reviewing the regularization method employed in [23], which amounts to

introducing the regularized version of the integral

IεB(z) = |z − z̄|2|p|2
∫

Γ

d2w

|w − z|2−2ε|w − z̄|2−2ε
. (B.2)

We can write this integral using real coordinates: we call z = x + iy and w = w1 + iw2.

We then have

IεB(z) = |z − z̄|2|p|2
∫
R
dw1

∫
R>0

dw2
1

[(w1− x)2 + (w2− y)2]1−ε [(w1− x)2 + (w2+ y)2]1−ε
.

(B.3)

The trivial change of variables w2 → −w2 leaves the integrand invariant, namely

IεB(z) = |z − z̄|2|p|2
∫
R
dw1

∫
R<0

dw2
1

[(w1− x)2 + (w2+ y)2]1−ε [(w1− x)2 + (w2− y)2]1−ε
.

(B.4)

Thus, integrating in the upper half plane is the same as integrating in the lower half plane.

Therefore, the integral we are aiming for is half the integral in the whole complex plane

IεB(z) =
1

2
|z − z̄|2|p|2

∫
C

d2w

|w − z|2−2ε|w − z̄|2−2ε
. (B.5)
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This is a Shapiro-Virasoro integral. Integrating it, we obtain

IεB(z) = π|p|2|z − z̄|4εΓ
2(ε)Γ(1− 2ε)

Γ(2ε)Γ2(1− ε)
. (B.6)

Finally, expanding in ε and extracting the log |z − z̄| piece we obtain

− SD ' −8λ0|p|2 log |z − z̄|+ . . . (B.7)

and therefore

e−SD ' e2λ0|p|2/ε

|z − z̄|8λ0|p|2
, (B.8)

which, as we mentioned in section 5, differs from the dimensional regularization result (5.9)

in a factor 2 in the exponent. This does not change the physics of the problem, as the

precise value of λ0 can be changed by shifting the zero-mode of the linear dilaton [23].

However, it is still worthwhile understanding the origin of the discrepancy in a factor 2

between (B.8) and the dimensional regularization result (5.9). We will argue that the latter

gives the correct value, which we will confirm below by three different methods.

Dimensional regularization amounts to replacing

SD = −λ0

π

∫
Γ
d2z g1/2ββ̄ → −λ0 l

2ε
0

π

∫
Γ
d2−2εz g1/2ββ̄, (B.9)

where a scale l0 is introduced. This leads to the regularized integral

I
(1)
B,ε =

1

2
l2ε0 |z1 − z2|2|p|2

∫
C

d2−2εz

|z − z1|2|z − z2|2
(B.10)

with solution

I
(1)
B,ε = l2ε0 |p|2|z1 − z2|−2επ1−εΓ

2(−ε)Γ(1 + ε)

Γ(−2ε)
. (B.11)

Expanding in ε and extracting the logarithm we get

SD =
λ0

π
I

(1)
B ' 4|p|2λ0 log

|z1 − z2|
l0

+ . . . (B.12)

which is half of (B.7), up to a constant term.

Another way of introducing a consistent regularization, somehow closer to the one used

in [23], would be to slightly change the power of the ββ̄ term in the deformation operator

SD. This would, once again, take the theory slightly away from marginality and introduce

a natural way of regularizing the integrals. That is, one replaces

SD = −λ0

π

∫
Γ
d2z g1/2ββ̄ → −λ0 l

−2ε
0

π

∫
Γ
d2z g1/2(ββ̄)1−ε, (B.13)

where, again, a scale l0 is introduced. When solving the functional integral and making

the substitution of the fields β, we obtain the integral

I
(2)
B,ε =

1

2
l−2ε
0 |z1 − z2|2−2ε|p|2

∫
C

d2z

|z − z1|2−2ε|z − z2|2−2ε
. (B.14)
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Notice that this regularized integral is almost the same as the one in [23] except for the

modified power of |z1 − z2| in front of the integral. Solving it, we get

I
(2)
B,ε = π|p|2 |z1 − z2|2ε

l2ε0

Γ2(ε)Γ(1− 2ε)

Γ(2ε)Γ2(1− ε)
(B.15)

and expanding in ε and extracting the logarithm we get

SD =
λ0

π
I

(2)
B ' 4|p|2λ0 log

|z1 − z2|
l0

+ . . . (B.16)

which is again half of (B.7).

A third way of obtaining the same result –less systematic but still widely used in

the context of extracting logarithmic divergences in spacetime integrals for anomalous

dimensions– is the following: consider now the integral

I
(3)
B,l0

=
1

2
|z1 − z2|2|p|2

∫
C\{z1,z2}l0

d2z

|z − z1|2|z − z2|2
(B.17)

where we introduce, as a regulator, the fact that we integrate in the whole complex plane

except for two small circles of radius l0 centered at z1 and z2. It is clear that the logarithmic

divergences will appear when integrating in the region close to z1 and z2. Therefore, we

separate the integral in three regions: two annular regions around the singularities z1 and

z2, and the rest of the complex plane.

Consider first the annulus around z1. The smaller radius would be the cutoff l0 and one

would need to define the bigger radius. Since we cannot integrate further than the position

of z2, in order not to overlap integrals, the biggest radius should be |z1 − z2|/2. Before

writing this down, notice that this contribution will be equivalent to the second annular

region and therefore we just multiply the contribution by 2. Using the parametrization

z = z1 + reiθ we get

I
(3)
B,l0

= 2|z1 − z2|2|p|2
∫ |z1−z2|/2
l0

dr

∫ 2π

0
dθ

r

r2 |z1 − z2 + reiθ|2
+ . . . , (B.18)

where the ellipsis stand for integration in the regions which do not contribute to log diver-

gences. Since we are only interested in the integration for small r, where the measure dr/r

is divergent, we may approximate |z1 − z2 + reiθ|2 by |z1 − z2|2. Integrating, we get

SD =
λ0

π
I

(3)
B ' 4|p|2λ0 log

|z1 − z2|
l̃0

+ . . . , (B.19)

which, again, is one half of (B.7), in perfect agreement with (5.9).

C Conformal integrals for the 2-point function

We had postponed the computation of the integral

I
(2)
Bb (z, τ) =

p̄2(z̄ − τ)2

2

∫
C
d2w

(w − z)(w̄ − z)

|w − z|2|w − z̄|2|w − τ |2
(C.1)
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and I
(3)
Bb (z, τ), which are related by I

(3)
Bb (z, τ) = (I

(2)
Bb (z, τ))∗. We compute this integral

here: let us first separate the numerator with the obvious property

(w − z)(w̄ − z) = |w − z|2 + (w − z)(z̄ − z), (C.2)

effectively obtaining

I
(2)
Bb (z, τ) =

p̄2(z̄ − τ)2

2

(
B(|z − τ |2) + (z̄ − z)T(z, τ)

)
(C.3)

where B(|z − τ |2) is the usual bubble integral which we already know how to regularize

Bε(|z − τ |2) = (l2eγπ)ε
∫
C

d2−2εw

|w − z̄|2|w − τ |2
=

4π

|z − τ |2

(
−1

ε
+ 2 log

|z − τ |
l

+O(ε)

)
,

(C.4)

while T(z, τ) is the principal problem we want to solve in this appendix

T(z, τ) =

∫
C
d2w

(w − z)

|w − z|2|w − z̄|2|w − τ |2
. (C.5)

To study it, let us first define the “star” (regularized) D-dimensional vector integral

T αε (x1, x2, x3) = (l2eγπ)ε
∫
dDx0

(x0 − x1)α

|x0 − x1|2|x0 − x2|2|x0 − x3|2
. (C.6)

In D = 2−2ε, the vectors x0, . . . , x4 have D components that reduce to only 2 components

in the limit of ε → 0. Therefore, in this limit, we can associate the two components of

those vectors with the real and imaginary parts of our complex plane points w, z, z̄ and τ .

More precisely, we associate

x0 → w, x1 → z, x2 → z̄, x3 → τ. (C.7)

Therefore, if we are able to compute T αε (x1, x2, x3) and expand it close to ε = 0, we can

associate the two components of the T αε vector with the real and imaginary parts of the

regularized version of the integral T(z, τ) we are trying to perform. Thus, in the same

sense of the association (C.7) we have that

T αε (x1, x2, x3)→ Tε(z, τ), (C.8)

or more explicitly Re(Tε(z, τ)) = T α=1
ε and Im(Tε(z, τ)) = T α=2

ε . To solve T αε we start

with the Passarino-Veltman method. Since it is a translationally invariant vector integral,

it can only be proportional to difference vectors

T αε (x1, x2, x3) = Axα21 +B xα31, (C.9)

where we note xαij = (xi−xj)α. Of all the difference vectors we could have used we omitted

xα32 since it is not independent (xα32 = xα31 − xα21). A and B have to be scalar functions of

the invariants x2
21, x2

31 and x2
32.
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Projecting both sides of the ansatz (C.9) with the vectors xα21 and xα31 and completing

squares in the numerator of the integrand we arrive to the system of equations

2Ax2
21 +B(x2

21 + x2
31 − x2

32) = Bε(x2
23)− Bε(x2

13) + x2
21Tε(x1, x2, x3)

A(x2
21 + x2

31 − x2
32) + 2B x2

31 = Bε(x2
23)− Bε(x2

21) + x2
31Tε(x1, x2, x3) (C.10)

where Bε(x2
ij) is the regularized bubble integral defined in (C.4) and we know how to solve

it. On the other hand Tε(x1, x2, x3) is the scalar D-dimensional regularized star integral

Tε(x1, x2, x3) = (l2eγπ)ε
∫
dDx0

1

|x0 − x1|2|x0 − x2|2|x0 − x3|2
. (C.11)

Since the system (C.10) is linear, A and B will be written as a complicated linear

combination of Bubble integrals (which we know its solution) and scalar star integrals

(which we should solve). Consider its Mellin-Barnes representation

Tε(x1, x2, x3) =
4π ε (1− 2ε)eγεl2ε

Γ(1− 2ε)(x2
32)2+ε

∫
dudv

(2πi)2
Γ(−u)Γ(−1− ε− u)Γ(−v)Γ(−1− ε− v)·

· Γ(1 + u+ v)Γ(2 + ε+ u+ v)

(
x2

21

x2
32

)u(
x2

31

x2
32

)v
, (C.12)

where the contours go from −i∞ to i∞ leaving the semi-inifinite set of poles of Γ(. . .− u)

and Γ(. . . − v) to the right of the contour and the semi-infinite set of poles of Γ(. . . + u)

and Γ(. . . + v) to the left of the contour. Notice that there is an overall ε multiplying

the integral. Since we are interested in the Feynman integral up to finite terms in its ε

expansion, the overall ε allows us to only keep orders up to O(ε−1) inside the Mellin-Barnes.

One would be tempted to expand the Gamma functions inside the Mellin-Barnes, but the

problem with this is that in such expansion some left poles collide with some right poles

ruining the well defined contour. The way out of this problem is to deform the contour

by leaving all the potentially colliding poles to one side of the contour and compensating

this deformation with integrals around those poles which can be evaluated using residues.

Besides those residues, the remaining Mellin-Barnes has now a well defined holomorphic

ε expansion, but since we are interested in O(ε−1) contributions from the Mellin-Barnes,

that expansion is irrelevant for our aim. Thus, picking up the poles from the set

(u, v) = {(−1− ε,−1− ε), (−1− ε,−ε), (−1− ε, 0), (−ε,−1− ε), (0,−1− ε)} (C.13)

we have

Tε(x1, x2, x3) =
2πeγεl2ε

Γ(−1− 2ε)(x2
32)2+ε

[
Γ2(1 + ε)Γ(−1− 2ε)Γ(−ε)

(
x2

21

x2
32

)−1−ε(
x2

31

x2
32

)−1−ε

− εΓ2(ε)Γ(−2ε)Γ(1− ε)
(
x2

21

x2
32

)−1−ε(
x2

31

x2
32

)−ε
− εΓ2(ε)Γ(−2ε)Γ(1− ε)

(
x2

21

x2
32

)−ε(
x2

31

x2
32

)−1−ε

+ Γ(1 + ε)Γ(−ε)Γ(−1− ε)
(
x2

21

x2
32

)−1−ε

+ Γ(1 + ε)Γ(−ε)Γ(−1− ε)
(
x2

31

x2
32

)−1−ε ]
+O(ε) (C.14)
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and expanding in ε we obtain the symmetric result

Tε(x1, x2, x3) =− x2
21 + x2

31 + x2
32

x2
21x

2
31x

2
32

2π

ε
+

4π

x2
21x

2
31x

2
32

[
(x2

21 + x2
31 − x2

32) log
|x32|
l

+(x2
31 + x2

32 − x2
21) log

|x21|
l

+ (x2
21 + x2

32 − x2
31) log

|x31|
l

]
+O(ε). (C.15)

Going back to the system (C.10) we solve for A and B

A =
x21 · x31Bε(x2

21) + x31 · x32Bε(x2
32)− x2

31Bε(x2
31) + x2

31x21 · x23Tε(x1, x2, x3)

2x2
21x

2
31 − 2(x21 · x31)2

(C.16)

B =
x21 · x31Bε(x2

31) + x21 · x23Bε(x2
32)− x2

21Bε(x2
21) + x2

21x31 · x32Tε(x1, x2, x3)

2x2
21x

2
31 − 2(x21 · x31)2

(C.17)

and using the results we obtained for the bubble and the scalar star integral we arrive to

an impressive simplification

A =
2π

x2
21x

2
32

(
−1

ε
+ 2 log

|x21|
l
− 2 log

|x31|
l

+ 2 log
|x32|
l

+O(ε)

)
(C.18)

B =
2π

x2
31x

2
32

(
−1

ε
+ 2 log

|x31|
l
− 2 log

|x21|
l

+ 2 log
|x32|
l

+O(ε)

)
. (C.19)

With these results and the associations xα21 → (z̄ − z) and xα31 → (τ − z), and observing

that x2
21 = |z − z̄|2 and x2

31 = x2
32 = |z − τ |2 we obtain

Tε(z, τ) =
2π

|z − τ |2

(
1

z̄ − z
+

1

z̄ − τ

)
1

ε

+
4π

(τ − z̄)2

(
1

z − z̄
log
|z − z̄|
l

+
2

τ − z
log
|z − τ |
l

)
+O(ε), (C.20)

and using it in (C.3) we finally obtain

I
(2,ε)
Bb (z, τ) =πp̄2

(
−1

ε
− 2 log

|z − z̄|
l

+ 4 log
|z − τ |
l

+O(ε)

)
I

(3,ε)
Bb (z, τ) =πp2

(
−1

ε
− 2 log

|z − z̄|
l

+ 4 log
|z − τ |
l

+O(ε)

)
, (C.21)

which is the result we used in the main text. Notice that after non-trivial multiple cancel-

lations the O(ε−1) contribution became independent of the distances.
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