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Many cell signaling pathways rely on oscillatory messenger concentrations even to

transduce aperiodic environmental changes. The universal second messenger calcium,

Ca2+ often exhibits pulsatile behavior in the presence of constant concentrations of

external ligands such as hormones or neurotransmitters. The analysis of intracellular

Ca2+ pulses that involve Ca2+ release through inositol 1,4,5-trisphosphate (IP3)

receptors led to a model with stochastic pulse firing at rate, λ and deterministic inhibition

with recovery at rate, ρ. Here we combine this model with recent observations that

established an exponential relationship between λ and the external ligand concentration,

C. We compute analytically the mutual information between C and the interpulse time, t,

or the number of pulses, N, in the λ/ρ ≪1 and λ/ρ ≫1 limits. We obtain that both I(C, t)

and I(C,N) are largest in the second limit with a difference of at most ∼ 1bit. Thus, the

resolution with which the values of C can be discriminated at most doubles in one limit

with respect to the other. The components of the model and the exponential dependence

of the firing rate with C are features common to noise-driven excitable systems. Our

results thus hold in this more general setting that applies widely in biology.

Keywords: cell signaling, Ca2+ pulses, information, Poisson processes, inhibition

1. INTRODUCTION

Living organisms respond and react to changes in their environment. They do so by decoding the
information contained in these changes. This process occurs at all levels, including single cells.
Cell signaling malfunction can result in pathologies. Understanding this information processing
is thus important from basic and applied viewpoints. Changes in the environment are usually
reflected in changes in the concentration of substances that bind to receptors on the plasma
membrane. Changes in this binding lead to changes in the cell and, through a signaling cascade,
to the response. The traditional view of this process assumes that step-like changes in the ligand
concentration produce intracellular concentration changes that increase with the initial step size.
This is called amplitude modulation encoding. Step-like changes in external effectors, however, can
induce oscillations in some intermediaries [1–4]. This is called frequency modulation encoding.
This mechanism is quite prevalent in the case of Ca2+ signals [5, 6] where oscillations in
the intracellular Ca2+ concentration are known to regulate enzyme activity [7, 8] and increase
gene expression efficiency [9]. Some pathways also generate responses using amplitude [10] and
frequency encoding [11] redundantly.
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Intracellular Ca2+ oscillations in non-excitable cells usually
involve Ca2+ release from the endoplasmic reticulum (ER)
through inositol trisphosphate (IP3) receptors (IP3Rs) [12].
IP3R-Ca

2+ channels need to bind IP3 and Ca2+ on their
cytosolic side to become open. This implies that the opening
of neighboring IP3Rs becomes coupled via the released Ca2+

in what is known as Calcium Induced Calcium Release [13].
Most often IP3Rs are organized in clusters that are ∼ 1.5 −
2µm apart. Ca2+ signals then range from blips and puffs to
waves depending on whether Ca2+ is released from one or
many clusters [14–16]. Ca2+-mediated inter-cluster coupling is
fundamental for the propagation of waves as reflected by the
changes that slow Ca2+ buffers induce on the signals [17–19].
The transition from local to global signals is like a percolation
process [20] in which the accumulated free cytosolic Ca2+

reduces the percolation threshold [21]. Thus, the cytosol acts as
an excitable medium whose excitability is modulated by Ca2+

and where Ca2+ pulses or spikes are the result of wave nucleation
[22].

In the sustained presence of external effectors, such as
hormones or neurotransmitters, cells can exhibit sequences of
intracellular Ca2+ pulses. There is strong evidence that, most
often, the interpulse times have a large random component [22–
25]. Randomness is a consequence of the highly stochastic and
spatially local Ca2+ release events (puffs) that eventually lead to
a propagating Ca2+ wave or pulse [26]. Waves are then followed
by an inhibitory process that acts globally in space [22, 24]. In
order to account for these two processes, the model introduced
in Skupin and Falcke [22] combines the stochastic “firing” of
the pulses with a deterministic description of the inhibition.
In this paper we use the model of Skupin and Falcke [22]
together with more recent observations that show an exponential
dependence between the mean interpulse time and the external
effector concentration, C [25], to study the mutual information
between C and some properties of the pulse sequence. We
derive analytic results in two opposite limits that depend on the
ratio between two timescales: the firing rate in the absence of
inhibition, λ, and the rate of recovery from inhibition, ρ. For
ρ/λ ≫ 1, pulse occurrence is limited by λ and the process is
Poisson. For ρ/λ ≪ 1, pulse occurrence is limited by recovery
from inhibition. We call this theGlobal Negative Feedback (GNF)
limit. Fixing the value of the mean interpulse time, T, and
considering the least informative distribution for C (uniform
between 0 and a maximum value) we determine that the mutual
information is largest in the GNF limit. The difference with
respect to the Poisson limit is of, at most, ∼ 1 bit. This implies
that the precision with which C can be inferred is at most twice
as large in one limit with respect to the other. If we fix the
firing rate, λ, instead we obtain the same mutual information
between the interpulse time and C in the Poisson and the GNF
limits. We discuss later the implications of these results. The
co-existence of stochastic firing and deterministic recovery from
inhibition is common tomany systems, particularly, noise-driven
excitable ones [27]. These systems, a paradigmatic example of
which is neurons, appear in various settings. Thus, we think that
our results are applicable beyond the case of intracellular Ca2+

pulses.

2. METHODS

2.1. The Model
We consider the model of Skupin and Falcke [22] where the
probability density that a pulse occurs at time, t + Tcell, after a
previous one is:

p(t|λ) = λ(1− e−ρt) exp(−
∫ t

0
λ(1− e−ρt′ )dt′), (1)

with Tcell deterministic, λ the probability per unit time that a
pulse occurs in the absence of inhibition, ρ the rate of recovery
from inhibition and p(t|λ) the conditional probability density of
t for a given λ. We study the Global Negative Feedback (GNF)
limit (x ≡ λ/ρ ≫ 1) and the Poisson one (x ≪ 1). For the latter
the t distribution is exponential withmean 1/λ. Based on Thurley
et al. [25], we assume that:

T ≡ 〈t〉|t|λ = A exp(−BC), (2)

with C the effector concentration, 〈·〉|t|λ the mean over the
distribution, p(t|λ) and A and B constant. Equation (2) implies
that λ and C are related by (see Supplementary Material):

λ = α exp(βC), (3)

with α = π/(2ρA2), β = 2B (α = 1/A and β = B) in the GNF
(Poisson) limit. The λ, T and C probability densities then satisfy:

pλ(λ) =
1

λβ
pC

(

1

β
ln

(

λ

α

))

, pT(T) =
1

BT
pC

(

1

B
ln

(

A

T

))

.

(4)
In both limits, T, and the t standard deviation, σ , satisfy [22]:

σ = kT. (5)

k = 1 in the Poisson case. We obtain k =
√
4/π − 1 in the GNF

limit (see Supplementary Material).

2.2. Calculations
After deriving properties of the model we compute the mutual
information [28]:

I(C, t) = I(λ, t) =
∫∫

pλ(λ)p(t|λ) log2
(

p(t|λ)/p(t)
)

dtdλ

=
∫

pλ(λ)

∫

p(t|λ) log2
(

p(t|λ)
)

dtdλ

−
∫

pt(t) log2
(

pt(t)
)

dt

≡ −H(t|λ)+H(t), (6)

where

pt(t) =
∫

p{t,λ}(t, λ)dλ =
∫

p(t|λ)pλ(λ)dλ, (7)

with p{t,λ} the t, λ joint probability density. We obtain general
expressions and then use:

pC(C) =
{

1
CM

, if 0 ≤ C ≤ CM ,

0, otherwise.
(8)
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We then compute I(C,N) = I(T,N), with N ≫ 1 the number
of pulses that occur during a time, ttot ≫ T, dropping Tcell and
using Equation (8).

All calculations are performed assuming constant C, A, B, and
ρ and are valid if the C variation timescale is larger than T. We
present a detailed description in the Supplement.

2.3. Numerical Simulations
We wrote a code in R to compute I(N,C) numerically using
A = 1, B = 1 and various ttot ≤ 1000. 500 realizations were
done setting T = e−C for each of the 100 C values randomly
chosen with uniform probability in [0, 1]. We used ρ = 0.01,
λ = 50π exp(C) for the GNF limit and no ρ and λ = exp(C)
for the Poisson one. Thus, 1/e ≤ T ≤ 1 in both limits. We
discretized time with time step, dt = 0.01, and decided with
probability λdt that a pulse occurred at each time step in the
Poisson limit and with probability λ(1 − exp(−ρ(t − tprev)))dt
with tprev the time at which the previous pulse occurred in the
GNF one. We counted the total number of pulses, N, for each
realization and binned the results with boxes of ttot-dependent
sizes.We used theDescTools package [29] to compute themutual
information between the values of N obtained and those of C.

3. RESULTS

Here we compare the results on mutual information obtained for
the model of section 2.1 in the Poisson (x = λ/ρ ≪ 1) and the
GNF (x≫ 1) limits.

3.1. Information Contained in the
Interpulse Time
The calculations of the Supplementary Material yielded, in both
limits:

I(C, t) = I(λ, t) =
1

ln(2)

(

−
∫ 0

−∞

∂Mλ̃(τ̃ )

∂τ̃
ln

(

∂Mλ̃(τ̃ )

∂τ̃

)

dτ̃

−1+ 〈ln(λ̃)〉|λ
)

, (9)

with λ̃ = λ/α,Mλ̃(τ̃ ) given by:

Mλ̃(τ̃ ) =
∫

eλ̃τ̃pλ̃(λ̃)dλ̃ =
∫

eτ̃ exp(βC)pC(C)dC, (10)

and

〈ln(λ̃)〉|λ =
∫

ln

(

λ

α

)

pλ(λ)dλ =
∫

βCpC(C)dC = β〈C〉.

(11)
Equations (9)–(11) imply that I(C, t) is independent of α. As
shown in the Supplementary file, it is also independent of 〈C〉.
The fact that Equations (9)–(11) read similarly regardless of the
limit does not mean that the information is the same in both
cases: given T and C, the value, λ, is different depending on the
limit (see Equation 3). The fact that I depends on β but not on
α and that β = B in the Poisson limit and β = 2B in the GNF
one implies that by simply multiplying β by 2 in I(C, t), we go
from one limit to the other for the same value of B. Assuming

that pC = δ(C − 〈C〉) we obtain I(C, t) = 0 in the two limits. If
we assume the least informative distribution for C (Equation 8)
we obtain:

I(C, t) = 1
ln(2)

(

sinh(βCM)
βCM

+ ln
(

β CM
2

)

− ln
(

eβCM−1
2

)

−1+ β CM
2

)

− 1
βCM ln(2)

∫ 0
−∞

eζ

ζ

ln

(

eβCM sinh(ζ e−βCM eβCM−1
2 )

sinh(ζ eβCM−1
2 )

)

dζ . (12)

We show in Figure 1 this mutual information as a function of
βCM for the two limits of the model. There we observe that
it is always larger in the GNF limit and that the difference
increases with βCM approaching ∼ 1 bit. As discussed in the
Supplementary file, I(C, t) should increase with βσC, with σC the
C standard deviation, for any pC(C).

3.2. Information Contained in the Number
of Pulses, N, That Occur During an Interval
The calculations of the Supplementary Material yielded, for the
mutual information between C and N for a given observation
time, ttot and N ≫ 1:

I(C,N) = I(T,N) = H(T)−
3

2
〈log2(T)〉T −

1

2
log2

(

2πek2

ttot

)

+O

(

1
3
√
ttot

)

. (13)

withH the entropy as in Equation (6) and k = 1 (k =
√
4/π − 1)

for the Poisson (GNF) limit. In this case,for a given distribution,
pT(T) or, equivalently, pC(C), the only difference between the
Poisson and GNF limits lies on the constant of proportionality,
k, between the standard deviation, σ and the mean, T, of the
(stochastic part of the) interpulse time. We probed the analytic
calculation via numerical simulations performed as described in
Methods. We show the results in Figure 2. There we observe
that, also in this case, I is larger for the GNF than for the
Poisson limit and that the difference increases very slowly
with ttot approaching the asymptotic value prescribed by the

2 4 6 8 10
BC

M

0.5

1.0

1.5

2.0

2.5
Information (bits)

FIGURE 1 | Mutual information, I(C, t) in Equation (12), between the effector

concentration, C, and the stochastic part of the interpulse time, t, as a function

of CM for the Poisson (blue) and the GNF (red) limits of the model with C

uniformly distributed over [0,CM ].
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FIGURE 2 | Mutual information, I(N,C|ttot ), as a function of ttot obtained numerically with pC given by Equation (8), A = 1, B = 1 and CM = 1 (see section Methods).

(A) Poisson limit. Circles are the result of the simulation. The fitting (solid) curve of the form I = log2(ttot )/2+ a+ bt
−1/3
tot gave a = (−1.6111± 0.0011) and

b = (1.2275± 0.0086). (B) Similar to (A) but for the GNF limit with ρ = 0.01. The fitting gave a = (−0.69121± 0.00076) and b = (0.6061± 0.0058). (C) Information

difference between both limits. In this case the fitting curve is 1I = − log2(
√

4/π − 1)+ bt
−1/3
tot with b = (−0.741± 0.022).

theory, 1I = − log2(4/π − 1)/2 ≈ 0.936. The fitting curves
confirm this and the dependence of I on ttot , in particular,
the O(t−1/3) term that we attribute to the skewness of the N
probability density that is not included when using the normal
approximation.

4. DISCUSSION AND CONCLUSIONS

Intracellular information is encoded in the oscillation frequency
of messengers in many instances. This is the case of Ca2+,
whose cytosolic concentration responds with sequences of
pulses to the presence of constant concentrations of external
effectors such as hormones or neurotransmitters. The statistical
properties of the interpulse times have been studied theoretically
and experimentally finding that they usually have a stochastic
component, t, whose mean, T, and standard deviation, σ , are
linearly related (Equation 5) [22–25]. The simple model [22]
that includes the stochastic “firing” of the pulses with rate , λ,
in the absence of inhibition, followed by immediate inhibition
and subsequent recovery with rate, ρ [Equation 1 captured most
features of the process. Here we combined this model with the
observed dependence between T and the effector concentration,
C, to compare the mutual information between C and the
interpulse time, I(C, t), or the number of pulses, I(C,N), in the
GNF (λ/ρ ≫ 1 ) and Poisson (λ/ρ ≪ 1) limits. We obtained
that I(C, t) and I(C,N) were larger in the GNF limit and that the
difference was at most∼ 1 bit (it was< 0.5 for the values, BCM ∼
1.6, explored experimentally in [25]]. This ∼ 1 bit difference
means that the precision with which the effector concentration
is inferred can at most double as the recovery rate is reduced
while the mean, T, is kept fixed. In the case of I(N,C) the
∼ 1bit difference is independent of pC(C) (Equation 13) and
determined by the slope, k, of the (linear) relationship between σ

and T. We derived k analytically in both limits. The simulations
of Skupin and Falcke [22] and Thurley and Falcke [24] show
that this slope decreases monotonically when λ/ρ is increased.
Thus, the information we obtain in the GNF limit should be
the largest. In the GNF limit inhibition recovery is the rate-
limiting process of pulse occurrence. Following the assumption

that inhibition occurs globally in space, the model describes
inhibition recovery deterministically. It is then reasonable that
the standard deviation of the interpulse time decrease as the rate-
limiting process goes from being purely stochastic (limited by
λ) to being more deterministic (limited by ρ). Having a more
predictable interpulse time for a given, C, should result also in a
more faithful transmission of the information as we have found.
As discussed in Thurley and Falcke [24] the existence of a global
inhibition process is fundamental for the functional robustness
of the signaling. Namely, it is the reason why Equation (5)
holds with the same k for individual cells of the same type.
Equation (9) also implies that, if ρ is varied for fixed λ (not T),
there is no gain in the mutual information between t and C. This
means that by solely reducing the recovery rate (e.g., by changing
the level of expression of proteins involved in the inhibition)
cells would increase the interpulse time and its variance
without changing the information they could draw from the
environment.

4.1. Resource Identification Initiative
Computations and figures were performed using R,
RRID:SCR_001905, Wolfram Mathematica, RRID:SCR_014448,
and MATLAB, RRID:SCR_001622.

AUTHOR CONTRIBUTIONS

SP designed research and wrote the paper. AG performed
analytic calculations and numerical simulations. AG and SP
wrote Supplementary Material file.

FUNDING

This research has been supported by Universidad de
Buenos Aires (UBACyT 20020130100480BA) and Agencia
Nacional de Promoción Científica y Tecnológica (PICT
2015-3824). SP is a member of Carrera del Investigador
Científico (Consejo Nacional de Investigaciones Científicas y
Técnicas).

Frontiers in Physics | www.frontiersin.org 4 July 2018 | Volume 6 | Article 74

https://scicrunch.org/resolver/RRID:SCR_001905
https://scicrunch.org/resolver/RRID:SCR_014448
https://scicrunch.org/resolver/RRID:SCR_001622
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Givré and Ponce Dawson Information in Stochastic Pulse Sequences

ACKNOWLEDGMENTS

SP wants to acknowledge the hospitality of the International
Centre for Theoretical Physics in Trieste, Italy, where part of this
work was written.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphy.
2018.00074/full#supplementary-material

REFERENCES

1. Cai L, Dalal CK, Elowitz MB. Frequency-modulated nuclear localization

bursts coordinate gene regulation. Nature (2008) 455:485–90.

doi: 10.1038/nature07292

2. Levine JH, Lin Y, Elowitz MB. Functional roles of pulsing in genetic circuits.

Science (2013) 342:1193–200. doi: 10.1126/science.1239999

3. Hao N, O’Shea EK. Signal-dependent dynamics of transcription factor

translocation controls gene expression. Nat Struct Mol Biol. (2012) 19:31–9.

doi: 10.1038/nsmb.2192

4. Albeck JG, Mills GB, Brugge JS. Frequency-modulated pulses of ERK

activity transmit quantitative proliferation signals.Mol Cell (2013) 49:249–61.

doi: 10.1016/j.molcel.2012.11.002

5. Berridge M, Bootman M, Lipp P. Calcium - a life and death signal. Nature

(1998) 395:645–8. doi: 10.1038/27094

6. Dupont G, Combettes L, Bird GS, Putney JW. Calcium oscillations. Cold

Spring Harb Perspect Biol. (2011) 3:a004226. doi: 10.1101/cshperspect.a004226

7. De Koninck P, Schulman H. Sensitivity of CaM kinase II to

the frequency of Ca2+ oscillations. Science (1998) 279:227–30.

doi: 10.1126/science.279.5348.227

8. Dupont G, Goldbeter A. CaM kinase II as frequency

decoder of Ca2+ oscillations. BioEssays (1998) 20:607–10.

doi: 10.1002/(SICI)1521-1878(199808)20:8<607::AID-BIES2>3.0.CO;2-F

9. Dolmetsch RE, Xu K, Lewis RS. Calcium oscillations increase the

efficiency and specificity of gene expression. Nature (1998) 392:933–6.

doi: 10.1038/31960

10. Colman-Lerner A, Gordon A, Serra E, Chin T, Resnekov O, Endy D, et al.

Regulated cell-to-cell variation in a cell-fate decision system. Nature (2005)

437:699–706. doi: 10.1038/nature03998

11. Carbó N, Tarkowski N, Ipiña EP, Dawson SP, Aguilar PS. Sexual pheromone

modulates the frequency of cytosolic Ca2+ bursts in Saccharomyces cerevisiae.

Mol Biol Cell (2017) 28:501–10. doi: 10.1091/mbc.e16-07-0481

12. Foskett JK, White C, Cheung KH, Mak DOD. Inositol trisphosphate

receptor Ca2+ release channels. Physiol Rev. (2007) 87:593–658.

doi: 10.1152/physrev.00035.2006

13. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic

reticulum. Am J Physiol. (1983) 245:1–15. doi: 10.1152/ajpcell.1983.245.1.C1

14. Yao Y, Choi J, Parker I. Quantal puffs of intracellular Ca2+ evoked by inositol

trisphosphate in Xenopus oocytes. J Physiol (Lond). (1995) 482:533–53.

doi: 10.1113/jphysiol.1995.sp020538

15. Sun XP, Nicholas C, Marchant JS, Parker I. A continuum of InsP3-mediated

elementary Ca2+ signalling events in Xenopus oocyte. J Physiol. (1998)

509:67–80. doi: 10.1111/j.1469-7793.1998.067bo.x

16. Smith IF, Parker I. Imaging the quantal substructure of single IP3R channel

activity during Ca2+ puffs in intact mammalian cells. Proc Natl Acad Sci USA

(2009) 106:6404–9. doi: 10.1073/pnas.0810799106

17. Callamaras N, Parker I. Phasic characteristic of elementary Ca2+ release

sites underlies quantal responses to IP3. EMBO J. (2000) 19:3608–7.

doi: 10.1093/emboj/19.14.3608

18. Piegari E, Sigaut L, Ponce Dawson S. Ca2+ images obtained in different

experimental conditions shed light on the spatial distribution of IP3

receptors that underlie Ca2+ puffs. Cell Calcium (2015) 57:109–19.

doi: 10.1016/j.ceca.2015.01.003

19. Piegari E, López LaF, Ponce Dawson S. Using two dyes to observe the

competition of Ca2+ trapping mechanisms and their effect on intracellular

Ca2+ signals 2018. Available Online at: http://iopscience.iop.org/article/10.

1088/1478-3975/aac922

20. Solovey G, Dawson SP. Intra-cluster percolation of calcium

signals. PLoS ONE (2010) 5:e8997. doi: 10.1371/journal.pone.00

08997

21. Lopez La, Piegari Ea, Sigaut L, Ponce Dawson S. Intracellular calcium signals

display an avalanche-like behavior over multiple lengthscales. Front Physiol.

(2012) 3:350. doi: 10.3389/fphys.2012.00350

22. Skupin A, Falcke M. Statistical properties and information content

of calcium oscillations. Genome Inform Ser. (2007) 18:44–53.

doi: 10.1142/9781860949920_0005

23. Skupin A, Kettenmann H, Winkler U, Wartenberg M, Sauer H, Tovey

SC, et al. How does intracellular Ca2+ oscillate: by chance or by

the clock? Biophys J. (2008) 94:2404–11. doi: 10.1529/biophysj.107.1

19495

24. Thurley K, Falcke M. Derivation of Ca2+ signals from puff properties reveals

that pathway function is robust against cell variability but sensitive for control.

Proc Natl Acad Sci USA (2011) 108:427–32. doi: 10.1073/pnas.1008435108

25. Thurley K, Tovey SC, Moenke G, Prince VL, Meena A, Thomas

AP, et al. Reliable encoding of stimulus intensities within random

sequences of intracellular Ca2+ spikes. Sci Signal. (2014) 7:ra59.

doi: 10.1126/scisignal.2005237

26. Marchant JS, Parker I. Role of elementary Ca 2+ puffs in generating repetitive

Ca 2+ oscillations. EMBO J. (2001) 20:65–76. doi: 10.1093/emboj/20.1.65

27. Lindner B, a Ojalvo JG, Neiman A, Schimansky-Geier L. Effects

of noise in excitable systems. Phys Rep. (2004) 392:321–424.

doi: 10.1016/j.physrep.2003.10.015

28. Bialek W. Biophysics. Searching for Principles. Princeton; Oxford: Princeton

University Press (2012).

29. Signorell A, et al. DescTools: Tools for Descriptive Statistics. R package version

0.99.24. (2018). Available online at: https://cran.r-project.org/package=

DescTools

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Givré and Ponce Dawson. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 5 July 2018 | Volume 6 | Article 74

https://www.frontiersin.org/articles/10.3389/fphy.2018.00074/full#supplementary-material
https://doi.org/10.1038/nature07292
https://doi.org/10.1126/science.1239999
https://doi.org/10.1038/nsmb.2192
https://doi.org/10.1016/j.molcel.2012.11.002
https://doi.org/10.1038/27094
https://doi.org/10.1101/cshperspect.a004226
https://doi.org/10.1126/science.279.5348.227
https://doi.org/10.1002/(SICI)1521-1878(199808)20:8$<$607::AID-BIES2$>$3.0.CO;2-F
https://doi.org/10.1038/31960
https://doi.org/10.1038/nature03998
https://doi.org/10.1091/mbc.e16-07-0481
https://doi.org/10.1152/physrev.00035.2006
https://doi.org/10.1152/ajpcell.1983.245.1.C1
https://doi.org/10.1113/jphysiol.1995.sp020538
https://doi.org/10.1111/j.1469-7793.1998.067bo.x
https://doi.org/10.1073/pnas.0810799106
https://doi.org/10.1093/emboj/19.14.3608
https://doi.org/10.1016/j.ceca.2015.01.003
http://iopscience.iop.org/article/10.1088/1478-3975/aac922
http://iopscience.iop.org/article/10.1088/1478-3975/aac922
https://doi.org/10.1371/journal.pone.0008997
https://doi.org/10.3389/fphys.2012.00350
https://doi.org/10.1142/9781860949920_0005
https://doi.org/10.1529/biophysj.107.119495
https://doi.org/10.1073/pnas.1008435108
https://doi.org/10.1126/scisignal.2005237
https://doi.org/10.1093/emboj/20.1.65
https://doi.org/10.1016/j.physrep.2003.10.015
https://cran.r-project.org/package=DescTools
https://cran.r-project.org/package=DescTools
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Information Content in Stochastic Pulse Sequences of Intracellular Messengers
	1. Introduction
	2. Methods
	2.1. The Model
	2.2. Calculations
	2.3. Numerical Simulations

	3. Results
	3.1. Information Contained in the Interpulse Time
	3.2. Information Contained in the Number of Pulses, N, That Occur During an Interval

	4. Discussion and Conclusions
	4.1. Resource Identification Initiative

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


