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Abstract

In this work we project the Hamiltonian of an N -electron system onto a set of N -

electron determinants cataloged by their seniority numbers and their excitation levels

with respect to a reference determinant. We show that, in open-shell systems, the diag-

onalization of the N -electron Hamiltonian matrix leads to eigenstates of the operator

Ŝ2 when the excitation levels are counted in terms of spatial orbitals instead of spin-

orbitals. Our proposal is based on the commutation relations between the N -electron

operators seniority number and spatial excitation level, as well as between these op-

erators and the spin operators Ŝ2 and Ŝz. Energy and < Ŝ2 > expectation values of

molecular systems obtained from our procedure are compared with those arising from
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the standard hybrid configuration interaction methods based on seniority numbers and

spin-orbital-excitation levels. We analyze the behavior of these methods, evaluating

their computational costs and establishing their usefulness.

1. INTRODUCTION

The full configuration interaction (FCI) method provides the exact determination

of electronic energies in N -electron systems but its practical use is limited to systems

with few electrons and small basis sets, due to its high computational cost. To reduce

this cost, configuration interaction (CI) methods have been proposed, in which only a

limited number of N -electron Slater determinants is used to project the Hamiltonian

onto the N -electron space [1–5]. This selection has been made following mainly two

criteria. In the excitation-based scheme, the Hamiltonian is projected onto an N -

electron determinant set constituted by the reference determinant and those possessing

up to a given integer of different occupation numbers (counted in terms of spin-orbitals

or spatial orbitals) with respect to that reference. Another criterion is to select N -

electron Slater determinants using their seniority number, i.e. the number of unpaired

electrons involved in each determinant [6–11]. The excitation-based methods have

been qualified as more efficient to describe systems presenting essentially dynamic

correlation while the seniority-based procedures are preferred [7] for systems exhibiting

high static correlation. More recently, hybrid methods, combining both criteria, have

been proposed to select the determinants [12–14]. This type of method has proven

to be useful to describe systems which present both dynamic and static correlation

[7, 13–17], as well as dissociation or bond-breaking processes, where the system can

show mainly dynamic correlation near the equilibrium geometries and static correlation

at stretched arrangements. However, to our knowledge, the reported results have been

restricted to closed-shell systems and the spin-orbital excitation version.

The seniority-number based CI treatments provide spin-adapted wave-functions

for all type of system, with any number of electrons (even or odd), and for any spin

symmetry [8, 18]. However, in open-shell systems, the ordinary excitation-based CI
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procedures may lead to spin-contaminated wave-functions when the excitations are de-

scribed in terms of spin-orbitals. In Ref. [19] we have recently proven that the spin

contamination in the excitation-based CI treatments can be avoided counting the exci-

tation levels in terms of spatial orbitals instead of spin-orbitals. We have proposed an

N -electron spin-free excitation operator which suitably evaluates the spatial excitation

number. In this work we point out that spin contamination is also detected in open-

shell system wave-functions obtained from hybrid methods if the selection criterion is

the spin-orbital one. Our aim is to extend the hybrid CI methodology to the study of

open-shell systems, to ascertain the ability and applicability conditions of these proce-

dures to describe a broader set of systems. Our proposal guarantees eigenstates without

spin contamination for any N -electron Hamiltonian matrix generated by projection of

the corresponding Hamiltonian operator onto a set of N -electron Slater determinants

selected according to their seniority numbers and their spatial excitation numbers.

This work has been organized as follows. Section 2 describes the N -electron se-

niority number operator and the excitation number operators, that evaluate the excita-

tion levels of an N -electron Slater determinant with respect to a reference determinant.

We analyze the commutation relation between these operators, predicting the features

of the linear combinations of Slater determinants, which depend on the nature of the

determinant set used to project the Hamiltonian. We also describe in this section

the commutation relations of these operators with the operators Ŝ2 and Ŝz. Section

3 reports the computational details and numerical results in selected open-shell sys-

tems, confirming the predictions provided by the commutation relations and showing

spin-contaminated wave-functions in the hybrid methods arising from the spin-orbital

excitation version. We propose several procedures within the hybrid methodology,

studying the quality of their results and their computational costs. Finally, in section

4 we point out the conclusions that can be drawn from this work.

2. THEORY

2.1. Commutation relations
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Let a†iσ and aiσ be the fermion creation and annihilation operators, respectively,

corresponding to a spin-orbital iσ; σ denotes the spin coordinate, α or β, and i is one

of the K spatial orbitals of an orthonormal set {i, j, k, l, . . . }. The excitation level,

in terms of spin-orbitals (so), of a given N -electron determinant with respect to a

reference determinant (ref) is evaluated by means of the N -electron operator

X̂so = N̂ −
∑
iα∈ref

a†iαaiα −
∑
iβ∈ref

a†
iβ
aiβ (1)

where N̂ is the particle number operator. The expectation value of this operator

< X̂so > for a Slater determinant constitutes the excitation level of the analyzed

determinant in terms of spin-orbitals. Alternatively, an N -electron spatial-orbital (sp)

excitation-level operator can be defined by means of the spin-free first- and second-order

replacement operators Êi
j =

∑
σ a†iσajσ and Êik

jl =
∑

σ1,σ2
a†iσ1a

†
kσ2alσ2ajσ1 , respectively,

[20, 21]; this N -electron excitation operator has been expressed as [19]

X̂sp = N̂ −
∑
i∈ref

Êi
i +

1

2

∑
i∈sref

Êii
ii (2)

In this equation, the index i runs over all the reference singly or doubly occupied or-

bitals in the sum
∑

i∈ref , while that index only runs over the reference singly occupied

(sref) spatial orbitals in the sum
∑

i∈sref . The expectation value < X̂sp > for a given

determinant evaluates its excitation level in the spatial-orbital procedure with respect

to a given reference. Both operators X̂so and X̂sp coincide when the reference deter-

minant is closed-shell. On the other hand, the N -electron seniority number operator

has been formulated by means of spin-free replacement operators as [8, 12, 18]

Ω̂ =
∑
i

(Êi
i − Êii

ii) (3)

Its expectation value < Ω̂ > for an N -electron determinant evaluates the number of

unpaired electrons involved.
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The commutation relations between the spin operators Ŝ2 and Ŝz and the oper-

ators Ω̂ and X̂sp have been previously reported [18, 19], concluding that [Ŝ2, Ω̂] = 0;

[Ŝ2, X̂sp] = 0; [Ŝz, Ω̂] = 0; and [Ŝz, X̂
sp] = 0. These relations have easily been shown

by means of the spin-free replacement operator product rules [22, 23], expressing the

spin-free Ŝ2 operator as [24, 25]

Ŝ2 =
1

2

∑
i,j,k,l

[
4−N

2(N − 1)
δijδkl − δilδjk

]
Êik
jl (4)

in which the δ symbol means the Kronecker delta. Using those operator product rules

or the well-known commutation rules of the fermion operators, one also shows

[Ω̂, X̂sp] = 0 (5)

and

[Ω̂, X̂so] = 0 (6)

which allow us to decompose a space of determinants of a given seniority number into

different subspaces characterized by their excitation levels, or vice versa. However,

unlike the X̂sp operator, for an open-shell reference one finds

[Ŝ2, X̂so] 6= 0 (7)

This relation and the [Ŝ2, X̂sp] = 0 one [19] justify that the spin-orbital based and the

spatial-orbital based determinant selection schemes lead to different spin features in

the resulting CI wave functions.
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2.2. Spin-adapted hybrid methods

Eqs. (2) and (3) mean that a given Slater determinant possesses integer eigen-

values Xsp =< X̂sp > and Ω =< Ω̂ > for the corresponding X̂sp and Ω̂ operators

respectively. Moreover, in agreement with Eq. (5) linear combinations of determinants

of identical eigenvalue Xsp and those with identical Ω eigenvalue can also be eigen-

functions of the Ŝ2 and Ŝz operators. This feature is not maintained in the case of

the X̂so operator which, according to Eq. (7), does not commute with the Ŝ2 opera-

tor. These properties ensure the construction of spin-adapted configurations of Slater

determinants with quantum numbers S, Sz, X
sp, and Ω. Likewise, these linear combi-

nations of Slater determinants with different parameters Xsp and Ω but with identical

quantum numbers S and Sz (spin degenerated functions) can be combined, yielding

more general eigenfunctions of the Ŝ2 and Ŝz operators.

An N -electron non-relativistic Hamiltonian, Ĥ, of chemical interest possesses

pairwise interactions satisfying the well-known commutation relations [Ĥ, Ŝ2] = 0 and

[Ĥ, Ŝz] = 0. Within the CI treatment methodology, this Hamiltonian is usually pro-

jected onto an N -electron Slater determinant set of Sz ≥ 0 quantum number, leading

to an N -electron Hamiltonian matrix. If the determinants of the set onto which the

Hamiltonian is projected have been cataloged according to the parameters Xsp or Ω,

diagonalizing this matrix one finds spin-adapted eigenstates corresponding to all pos-

sible spin quantum numbers S = Sz, . . . , Smax (Smax = min(N
2
, K − N

2
)). Contrary to

this situation, one can obtain spin contaminated states, in systems described by open-

shell reference determinants, if the excitation levels of the determinants arise from the

expectation value of the operator in Eq. (1). The N -electron determinant set can be

the union of sets corresponding to several values of Xsp and Ω, where the determinants

common to both subsets are only taken into account once. A preliminary study of this

procedure, limited to closed-shell systems, has been reported in Ref. [12] attempting

to describe systems which present dynamic and static correlation. These union hybrid

configuration interaction methods hereafter will be denoted by CI-
⋃Ω=Ω1,...,Ωp
X=0,...,Xsp

q
. In this

notation, Ω1, . . . ,Ωp is a sequence with extremes Ω1 and Ωp and some intermediate
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values meaning that all determinants of these seniority numbers have been selected,

and similarly for the sequence of excitation levels 0, . . . , Xsp
q which starts with Xsp = 0

and ends at a given Xsp
q value. Obviously, the case CI-

⋃Ω=2S,...,Ωmax

X=0,...,Xsp
max

corresponds to the

FCI treatment, which requires the use of all Ω values, from the minimum Ωmin = 2S

to the maximum Ωmax = min(N, 2K − N) [12]; it contains the total number of possi-

ble determinants and, consequently, it also includes all possible excitations, from the

zeroth level to the highest one, Xsp
max = min(N,K − 2S, 2K − N) for the substates

Sz = S. Alternatively, the selection of the determinants can be limited to the inter-

section of sets defined by the series of parameters Xsp and Ω, what will be denoted by

CI-
⋂Ω=Ω1,...,Ωp
X=0,...,Xsp

q
; this kind of methods has been proposed for closed-shell systems in Ref.

[14], trying to reduce the computational cost of the seniority-number CI methodology.

Similarly to the CI-
⋃Ω=2S,...,Ωmax

X=0,...,Xsp
max

method, the CI-
⋂Ω=2S,...,Ωmax

X=0,...,Xsp
max

one coincides with the

FCI treatment. These procedures offer a wide variety of possibilities whose behav-

iors and computational costs deserve to be analyzed in the case of open-shell systems.

Moreover, the results for the energy and < Ŝ2 > quantity arising from the proposed

spatial selection procedure must be compared with those obtained when the excitation

levels are selected according to the expectation values of the operator in Eq. (1).

3. RESULTS AND DISCUSSION

We have selected several N -electron Slater determinant sets cataloged by the

parameters Ω =< Ω̂ > and X =< X̂sp > (in the spatial-orbital treatment) as well as

by Ω =< Ω̂ > and X =< X̂so > (in the spin-orbital one), to construct the projected

N -electron Hamiltonian matrices for open-shell systems in ground states. These N -

electron matrices have been expressed in the canonical Hartree-Fock molecular orbitals

and the molecular orbitals minimizing the energy of all the CI-expansions (as is well

known, the CI methods are not invariant to arbitrary orbital rotations [7] except in

the FCI limit case). The excitation levels of the determinants have been calculated

with respect to those restricted open-shell Hartree-Fock (ROHF) Slater ones when the

canonical molecular orbitals have been used; otherwise, the references have been built
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from the optimized orbital basis sets. To obtain an affordable computational cost we

have used the one-electron minimal STO-3G atomic basis sets. Calculations have been

carried out with all electrons and all orbitals correlated. The lowest energies of each

spin symmetry and the expectation values < Ŝ2 > have been described at optimized

FCI/STO-3G geometries and at stretched ones (in one of the systems). The standard

one- and two-electron integrals required to formulate the N -electron Hamiltonians of

these species have been obtained from a modified version of the PSI 3.3 package [26].

The determination of energy and < Ŝ2 > values of all CI methods described comes

from our own codes, based on Refs. [27].

In Tables 1 and 2 we report results corresponding to doublet (CO+ molecule-ion)

and triplet (CH2 diradical) states, respectively; these results arise from optimized ge-

ometries and canonical Hartree-Fock molecular orbital basis sets. In these calculations

we have assumed the largest Abelian subgroup of the point group describing the full

symmetry of each compound, which is selected by the PSI 3.3 package (C2v ⊂ C∞v

or D2h ⊂ D∞h). In both Tables we specify FCI results on the first line which, as

mentioned in previous section, arise from the projection of the Hamiltonians onto sets

of all possible determinants of Sz = S value constructed with the used one-electron

basis set; these sets can be described either in terms of the seniority-number parameter

Ω = Ωmin, . . . ,Ωmax or in terms of the excitation one X = 0, . . . , Xmax. Both sets

are identical and consequently their intersection set is again the same. The results

reported in lines 2, 3, and 4 of these Tables correspond to the configuration interac-

tion at single excitations (CIS), at single and double excitations (CISD), and at single,

double, and triple ones (CISDT), respectively. The subsets of determinants described

by these excitations, X = 0, 1, X = 0 − 2, and X = 0 − 3 are included in the whole

set Ω = Ωmin, . . . ,Ωmax; consequently, in our formalism, they can be represented by

the corresponding intersection set. Similarly, the results in lines 5 and 6 arise from a

pure seniority-number CI approach and correspond to the lower values of the Ω param-

eter. All these values have been included in those Tables to be compared with those

obtained from hybrid CI methods of intersection and union types reported in the rest
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of the lines.

The results shown in Table 1 (a doublet system) present a spin contamina-

tion in most of the states described within the spin-orbital scheme reaching a value

< Ŝ2 >= 0.78604 in the CIS method while the spatial-orbital treatments always yield

values < Ŝ2 >= 0.75000. The energy values of the pure spin states are lower than

the spin-contaminated counterparts, what shows the approximated methods yielding

spin-adapted wave-functions are more suitable, without a significant increase of com-

putational cost. These features can also be observed in Table 2, in which we describe

the methylene radical in its triplet ground state reaching up < Ŝ2 >= 2.00852 val-

ues for spin contamination in the spin-orbitals treatments and with < Ŝ2 >= 2.00000

values for the spatial-orbital methods. The number of Slater determinants contained

in the intersection sets defined by the parameters Ω and X is markedly lower than in

their counterpart pure or union set CI methods. Consequently, the energies obtained

from the intersection methods are higher, since they arise from shorter determinant ex-

pansions. The CI-
⋂Ω=1
X=0,1, CI-

⋂Ω=2
X=0,1, and CI-

⋂Ω=3
X=0,1 methods for doublet and triplet

respectively, require the addition of very few Slater determinants to the reference one;

they do not alter the restricted open-shell Hartree-Fock energies (EROHF) and do not

yield spin-contaminated wave functions, meaning such configurations do not contribute

to the approximate wave function expansion. All these results also indicate that the

counterpart union methods CI-
⋃Ω=1
X=0,1, CI-

⋃Ω=2
X=0,1, and CI-

⋃Ω=3
X=0,1 lower the energy

with respect to the ROHF one. As shown in Table 1, the CI-
⋂Ω=1,3
X=0−3 method yields

energies close to those of the pure seniority-number CI-
⋂Ω=1,3
X=0−Xmax

(Ω = 1, 3) method,

at a drastically lower computational cost. In Table 2 we show the results for the triplet

system obtained from the methods CI-
⋂Ω=2,4
X=0−3. These results are also close to those

obtained from the pure seniority-number CI-
⋂Ω=2,4
X=0−Xmax

(Ω = 2, 4) one. All these re-

sults point out the practical usefulness of the intersection methods; they approach their

pure seniority-number CI counterparts (including static correlation) at a considerable

reduced computational cost. We must highlight the results arising from the methods

CI-
⋃Ω=Ωmin

X=0−2 and CI-
⋃Ω=Ωmin

X=0−3 in relation to the FCI ones. In the case of doublet system
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CO+ (Table 1) the methods CI-
⋃Ω=1
X=0−2 and CI-

⋃Ω=1
X=0−3 yield energy values (spatial-

orbital version) -110.950882 Eh and -110.955263 Eh while the FCI gives -110.961561

Eh, with computational costs 1722, 5950 and 25200 determinants, respectively. The

numerical determinations shown in Table 2 for triplet state yield similar behaviors if

we compare the results arising from the CI-
⋃Ω=2
X=0−2, CI-

⋃Ω=2
X=0−3, and FCI methods.

These results show the improvement of the numerical values obtained from the pure

minimum-seniority-number CI methods when the set of determinants projecting the

Hamiltonian is extended with the set of lower excitation levels.

To complement this type of study we have gathered, in Table 2, other results

corresponding to the methylene radical at optimized geometry. These results have been

obtained performing a minimization of the energy for each CI expansion by means of

orbital rotations. A comparison of these results with their counterparts also reported

in Table 2 shows that greatest energy differences are shown mainly by the pure and

hybrid seniority-based methods. This behavior has also been observed for the other

molecular systems studied. All these results confirm the strong dependence of these

seniority-based methods on the used basis set, which has been pointed out in other

works for closed-shell systems [7, 9, 12, 14], as well as the possibility of improving this

type of results if optimized orbitals are used instead of those Hartree-Fock ones.

In closed-shell systems, the hybrid treatments have proven to be specially useful

to describe dissociation or bond-breaking processes presenting both dynamic and static

correlation, depending on their geometrical arrangements [12]. To explore the behavior

of the proposed spin-contamination-free methods along dissociation paths, in the open-

shell case, we have chosen the linear hydrogen chain H7 in its ground state, which is a

benchmark system for testing new methods and represents a very challenging case of

breaking many bonds. We report, in Table 3, results arising from optimized orbital ba-

sis sets for that system at several internuclear distances RH−H. We have calculated the

non-parallelity error (NPE) for each method (the difference between the maximum and

minimum deviation from the FCI energy values in the interval of bond distances RH−H

studied). The H7 chain presents predominantly static correlation in its symmetrically
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stretched geometries and, consequently, the seniority-number CI methods provide a

more suitable description. This behavior is confirmed by the results shown in Table

3 in which the values of the NPE quantity arising from the pure seniority-number CI

methods (
⋂Ω=1
X=0−Xmax

(Ω = 1) and
⋂Ω=1,3
X=0−Xmax

(Ω = 1, 3)) are much lower than those

obtained from the pure excitation CI ones (
⋂Ω=1−Ωmax

X=0,1 (CIS),
⋂Ω=1−Ωmax

X=0−2 (CISD), and⋂Ω=1−Ωmax

X=0−3 (CISDT)). In the intersection methods the low excitation levels restrict the

number of determinants involved in a determined Ω value, yielding higher values of

the NPE quantity than the corresponding pure seniority-number CI methods although

they require a considerable lower computational cost, due to their polynomial scaling

with orbital basis set size. It must be noted that determinant subspaces corresponding

to quadruple excitations must be included in these CI expansions to properly describe

the many-bond-breaking process involved in the symmetric stretching of this molecu-

lar system. Figure 1 shows that at near-equilibrium bond distances the intersection

method proposed (CI-
⋂Ω=1
X=0−4) yields results very close to those obtained from the

seniority-based procedure CI-
⋂Ω=1
X=0−Xmax

(Ω = 1), at lower computational cost; how-

ever at stretched configurations, the accuracy of the results begins to deteriorate due

to the increasing static correlation. The union hybrid methods provide very low NPE

values, e.g. the CI-
⋃Ω=1
X=0−2 method gives NPE=0.0183 with 365 determinants, which is

a quarter of those required in the FCI method (1225). Figure 1 also allows one to show

that the union method (CI-
⋃Ω=1
X=0−2) incorporates the dynamic correlation missing in

the results of the pure seniority-based method (CI-
⋂Ω=1
X=0−Xmax

(Ω = 1)) providing bet-

ter results at near-equilibrium bond distances, while at the same time it leads to close

results to that method at stretched distances, where the strong correlation dominates.

Figure 1 here
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FIG. 1. Potential energy curve representing the symmetric dissociation of the H7 linear

chain for the ground state arising from the intersection hybrid method CI-
⋂Ω=1
X=0−4 and union

hybrid method CI-
⋃Ω=1
X=0−2 and comparison with those obtained from the ROHF, CI-pure-

excitacion-based CISD, CI-pure-seniority-based Ω = 1, and FCI methods. Results correspond

to molecular orbitals arising from standard STO-3G atomic basis sets. For all CI-expansions

the energy is minimized by performing orbital rotations (using all orbitals of the basis set).

4. CONCLUDING REMARKS

We have proposed to project an N -electron Hamiltonian by means of sets of N -

electron Slater determinants selected by hybrid procedures, based on seniority-number

and excitation-number schemes, within the CI methodology framework. We show that

the selection of determinants with excitation number defined in terms of spatial orbitals

ensures spin contamination-free wave functions in open- and closed-shell systems, while

the spin-orbital criterion can lead to spin contamination. Our proposal is based on the

commutation relation between the N -electron seniority number operator and the re-

cently reported spatial excitation one. We have tested this theoretical achievement

performing numerical determinations in doublet and triplet systems, proving that the

energies obtained from our determinant-union-set hybrid methods improve on those

arising from the individual seniority-number and spin-orbital-excitation based treat-

ments. An analysis of closeness to the exact energies (the FCI ones) shows that the

pure seniority-level methods can be improved at a reasonable increase of computational

cost, if the set of N -electron determinants which projects the Hamiltonian is extended

to those possessing low excitation levels or vice versa, although in this latest case its

cost is higher. Moreover, we have found energy results close to the pure seniority-

number CI treatments, with an important reduction of the computational cost, when

one uses hybrid methods whose N -electron Slater determinants belong to the intersec-

tion sets between the excitation-levels and the seniority-number ones. Other possibili-

ties of using union and intersection hybrid methods are currently being explored in our

laboratories.
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TABLE 1. No. determinants and energies (in Eh) arising from CI methods for the doublet

system CO+(2Σ+) at FCI/STO-3G optimized geometry. Results correspond to Hartree-

Fock molecular orbitals arising from standard STO-3G atomic basis sets. Molecular orbital

occupation numbers in the reference-ROHF determinant: σ2σ2σ2σ2π2π2σ1π0π0σ0. EROHF =

−110.797197 Eh. Ωmax = 7. Xmax = 7.

spatial-orbital treatment spin-orbital treatment

CI method No. determ. Energy No. determ. Energy⋂Ω=1−Ωmax
X=0−Xmax

(FCI) 25200 -110.961561 25200 -110.961561⋂Ω=1−Ωmax
X=0,1 (CIS) 64 -110.808622 46 -110.802231⋂Ω=1−Ωmax
X=0−2 (CISD) 946 -110.946612 703 -110.946384⋂Ω=1−Ωmax
X=0−3 (CISDT) 5300 -110.952460 4220 -110.951380⋂Ω=1
X=0−Xmax

(Ω = 1) 840 -110.871825 840 -110.871825⋂Ω=1,3
X=0−Xmax

(Ω = 1, 3) 8400 -110.910133 8400 -110.910133⋂Ω=1
X=0,1 10 -110.797197 10 -110.797197⋂Ω=1
X=0−2 64 -110.869018 64 -110.869018⋂Ω=1
X=0−3 190 -110.869482 190 -110.869482⋂Ω=1,3
X=0,1 64 -110.808622 46 -110.802231⋂Ω=1,3
X=0−2 496 -110.901978 433 -110.901975⋂Ω=1,3
X=0−3 1900 -110.905897 1790 -110.905009⋃Ω=1
X=0,1 894 -110.885796 876 -110.878489⋃Ω=1
X=0−2 1722 -110.950882 1479 -110.950662⋃Ω=1
X=0−3 5950 -110.955263 4870 -110.954101⋃Ω=1,3
X=0,1 8400 -110.910133 8400 -110.910133⋃Ω=1,3
X=0−2 8850 -110.956276 8670 -110.956093⋃Ω=1,3
X=0−3 11800 -110.957628 10900 -110.957203
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TABLE 2. No. determinants and energies (in Eh) arising from CI methods for the triplet

system CH2(3B1) at FCI/STO-3G optimized geometry. Results correspond to (A) Hartree-

Fock molecular orbitals arising from standard STO-3G atomic basis sets; (B) orbitals which

minimize the energy of all CI-expansions by means of orbital rotations (using all orbitals of

the basis set). Molecular orbital occupation numbers in the reference-ROHF determinant:

a2
1a

2
1b

2
2b

1
1a

1
1b

0
2a

0
1. EROHF = −38.430850 Eh. Ωmax = 6. Xmax = 5.

spatial-orbital treatment spin-orbital treatment

CI method No. determ. Energy (A) Energy (B) No. determ. Energy (A) Energy (B)⋂Ω=2−Ωmax
X=0−Xmax

(FCI) 735 -38.474746 -38.474746 735 -38.474746 -38.474746⋂Ω=2−Ωmax
X=0,1 (CIS) 35 -38.438238 -38.455016 23 -38.434237 -38.451219⋂Ω=2−Ωmax
X=0−2 (CISD) 234 -38.474020 -38.474281 171 -38.473982 -38.474005⋂Ω=2−Ωmax
X=0−3 (CISDT) 558 -38.474433 -38.474745 475 -38.474292 -38.474704⋂Ω=2
X=0−Xmax

(Ω = 2) 210 -38.449096 -38.468084 210 -38.449096 -38.468084⋂Ω=2,4
X=0−Xmax

(Ω = 2, 4) 630 -38.461601 -38.474726 630 -38.461601 -38.474726⋂Ω=2
X=0,1 11 -38.430850 -38.434888 11 -38.430850 -38.434888⋂Ω=2
X=0−2 57 -38.448995 -38.465874 57 -38.448995 -38.465874⋂Ω=2
X=0−3 129 -38.449019 -38.467744 129 -38.449019 -38.467744⋂Ω=2,4
X=0,1 35 -38.438238 -38.455016 23 -38.434237 -38.451219⋂Ω=2,4
X=0−2 189 -38.461134 -38.473913 153 -38.461121 -38.473779⋂Ω=2,4
X=0−3 453 -38.461486 -38.474668 401 -38.461381 -38.474644⋃Ω=2
X=0,1 234 -38.457048 -38.470934 222 -38.452784 -38.469557⋃Ω=2
X=0−2 387 -38.474382 -38.474532 324 -38.474344 -38.474412⋃Ω=2
X=0−3 639 -38.474746 -38.474746 556 -38.474595 -38.474739⋃Ω=2,4
X=0,1 630 -38.461601 -38.474726 630 -38.461601 -38.474726⋃Ω=2,4
X=0−2 675 -38.474745 -38.474746 648 -38.474716 -38.474745⋃Ω=2,4
X=0−3 735 -38.474746 -38.474746 704 -38.474737 -38.474746
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TABLE 3. No. determinants, energies (in Eh) and non-parallelity errors (NPE) arising from

CI methods for the symmetric dissociation of the ground state linear chain H7(2Σ+
u ) in the

spatial-orbital treatment. Results correspond to molecular orbitals arising from standard

STO-3G atomic basis sets. For all CI-expansions the energy is minimized by performing

orbital rotations (using all orbitals of the basis set). EROHF = −2.332387 Eh (RH−H = 0.5Å),

EROHF = −3.619286 Eh (RH−H = 1.0Å), EROHF = −3.208888 Eh (RH−H = 1.5Å), EROHF =

−2.790254 Eh (RH−H = 2.0Å). Ωmax = 7. Xmax = 6.

Energy

CI method No. determ. 0.5Å 1.0Å 1.5Å 2.0Å NPE⋂Ω=1−Ωmax
X=0−Xmax

(FCI) 1225 -2.377684 -3.735490 -3.484820 -3.319563 -⋂Ω=1−Ωmax
X=0,1 (CIS) 34 -2.359550 -3.673101 -3.311253 -2.982748 0.3187⋂Ω=1−Ωmax
X=0−2 (CISD) 259 -2.377345 -3.728787 -3.430805 -3.165486 0.1537⋂Ω=1−Ωmax
X=0−3 (CISDT) 744 -2.377660 -3.734540 -3.483909 -3.267026 0.0525⋂Ω=1−Ωmax
X=0−4 (CISDTQ) 1119 -2.377684 -3.735485 -3.484810 -3.319559 <0.0001⋂Ω=1
X=0−Xmax

(Ω = 1) 140 -2.358448 -3.696174 -3.448042 -3.304486 0.0242⋂Ω=1,3
X=0−Xmax

(Ω = 1, 3) 770 -2.377000 -3.734178 -3.483144 -3.318770 0.0010⋂Ω=1
X=0,1 7 -2.342917 -3.619286 -3.237604 -2.840664 0.4441⋂Ω=1
X=0−2 34 -2.357674 -3.684688 -3.394301 -3.156930 0.1426⋂Ω=1
X=0−3 70 -2.358425 -3.693982 -3.417059 -3.167314 0.1330⋂Ω=1
X=0−4 115 -2.358448 -3.695781 -3.440819 -3.276667 0.0248⋂Ω=1,3
X=0,1 34 -2.359550 -3.673101 -3.311253 -2.982748 0.3187⋂Ω=1,3
X=0−2 169 -2.375968 -3.724878 -3.425913 -3.161032 0.1568⋂Ω=1,3
X=0−3 439 -2.376920 -3.732269 -3.453935 -3.241648 0.0772⋂Ω=1,3
X=0−4 664 -2.377002 -3.733937 -3.478972 -3.298642 0.0202⋃Ω=1
X=0,1 167 -2.369921 -3.714751 -3.452424 -3.306457 0.0246⋃Ω=1
X=0−2 365 -2.377412 -3.731666 -3.466279 -3.308474 0.0183⋃Ω=1
X=0−3 814 -2.377675 -3.735126 -3.484022 -3.310441 0.0091⋃Ω=1
X=0−4 1144 -2.377684 -3.735482 -3.484816 -3.316080 0.0035⋃Ω=1,3
X=0,1 770 -2.377000 -3.734178 -3.483144 -3.318770 0.0010⋃Ω=1,3
X=0−2 860 -2.377640 -3.735104 -3.484242 -3.318876 0.0006⋃Ω=1,3
X=0−3 1075 -2.377683 -3.735472 -3.484660 -3.319092 0.0005⋃Ω=1,3
X=0−4 1225 -2.377684 -3.735490 -3.484820 -3.319563 0.0000


